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Abstract: At present, genomic data analysis has the problems of insufficient
model interpretation and limited computational efficiency in disease
association research. As a powerful machine-learning algorithm, Random
Forest has demonstrated excellent ability in processing complex and multi-
dimensional data sets and has gradually become a popular tool in the field of
bioinformatics. The purpose of this paper is to explore how RF can be
applied to genome data mining and reveal the potential relationship between
gene variation and disease. The study collected whole-genome sequencing
data from 10,000 patients and labeled whether they had a specific type of
cardiovascular disease. RF was used to construct a prediction model, and the
SNP loci closely related to the occurrence of diseases were identified. The
results show that compared with traditional statistical methods, the AUC
value of the RF model reaches 0.92, the accuracy rate is as high as 89%, and
the sensitivity and specificity are 87 and 90%, respectively. This indicates
that RF can effectively identify key genetic markers, providing a valuable
list of candidate genes for subsequent studies. In order to further verify the
effectiveness of the RF model, this study selected the top 50 high-risk SNPs
for functional annotation analysis. These variants were found to be mainly
focused on genes known to be involved in lipid metabolism, inflammatory
response, and immunomodulatory pathways. Rs6511723 is located in the
APOE-C1/C4/C2 region, which is involved in cholesterol transport;
rs1121980, on the other hand, is close to the FTO gene, which can affect
weight and obesity risk by encoding a fatty acid oxidase. The ROC curve of
MHILDA based on 5x validation is close to the true prediction interval, and
its average AUC is 90.45%, which fully reflects its stable performance, and
combined with experimental data, it can be determined that the MHILDA
model shows excellent performance on the reference dataset and can
accurately predict the potential LDA.
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Introduction
With the rapid advancements of genomics, scientists

now have the unprecedented ability to deeply explore the
most subtle mysteries of the human body. Since the
successful completion of the Human Genome Project in
2003, life science research has entered a brand-new era.
People have gradually realized that small variations in
DNA sequences may be the key to unlocking the
mechanism of complex diseases (You et al., 2023). In
order to fully explore this potential, it is particularly
important and urgent to develop efficient computational
tools to process and analyze massive amounts of genetic
information (Ou et al., 2024).

In this context, Machine Learning (ML) has rapidly
emerged as an interdisciplinary subject, which makes

algorithms automatically learn laws and patterns and
make predictions or decisions with the help of statistical
and computer science principles (Gualdi et al., 2024;
Seyedmirzaei et al., 2024). Among many ML algorithms,
Random Forest (RF) has attracted much attention
because of its advantages of flexibility, easy
understanding and interpretation (Wang et al., 2024). The
RF-integrated learning method was proposed by Leo
Breiman in 2001. It constructs multiple independent
decision trees to form a forest and finally synthesizes the
voting of all trees to determine the output result (Zhao et
al., 2025). RF can effectively cope with the challenges
brought by noisy data and highly nonlinear relationships,
especially when the number of features in large-scale
data sets is much larger than the number of samples and
is very suitable for high-throughput genomic data
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analysis tasks (Gómez-Méndez and Joly, 2024; Rabiei et
al., 2024).

Based on the above characteristics, more and more
researchers have begun to try to apply RF to genomics
research and have achieved outstanding results in various
complex diseases such as cancer, diabetes and mental
disorders. For example, in a transcriptomics study of
brain tissue samples from patients with Alzheimer's
disease, RF successfully identified a set of core gene
modules closely related to the neurodegeneration
process, providing important clues for the design of new
drug targets. The other is a screening project for
hypertension susceptibility genes. Through RF analysis,
a number of previously undiscovered candidate SNP
sites were found and they showed good predictive
performance.

Although the current research on the correlation
between genomic data analysis and diseases has made
some progress, it still faces two major challenges: First,
the high computational cost caused by model complexity
limits the rapid analysis of large-scale genomic data;
Second, the prediction results of the model are not
explanatory and it is difficult to intuitively reveal the
internal relationship between key genes and diseases. To
solve these problems, this study aims to develop an
efficient and interpretable Random Forest algorithm in
order to improve computational efficiency and enhance
the interpretability of results while ensuring prediction
accuracy.

In the field of genomics research, traditional genomic
data analysis methods are affected by the
"dimensionality disaster" of high-dimensional data when
screening key gene markers related to diseases, which
has limited accuracy and it is difficult to mine complex
nonlinear association patterns between genes and
diseases and at the same time, the ability to deal with
data noise and missing values is insufficient. In this
study, the random forest algorithm was used to
accurately screen key gene markers by virtue of its
powerful feature selection ability in processing high-
dimensional data. The characteristics of constructing the
comprehensive results of multiple decision trees are used
to reveal complex correlation patterns. Relying on strong
robustness to data noise, random sampling and feature
selection to alleviate the impact of missing values, so as
to effectively overcome the limitations of traditional
methods. However, the current random forest algorithm
has low computational efficiency and poor model
interpretability in the face of large-scale genomic
datasets, which is the problem and existing research gap
that needs to be solved in this study.

