An Efficient Neural Network for Recognizing Gestural Hindi Digits
- 1 Department of Computer Science, Faculty of Computer and Information Technology, University of Tabuk, Tabuk, Saudi Arabia
- 2 Department of Computer Science, Faculty of Information Technology, Middle East University, Jordan
Abstract
Handwritten Hindi digit recognition plays an important role in eastern Arab countries especially in the courtesy amounts of Arab bank checks, recognizing numbers in car plates, or in postal code for mail sorting. In our study, we proposed an efficient Hindi Digit Recognition System drawn by the mouse and developed using Multilayer Perceptron Neural Network (MLP) with backpropagation. The system has been designed, implemented and tested successfully. Analysis has been carried out to determine the number of hidden nodes that achieves high performance. The proposed system has been trained on samples of 800 images and tested on samples of 300 images written by different users selected from different ages. An experimental result shows high accuracy of about 91% on the testing samples and very close to 100% on the training samples. Experiments showed that our result is high in comparison with other Hindi digit recognition systems especially if we consider the way of writing (mouse and children) in our trained and tested results.
DOI: https://doi.org/10.3844/ajassp.2013.938.951
Copyright: © 2013 Nidal Fawzi Shilbayeh, Mohammad Mahmmoud Alwakeel and Maisa Mohy Naser. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 3,148 Views
- 2,863 Downloads
- 3 Citations
Download
Keywords
- Digit Recognition
- Hindi Digits
- Mouse Gesture
- Neural Networks
- MLP
- Backpropagation
- Feature Extraction