Compared with traditional studies that only focus on
the association between a single SNP locus and disease,
random forest-based genomic data analysis has full
advantages in the field of cardiovascular disease
research. Cardiovascular disease is a complex

multifactorial disease that involves the interaction of
genetic and environmental factors. Random forests use
ensemble learning strategies to construct multiple
decision trees and summarize the results, which can
effectively cope with the high-dimensional
characteristics of genomic data, accurately analyze the
comprehensive impact of multiple SNP site combinations
on cardiovascular disease risk, such as identifying SNP
combinations associated with vascular smooth muscle
cell proliferation and migration, which is essential for
atherosclerosis, a key pathological basis of
cardiovascular disease and automatically assess the
importance of SNP features to avoid missing key
information. In terms of data mining depth, it is good at
capturing the complex interaction patterns between
multiple SNP loci, revealing the deep gene-gene and
gene-environment interactions in cardiovascular
diseases, such as some seemingly unrelated SNP
synergies, which can affect the inflammatory response of
the cardiovascular system by regulating the expression of
inflammation-related genes, change the risk of disease
and can efficiently process massive SNP data to mine
more hidden signals. From the perspective of research,
this analysis method can carry out dynamic risk
assessment of cardiovascular diseases based on
individual SNP information, lifestyle, clinical indicators,
etc., predict the likelihood of onset at different time
nodes and integrate genomic data of various
cardiovascular diseases such as coronary heart disease,
myocardial infarction, arrhythmia to carry out cross-
disease analysis, identify shared SNP features or
pathways, such as finding SNP characteristics that are
closely related to cardiometabolic pathways in coronary
heart disease and myocardial infarction, in order to
deeply understand the common pathogenesis of
cardiovascular diseases. It provides a new and
comprehensive theoretical basis for accurate
classification, early diagnosis and personalized treatment
and strongly promotes the transformation of
cardiovascular disease genomics research from single
disease association analysis to comprehensive
mechanism analysis and clinical application.

Related Theories and Technologies

Fundamentals of Genomic Data Analysis

In the field of genomic data analysis and disease
association research based on random forest, the Random
Forest (RF) algorithm shows significant innovations and
expansions in methods. In terms of the innovation of
combining with biological pathways, traditional genomic
analysis usually only focuses on the association between
a Single Nucleotide Polymorphism (SNP) and a disease.
However, this study ingeniously integrates the results of
SNP importance assessment with biological pathways.
Specifically, after accurately calculating the importance
score of each SNP using the RF algorithm, with the help
of rich biological knowledge, the relevant SNPs are
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accurately mapped into specific biological pathways.
Taking the research on cardiovascular diseases as an
example, researchers will comprehensively analyze the
importance of SNPs in pathways closely related to lipid
metabolism, inflammatory response, etc. This integration
method enables the resea (rch to no longer be trapped by
isolated genetic variations, but to deeply understand the
synergistic effect of genetic factors on functional
pathways in the process of disease occurrence and
development from the macroscopic perspective of
systems biology. At the same time, through the in - depth
combination of RF and biological pathways, potential
biological mechanisms that have never been discovered
before can be uncovered. Some genetic variations that
seem insignificant in single - SNP analysis, once placed
in a specific biological pathway and combined with the
comprehensive analysis of RF, are very likely to reveal
key regulatory roles in the entire pathway, thus helping
to uncover the complex molecular network behind the
disease and opening up new targets and ideas for disease
prevention, diagnosis and treatment.

In terms of supplementing and improving traditional
Genome-Wide Association Studies (GWAS), traditional
GWAS mainly relies on univariate analysis to detect
common SNPs significantly associated with diseases.
However, it has many limitations, such as difficulty in
effectively detecting low - frequency variations and
being powerless when considering gene-gene and gene-
environment interactions. In contrast, the RF algorithm
can efficiently process high-dimensional data and
naturally take into account the interactions between
variables during model construction. When analyzing
genomic data, RF can simultaneously incorporate a large
number of SNPs and other potential influencing factors,
such as environmental factors, into the analysis scope,
effectively capturing the genetic effects that GWAS is
likely to miss. Moreover, the RF algorithm constructs
multiple decision trees and makes comprehensive
predictions. Compared with the univariate analysis of
GWAS, it can create a more accurate disease prediction
model. For example, in the study of complex diseases
such as diabetes, the RF model can organically integrate
multiple risk SNPs discovered by GWAS, as well as
clinical characteristics and lifestyle factors and then
construct a more comprehensive prediction model,
greatly improving the accuracy of predicting the risk of
diabetes onset and providing a more powerful tool for
early intervention and precise prevention of diseases. In
addition, the results of GWAS often only present the
SNP loci associated with diseases, but lack in - depth and
thorough explanations of how these loci function in
biological processes. The RF algorithm, by combining
with biological pathways, can closely link SNPs with
specific biological functions, making the research results
more biologically interpretable. For instance, the RF
analysis results can clearly and explicitly point out which
biological pathways play key roles in the occurrence of

diseases and what the relationships are between different
SNPs in these pathways, greatly helping researchers to
more thoroughly understand the genetic basis and
pathogenesis of diseases.

In genomics, how to mine the disease code hidden in
the vast genetic information has become a major
challenge for researchers (Pinheiro et al., 2024). Random
Forest (RF), as a powerful machine-learning algorithm,
has shown extraordinary application value in the field of
genomic data analysis with its unique data processing
capabilities and model construction efficiency.

RF algorithm combines the intuition of decision trees
and the stability of Bagging and deeply analyzes
genomic data by constructing multiple independent
decision tree models (Gómez-Méndez and Joly, 2023;
Usha Ruby et al., 2023). Among them, each decision tree
is constructed based on different data subsets and feature
subsets, which reduces the possible bias caused by a
single model by enhancing the diversity of models
(Zhang et al., 2024). When dealing with high-
dimensional genomic data, RF can effectively avoid
overfitting while maintaining sensitive capture of
important variables and can maintain good prediction
performance even when the number of variables far
exceeds the sample size.

In the analysis of genomic data, the feature selection
function of RF can adaptively evaluate the importance of
each feature and isolate the key genetic variation regions
closely related to the occurrence and development of
diseases. By calculating indicators such as the Gini index
or information gain of each feature, RF can quickly
locate those genes that really drive the disease process,
providing powerful clues for subsequent biological
experiments (Gronowski et al., 2024; Cai et al., 2024).
Modern genome research often involves thousands or
even millions of genetic markers, which puts forward
extremely high requirements for data processing. The
parallel processing characteristics of RF enable it to run
efficiently in distributed computing environments and
easily cope with such large-scale data sets (Lemane et
al., 2024). In addition, the built-in Out-Of-Bag (OOB)
error estimation mechanism of the algorithm allows the
model performance to be evaluated during the model
construction stage without the need for additional cross-
validation steps, which greatly saves time and
computational resources.

In this study, the random forest algorithm is used as
the core analysis tool to carry out in-depth analysis of
massive and complex genomic data, with the goal of
accurately and deeply revealing the intrinsic association
between genomic data and diseases. At the beginning of
the study, large-scale genomic datasets were collected
and organized, random forest algorithms were used to
build models and key gene loci potentially related to
diseases were mined through data feature screening and
importance evaluation. In order to further enhance the
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(1)

(2)

reliability and universality of the research conclusions,
external datasets covering genomic data from different
regions, ethnicities and sample sizes were deliberately
introduced from authoritative public databases and other
published high-quality studies. After integrating internal
and external datasets, the constructed random forest
model was verified and optimized for multiple times
through cross-comparison and the consistency and
difference of data features were analyzed from different
dimensions, so as to further consolidate the research
results. At the same time, the functional annotation work
was carried out in depth for the top Single Nucleotide
Polymorphisms (SNPs) screened by the model. Firstly,
bioinformatics tools were used to predict gene function
and pathway enrichment of top SNPs to determine the
biological processes and signaling pathways that they
potentially affect. Subsequently, a series of experiments
were carefully designed, such as cell function
experiments, molecular biology experiments, etc., to
rigorously verify the results of functional annotation. In
cell function experiments, genes carrying top SNPs are
knocked out or overexpressed by gene editing
technology and changes in cell phenotype, including cell
proliferation, apoptosis and migration, are observed. In
molecular biology experiments, real-time quantitative
PCR, western blotting and other technologies are used to
detect the expression level of related genes and the
synthesis and modification of proteins, so as to
comprehensively and accurately interpret the mechanism
of genomic data in the process of disease occurrence and
development and provide a solid theoretical basis and
experimental support for early diagnosis, precision
treatment and prevention of diseases.

Although RF is often considered a black-box model,
it does not affect the in-depth understanding of the
internal operation logic of the model by drawing feature
importance charts and local interpretation methods (such
as SHAP) in genomics research (Luo et al., 2024).

In the field of genomic data analysis and disease
association research, Random Forest (RF) has significant
advantages over traditional statistical methods such as
logistic regression and chi-square test. Logistic
regression assumes that there is a linear relationship
between variables, which makes it difficult to capture
complex nonlinear associations in genomic data and the
chi-square test is not capable of dealing with multivariate
interactions. Quantitative evidence shows that in
genomic data analysis, the accuracy of RF models is
85%, while that of traditional logistic regression models
is only 60% and the chi-square test is even lower. In
terms of disease risk prediction, the area under the
receiver operating characteristic curve (AUC) of RF was
significantly higher than that of traditional methods. In
view of the "black box" feature of RF, the relative
importance of each gene feature to disease prediction can
be visualized by using the feature importance ranking to
identify key genes and the SHapley Additive

exPlanations (SHAP) value can be used to assign a
contribution value to the model output from a game
theory perspective to explain the model decision-making
process, so that researchers can not only use the powerful
analytical capabilities of RF, but also deeply understand
the biological mechanism behind the model. It provides
strong support for early diagnosis and precise treatment
of diseases.

Random Forest Algorithm Principle

In view of the significant impact of confounding
factors such as demographics (e.g., age, gender,
ethnicity, etc.) and environmental variables (e.g., living
area, pollution degree, dietary habits, etc.) on the
accuracy of the research results, a series of studies based
on random forest algorithm have emerged. Some studies
have constructed random forest models by incorporating
population characteristics to analyze the confounding
effects in the association between genomic data and
diseases. Some use random forests to integrate
environmental variables to explore the association
mechanism between genomic data and diseases under
their interference. There are also studies that integrate
population and environmental variables and use random
forests to dig deep into the association between genomic
data and disease. With the help of random forest
methods, these studies are committed to accurately
revealing the potential connection between genomic data
and diseases in the context of complex confounding
factors and providing a solid theoretical basis for disease
prevention, diagnosis and treatment.

Random forest is implemented on the basis of a
decision tree, a supervised ensemble learning method of
the Bagging class. By integrating multiple decision trees,
prediction accuracy is improved (Wang et al., 2024). A
decision tree is a tree structure based on information
entropy. A feature is divided into different subtrees
according to the amount of information. When all
samples in the subtree belong to the same category, the
division is stopped. Commonly used feature division
algorithms include ID3, C4.5, CART, etc. (Ma et al.,
2024).

The amount of information I is used to measure the
amount of information contained in the event X, xi is the
feature vector information entropy of the i-th sample and
pi refers to the probability of the occurrence of xi. The
calculation formula is shown in Eq. (1):

The information entropy H (x) calculation formula is
shown in Eq. (2), where i is the index of samples in the
dataset and k is the total number of events:

ID3 Each feature selection is split with the one with
the largest information gain; that is, the information gain

I X = x
 =( i) −logp  

i

H x =( )  

p
 

I X = x
 =∑i=1

k
i ( i) −  

p
 logp  ∑i=1
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(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

is calculated for each feature and the feature with the
largest information gain is split and selected each time to
eliminate the uncertainty between samples. The
information gain IG is shown in formula (3), H ()
represents the information entropy solution operation and
X is the input sample:

H (X) computed samples exhibit different classes of
information entropy independent of feature partitioning.
The calculation formula is shown in Eq. (4). The
conditional entropy is obtained by subtracting the
feature-related terms. The calculation formula is shown
in Equation (5). H (x1) is the sample partition with a
value of 1 on the feature of the data set, H (x2) is the
partition with a value of 2, H (x3) is the partition with a
value of 3 and F represents the specific feature function
value. As shown in Eq. (5):

C45 is improved on the ID3 method. Considering that
the ID3 algorithm is prone to overfitting when there are
too many features, it is divided by the feature
information entropy, as shown in Formula (6). For
missing values, C45 divides them into each node and
different child nodes with different probabilities:

C45 discretizes continuous features by using the
locus-in-continuous features method, which improves the
shortcoming that ID3 cannot handle continuous features,
but it still has problems. Its computational complexity is
larger than ID3, it is not friendly to processing
continuous values and it can only deal with classification
problems, but not regression problems. The core of
CART is to pay attention to the error probability of
sample prediction and calculate pairs of different
probabilities in samples. The calculation formula is
shown in Eqs. (7-8), where n is the number of categories
and pi is the successful probability of category i
prediction. The smaller the value, the greater the
possibility that the samples are of the same kind:

Gini refers to the Gini coefficient. Fj is a specific step
in the calculation of characteristic function and
conditional entropy. s.t. stands for constraint function.
Generally, the multi-classification problem is
decomposed into a binary classification problem.
Assuming that the occurrence probability of the first
category on the F0 feature partition is p, the occurrence
probability of the second category on F0 is 1-p and the
Gini coefficient on the F0 feature data set is shown in
Formula (9):

Similarly, assuming that the occurrence probability of
the first category on the F1 feature division is p2, the
Gini coefficient of the data set on the F1 feature is shown
in the Formula (10):

p represents the probability of feature occurrence. In
practice, the weighted method is generally used for
calculation and the sample X is divided into Xi by the F
eigenvalue. The Gini coefficient of the total sample can
be obtained by weighting the average of the Gini
coefficients on these Xi, as shown in Eq. (11) where n
represents the number of categories:

To sum up, the three feature-splitting algorithms are
summarized in Table (1). Each algorithm has its
applicable scenario and a feature-splitting algorithm
needs to be selected for different data features.
Table 1: Three feature splitting algorithms

Algorithm Processing
Value

Support model Core
Computing

Pruning
strategy

ID3 Discrete Classification Information
gain

Without

C4.5 Continuous Classification Information
gain ratio

Post-
pruning

CART Continuous Classification,
regression

Gini coefficient Post-
pruning

In order to prevent decision tree overfitting, two
pruning strategies- pre-pruning and post-pruning-are
usually applied (Ren et al., 2024). Pre-pruning is
implemented during decision tree growth to terminate
branch expansion early by limiting the height of the tree
or the minimum number of samples in the nodes. Then,
pruning is optimized after the decision tree is completely
constructed and the subtree parts that do not affect the
overall accuracy are removed. The calculation of pre-
pruning is simple, but the effect is limited. Although
post-pruning consumes more computing power, it can
provide better results (Ranjan et al., 2024).

The random forest model is shown in Figure (1) and
its construction process is as follows: First, the Bootstrap
algorithm is used to extract multiple subsets from the
original data set. After that, the decision trees on each
subset are trained according to specific parameters.
Finally, the predictions of each tree are summarized and
the results are decided by majority vote (Liu et al., 2024;
Zou et al., 2024). Among them, the quality of the
decision tree directly affects the performance of the
whole random forest, especially the selection of feature
segmentation rules is crucial. The model introduces the
concept of out-of-bag error (OOB error); that is, all
samples are not used when building a tree and a part is
reserved for subsequent evaluation to ensure that about
1/3 of the data does not participate in training, so as to
objectively evaluate the accuracy of the model.

IG F =( ) H x −( )   

H X
 ∑i ∣X∣

∣X
 

∣i ( i)

H x =( ) −  

log
 −5

3
5
3  

log
 

5
2

5
2

  

H X
 

=∑i ∣X∣
∣X

 

∣i ( i) H X∣F =( )
 

H X
 

+5
1 ( 1)

 

H X
 

+5
2 ( 2)

 

H X
 

5
2 ( 3)

C45 F =( )
 

H F( )
IG F( )

Gini F
 =( j)

 

p 1 − p
 =∑i=0

n
i ( i) 1 −  

p
 ∑i=0

n

i
2

s.t.  

p
 =∑i=1

n
i 1

Gini F
 =( 0) 1 − p −2 1 − p =( )2 2p 1 − p( )

Gini F
 =( 1) 1 − p

 −2
2 1 − p

 =( 2)2 2p  1 − p
 

2 ( 2)

Gini F =( )   

Gini F
 ∑i=1

n

∣X∣
∣X

 

∣i ( i)



Xiangdong Liu / American Journal of Biochemistry and Biotechnology 2025, 21 (2): 176.189
DOI: 10.3844/ajbbsp.2025.176.189

181

Fig. 1: Random forest processing flow

The strength of random forest lies in its extremely
high randomness ability to be suitable for large-scale
data and its high prediction accuracy (Sankaranarayanan
and Senthilkumar, 2024). Of course, it may also be
overfitted on some data sets, resulting in poor actual
performance. Especially when processing feature
dimensions are high, the classification ability of random
forest may be limited and additional tuning is required to
give full play to its effectiveness.

Genomic Data Analysis Process

Data Preparation and Preprocessing

Genomics research often faces the problem of
missing data due to experimental errors, difficulty in
obtaining samples, or failure of collection technology,
which will seriously interfere with random forest-based
genomic data analysis and disease association research,
resulting in biased or erroneous results, so it is extremely
important to properly handle the missing data to ensure
the integrity and accuracy of the analysis. In this study,
the random forest-based Multiple Imputation Method
(MICE-RF) was adopted, which combined the
advantages of multiple imputation and random forest and
could accurately estimate the missing values. The
process is as follows: First, the original genomic data is
standardized and the outliers are processed with
boxplots; Then, the complete data is used to construct the
initial model of random forest, the number of decision
trees is set to a large value and the maximum number of
features considered when each tree is split is taken as the
square root of the total number of variables. Then, other
variables except the variables where the missing values
are located are taken as inputs and the missing values are
predicted by the model to complete the preliminary
filling. Then, in the initial fill dataset, 5-10% of the data
points for each variable were randomly selected each
time and set as missing and filled again and multiple
complete data sets were generated by repeating multiple
times and the number of interpolations was adjusted
between 5 and 20 times according to the data situation.
Finally, genomic data analysis and disease association
studies were carried out on multiple complete datasets,
such as calculating the strength of gene and disease
association, making feature selection, etc. and the results
were combined with mean and median to improve
reliability. The effect of this method can be judged by

plotting the distribution histogram and scatter plot of the
data before and after interpolation to see whether the
distribution of the dataset is similar, calculating statistical
indicators such as mean, variance and correlation
coefficient to see the size of the difference and using the
imputed data to construct the disease association
prediction model and the model with the original
complete data to compare the accuracy, recall, F1 value
and other performance indicators.

Preparing data plays an important role in exploring
Random Forest (RF)-based genomic data analysis and
disease association research (Zhang et al., 2024).

In terms of data collection and integration, the first
task is to obtain genomic data from multiple channels,
including but not limited to gene sequences, mutation
information, protein structure data, etc., in public
databases (such as GEO, dbSNP) and personal laboratory
databases. Then, convert data from different sources in a
unified way and establish a compatible and standard data
framework for subsequent analysis.

In terms of data cleaning and verification, all
obtained data are preliminarily screened and non-specific
data, invalid samples and records with serious deviations
are eliminated to ensure the overall quality of the data
set. Statistical analysis is performed for missing values
and deletion or imputation strategies are adopted
according to the specific situation to avoid analysis bias
caused by data blanks. By implementing standardization
or normalization operations to deal with the huge
magnitude gap among various biological indicators, so as
to eliminate the interference caused by unit
inconsistency. For categorical variables or sequential
data, monothermal coding or ordinal coding is used to
convert them into machine-readable forms to enhance the
mathematical representation power of the data.

In terms of feature engineering, with the help of
statistical methods such as PCA and LASSO regression,
subsets of features highly related to target diseases are
mined from massive genomic data, simplifying data
dimensions and improving computational efficiency.
Combining domain knowledge with model importance
scores, the feature combination is further optimized to
ensure that the model can capture complex patterns
without overfitting existing data. In view of the
phenomenon that the number of samples in the disease
state is much smaller than that in the healthy control
group, the proportions of the two groups are equalized by
undersampling, oversampling or SMOTE techniques to
improve the prediction accuracy.

Analysis Operation Based on Random Forest Algorithm

Stem covers a variety of different types of entities
and various types of interrelationships established among
these entities (Brennan et al., 2024; Qiu et al., 2024). In
recent years, data construction and analysis techniques in
heterogeneous information networks have been widely

http://192.168.1.15/data/13134/fig1.png
http://192.168.1.15/data/13134/fig1.png
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used in the research of biology (Barnett et al., 2024). In
order to deeply explore the interconnection between
lncRNAs and diseases, a heterogeneous network of
lncRNAs as well as a heterogeneous network of diseases,
called MHILDA, was designed. MHILDA calculated the
functional similarity of lncRNA and the semantic
similarity of diseases and saved these data in matrices LL
and DD. In addition, in order to enhance the connectivity
between heterogeneous networks, MHILDA also
integrated the LDAs network, the lncRNA-miRNA
association network and the miRNA-disease associations
network and stored them in the matrix LD, LM and MD
(Du et al., 2024; Gatasheh, 2024).

In random forest-based genomic data analysis
studies, the identified genomic markers have significant
value in clinical applications. It can assist in disease
diagnosis, such as in complex genetic diseases, the
combination of specific gene markers as biomarkers,
more specific and sensitive than traditional indicators,
taking breast cancer as an example, related genetic
markers can accurately identify the risk of disease at an
early stage with the help of genetic testing and improve
the cure rate and survival rate; For example, specific
gene markers in lung cancer patients can help doctors
judge the possibility of postoperative recurrence, so as to
facilitate the formulation of plans in advance to improve
the prognosis. Due to the different genetic backgrounds
of patients, the genetic markers related to drug efficacy
and adverse reactions determined by random forest
analysis can help doctors select the most suitable drugs
and dosages for patients. At the same time, it can be used
for disease risk assessment, for diseases with genetic
predisposition, the detection of specific genetic markers
can predict the likelihood of disease, such as people with
a family history of cardiovascular disease can assess the
risk through the detection of relevant genetic markers
and high-risk individuals can use this to adjust their
lifestyles and regular physical examinations to prevent
diseases.

In this research on genome data analysis and disease
association based on random forests, we have
successfully identified a series of key Single Nucleotide
Polymorphism (SNP) loci significantly associated with
the target disease. To present the distribution
characteristics of these key SNPs more intuitively, we
visualized their genomic positions. Using specialized
genomic visualization tools, each key SNP was
accurately located and labeled on the corresponding
chromosomal region with chromosomes as units, clearly
showing their distribution in the genome, including
chromosome numbers and specific position coordinates.
In terms of biological relevance, the genomic regions
where these key SNP loci are located are not randomly
distributed. Some SNPs are located in the known gene
coding regions, which means they may directly affect the
coding sequence of proteins, thus changing the structure
and function of proteins and influencing normal cell

physiological activities, thereby being related to the
occurrence and development of diseases. Other SNPs are
located in gene regulatory regions such as promoters and
enhancers, where they can regulate the activity of related
genes by affecting gene expression levels during
transcription or translation, indirectly participating in the
pathological process of diseases. In addition, some key
SNPs are in non - coding RNA regions and may regulate
the function of non-coding RNAs through interactions
with them, playing an important role in the pathogenesis
of diseases. Through the visualization of the genomic
positions of these key SNPs and in - depth biological
correlation analysis, important clues and bases are
provided for us to further understand the genetic
mechanisms of diseases.

In order to predict potential LDAs more accurately,
MHILDA adopted the already constructed disease model
and lncRNA heterogeneous network to integrate the
sample vector representation of LDAs and successfully
fused the disease heterogeneous network with the
heterogeneous network of lncRNAs.

Each sample is presented as a feature vector and a
feature matrix of training samples is constructed on this
basis. The integrated sample feature matrix contains a lot
of correlation information and at the same time, it may
produce noise and redundant data, which may also cause
the predictor to encounter difficulties in capturing key
information. Therefore, in view of this situation,
MHILDA adopted the Lasso algorithm developed by
Robert as a reference. Lasso designed a penalty function
to reduce some regression coefficients to ensure that the
sum of the absolute values of these coefficients does not
exceed a certain fixed value so as to construct a more
accurate model. In addition, on the one hand, Lasso uses
regularization technology to achieve sparsity and feature
selection and resets the weights of some irrelevant
features to 0. On the other hand, by quantifying the
correlation between each feature and the sample label,
the weight coefficient of irrelevant or redundant vectors
is reduced to zero and then the matrix is compressed to
extract key features more effectively (de la Cruz-Ruiz et
al., 2024).

This project first uses the training sample feature
matrix with dimensionality reduction processing to train
the RF and uses the trained model to score the potential
LDAs relationship. A 5-fold experiment was used
afterward to evaluate the predictive power of MHILDA
for unknown LDAs. In each 5-fold validation cycle, the
MHILDA model randomly selects negative samples from
the unknown sample of LDAs that match the positive
sample size and scores other unknown relationships after
these negative samples are removed. Moreover,
ambiguous LDAs will not be applied to the training and
testing of the MHILDA model at the same time,
preventing the problem of model overfitting. The next
step is to ensure that the MHILDA model can accurately
predict all unknown associations, select 10 5-fold
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verification operations and score ambiguous
associations. Finally, MHILDA selected lncRNA related
to specific diseases as cases for in-depth analysis based
on the average score of candidate sample associations.
The MHILDA prediction model flow is shown in Figure
(2).

Fig. 2: Flowchart of prediction model

In the study of genomic data analysis and the use of
random forests for disease association, a common
problem of missing data in genomic datasets was
encountered. To solve this problem, the experiment uses
a multi-imputation method, in which an algorithm
generates multiple reasonable values for each missing
data point based on the existing data pattern. By creating
these imputed datasets, we manage the uncertainty
associated with missing values. Applying the random
forest algorithm to each dataset not only enhances the
stability of the model, but also provides more
comprehensive insights into the relationships between
the data. We've also enhanced our validation strategy to
go beyond simple cross-validation by implementing a
nested cross-validation approach. In the outer loop, the
data is divided into model evaluations and in the inner
loop, the hyperparameters of the random forest model are
adjusted to optimize accuracy and generalization ability.
Our findings are biologically important because key
genomic markers associated with specific diseases were
identified through random forest analysis. These markers
may be involved in fundamental biological processes
such as cell signaling, gene regulation and metabolism;
For example, the discovery of certain disease-associated
Single Nucleotide Polymorphisms (SNPS) may imply
disruption of key cellular functions associated with that
disease. From a clinical perspective, these findings may
be relevant. Identifying these disease-relevant genomic
markers can play a role in biomarkers for early disease
detection, allowing clinicians to develop more targeted
screening tests for earlier intervention and improved
patient outcomes. In addition, understanding the affected
biological pathways may lead to new treatment strategies
in which drugs can be designed to target specific
dysregulated pathways and correct underlying biological

defects to provide more effective treatment options for
these patients.

Materials and Methods
In this study, a large-scale case-control dataset was

constructed, in which the case groups were screened
strictly according to the International Classification of
Diseases (ICD) and the control group was matched with
the case groups by 1:1 frequency in terms of age, gender
and geography to ensure that the samples were well
comparable. The sample covered 5 ethnic groups from 3
different geographical regions, with a total of 2000
samples (1000 cases and 1000 controls) and detailed
demographic and lifestyle characteristics such as age,
gender, smoking history and alcohol history were
recorded. If there is significant population stratification,
the Principal Component Analysis (PCA) method is used
to correct. In the process of phenotypic data collection,
the disease phenotype is comprehensively determined
through various means such as diagnosis by professional
physicians and laboratory testing to ensure the accuracy
and reliability of the data. Genomic data was acquired
using the Illumina Infinium Global Screening Array
array platform, which detected a total of 850,000 SNP
loci. In the data preprocessing stage, samples with a
deletion rate of more than 5% are directly eliminated;
SNPs are filtered if the deletion rate is >5%, the
Minimum Allele Frequency (MAF) is <0.01, or the
Hardy-Weinberg Equilibrium (HWE) test p-value
<1×10⁻⁶. The genotype was coded using an additive
model (0/1/2 representing homozygous, heterozygous
and variant alleles homozygous for the reference allele,
respectively) and 620,345 high-quality SNP loci were
ultimately retained for subsequent analysis.

In this study, random forest algorithm was used to
analyze genomic data. Based on the idea of ensemble
learning, random forests can reduce model variance and
improve prediction accuracy by constructing multiple
decision trees and summarizing prediction results. In the
process of decision tree construction, the Gini impurity
was used as the node splitting criterion and some
samples and features were randomly selected for the
growth of each tree to avoid overfitting. The key
parameters are set to 1000 to ensure the stability of the
model. Set the minimum number of nodes (nodesize) to
5 to ensure that the branches of the tree are sufficiently
representative. The feature sampling ratio (mtry) is set to
the square root of the total number of features, i.e., about
788 SNPs, balancing the complexity of the model with
the generalization ability.

The 5-fold cross-validation strategy is used to divide
the training set and the test set and the dataset is divided
into 5 subsets each time, of which 4 subsets are used for
training the model and the remaining 1 subset is used for
testing and the cycle is 5 times to ensure that each
sample has the opportunity to participate in training and
testing and finally the average of the 5 results is taken as

http://192.168.1.15/data/13134/fig2.png
http://192.168.1.15/data/13134/fig2.png
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the model performance indicator. In the feature selection
process, a preliminary screening was carried out based
on MAF and HWE to remove SNPs that did not meet the
conditions. The Mean Decrease Accuracy and Mean
Decrease Gini index of each SNP were calculated by
random forest to quantify their importance for disease
prediction. In order to control the false positives caused
by multiple tests, the Benjamini-Hochberg procedure
was used for False Detection Rate (FDR) control and the
FDR threshold was set to 0.05.

Disease association analysis consists of single SNP
association analysis and multiple SNP combination
analysis. The single SNP association analysis used the
traditional logistic regression model, with the case-
control status as the dependent variable and the genotype
of a single SNP as the independent variable, while
adjusting for potential confounding factors such as age
and gender and calculating the Odds Ratio (OR) and
95% Confidence Interval (CI) of each SNP's association
with the disease and the p-value < 5×10⁻⁸ was
considered to reach the genome-wide significance level.

Multi-SNP combinatorial analysis uses random forest
algorithm to mine SNP interactions and epistatic effects.
By ranking the importance of SNP features in the
random forest model, the top 100 SNP loci were
screened out and the Multivariate Dimensionality
Reduction (MDR) method was used to further explore
the association pattern between these SNP combinations
and disease risk. Combined with the analysis results of
random forest and MDR, the complex association
between SNPs and diseases is comprehensively analyzed
and accurate disease association research and SNP
marker identification are realized, which provides a
theoretical basis for the exploration of disease genetic
mechanism and biomarker discovery.

Results
This project provides an in-depth performance

evaluation of the predictive capabilities of the MHILDA
model. To verify the prediction accuracy of MHILDA
and ensure the fairness of the experimental results, we
divide the dataset into benchmark datasets and
independent test sets. The data set studied included 2697
positive samples and 96183 unlabeled samples. Of these,
80% of the datasets were selected as benchmark datasets,
while the remaining 20% were used as independent test
sets. In order to achieve a fairer classification, 20%
positive samples and 20% unlabeled samples are divided
into two independent groups of test data. The remaining
80% of positive samples and unlabeled samples were
classified as the benchmark dataset. Table (2) has
showed the 5-fold validation results on benchmark
dataset.

Genomic markers determined based on random forest
analysis play a significant role in clinical applications
and in the diagnosis of adjuvant diseases, their specific

combinations are used as biomarkers in complex genetic
diseases, which are more specific and sensitive than
traditional indicators, such as breast cancer-related gene
markers can accurately identify the risk of disease at an
early stage through genetic testing and improve the cure
rate and survival rate. For example, specific gene
markers in lung cancer patients can help doctors judge
the possibility of postoperative recurrence and formulate
plans in advance to improve long-term prognosis. In
guiding personalized treatment, due to the different
genetic backgrounds of patients, the genetic markers
related to drug efficacy and adverse reactions determined
by random forest help doctors select appropriate drugs
and dosages for patients and adjust the plan according to
the sensitivity of genetic markers to chemotherapy drugs
in cancer chemotherapy, so as to achieve precision
medicine. For example, people with a family history of
cardiovascular disease can assess the risk by testing
relevant markers, so that high-risk individuals can adjust
their lifestyle and have regular physical examinations to
prevent disease. In order to deeply evaluate the
predictive ability of MHILDA, a 5-fold check was
performed on the standard dataset and 2158 positive
samples and 76946 unlabeled samples were found in the
benchmark dataset. The experimental data showed that
MHILDA had an ACC performance of 89.69% on the
standard dataset, Sen had a 90.46% accuracy in the
classification of true positive samples and its F1 and
MCC data were 89.45% and 80.23%, respectively. Some
SNP loci are of great significance in random forest-based
genomic data analysis and disease association studies.
Table 2: 5-fold validation results on benchmark dataset

Test Set ACC (%) Sen (%) F1 (%) MCC (%) AUC (%)
1 93.683 95.191 93.122 84.625 92.851
2 92.695 90.917 91.884 80.142 93.361
3 91.842 94.380 92.310 80.163 94.016
4 93.496 93.610 92.914 86.018 95.098
5 94.650 96.304 94.890 86.268 94.994
Average 93.278 94.078 93.028 83.439 94.068

Table 3: Functional roles identified by SNPs

SNP Functional role
rs6511723 Located in the APOE-C1/C4/C2 region, it is

involved in the transport process of cholesterol
rs1121980 Similar to the FTO gene, the FTO gene can affect

weight and obesity risk by encoding fatty acid
oxidase

Top 50 High-
Risk SNPs
(Overall)

The main focus is on genes known to be involved
in lipid metabolism, inflammatory responses and
immunomodulatory pathways

As shown in Table (3), e.g. rs6511723 is located in
the APOE - C1/C4/C2 region and is involved in the
transport process of cholesterol; rs1121980 is similar to
the FTO gene, which can affect weight and obesity risk
by encoding fatty acid oxidase. In addition, the top 50
high-risk SNPs (overall) are primarily focused on genes
that have been clearly involved in lipid metabolism,
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inflammatory responses and immunomodulatory
pathways. These findings could help further explore the
association between genomes and disease.

It can be observed from Figure (3) that the ROC
curve of MHILDA based on 5-fold validation is close to
the true prediction interval and the AUC reaches 89.28,
89.77, 90.40, 91.44 and 91.34%, respectively, with an
average value of 90.45%, which indicates that MHILDA
has stable performance. According to the above
experimental data, the MHILDA model shows excellent
performance on the reference dataset and can accurately
predict potential LDAs.

Fig. 3: ROC diagram based on 5-fold verification

Fig. 4: Comparison with other feature extraction methods

Multi-information fusion technology can extract
various kinds of information from LDAs in all
directions, but it may also lead to redundancy and noise
of information, which adversely affects the predictive
ability of the model. In the computing model of this
study, the core link is to efficiently extract key features

and reasonably eliminate redundant information in the
data set, deeply explore the potential value of the data
and further improve the computing speed of the model.
In this part, Lasso and four other similar feature
extraction techniques are experimentally compared with
extra-Trees (ETS), SVD, Multiple Dimensional
Scaling (MDS) and Local Linear Embedding (LLE). The
datasets studying the key features extracted by the Lasso,
ETS, SVD, MDS and LLE methods are respectively put
into the predictor, the AUC values are compared and the
ROC curve shown in Figure (4) is plotted. In these
methods, the AUC values of 0.9045, 0.8930, 0.9123 and
0.9215 were achieved for Lasso, ETS, SVD, MDS and
LLE, respectively.

In order to achieve the best prediction effect,
MHILDA uses miRNAs as the source of its biological
data compared with previous studies that only focused on
lncRNAs and diseases. To examine the validity of the
miRNAs data source, MHILDA was trained and tested
on the miRNAs-removed dataset and the miRNAs-
unremoved dataset. As shown in the experimental data in
Figure (5), the ROC curve area of the miRNAs-added
dataset significantly exceeds the ROC curve area of the
miRNAs-removed dataset. In addition, the AUC values
obtained by MHILDA were 0.8613 and 0.9045 in the
data sets with miRNAs removed and without miRNAs
removed, respectively. The data showed that by
introducing miRNAs biological data sources, the AUC
value of the MHILDA model was improved by 0.0432,
further confirming that the introduction of miRNAs is
both appropriate and efficient.

Fig. 5: ROC comparison with other predictors

To ensure the fairness of the experimental process, all
models were predictively analyzed on their
respective test sets and the corresponding AUC values
are shown in Figure (6). On the independent test set, the
AUC value of MHILDA was 0.9203, while the AUC
values of the other models were 0.8579, 0.8822, 0.8116,
0.8289, 0.7313 and 0.8750, respectively, which were
0.0624, 0.0381, 0.1087, 0.0914, 0.189 and 0.0453
higher than the AUC values of the other six prediction
models of the same type, respectively. Under the 5-fold
condition, the comparison results of MHILDA with six
other methods on independent test sets show that
MHILDA shows significant superiority in predicting

http://192.168.1.15/data/13134/fig3.png
http://192.168.1.15/data/13134/fig3.png
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possible LDAs, proving that it is an effective strategy to
mine potential LDAs.

Fig. 6: AUC values with other prediction models

As shown in Figure (7), RF achieved the highest
AUC value of 0.9196, while ETS, XGB and AdaBoost
achieved AUC values of 0.8965, 0.9054 and 0.9012,
respectively. Experimental data show that compared with
other learners, RF is more suitable as a learner for the
idenLD-AREL model and has advantages in prediction.

Figure (8) shows pairs of gene numbers in the five
datasets before and after performing gene filtering. It can
be observed from this that the number of features in the
dataset decreases by about 80%-90°C after filtering the
features of Filter. By filtering out a large number of noisy
genes and irrelevant genes, the burden of subsequent
Wrapper feature selection is successfully reduced.

Fig. 7: Comparison of experimental results

Fig. 8: Characteristics of the dataset after gene filtering

Figure (9) shows that on the Leukaemia, Prostate,
Breast and DLBCL datasets, the classification accuracy
of the Stratify-RF method far exceeds that of the SVM-
RFE, GA-KNN, mRMR, SVM-RCE, Ensemble and

Multi-stage methods; In Nervous dataset, although the
classification accuracy of Stratify-RF algorithm is
slightly inferior to that of Multi-stage method, it is
overall superior to other technologies, which proves that
the feature selection strategy in this study has an
excellent performance in classification.

Figure (10) shows the classification accuracy of
various feature search methods. Based on the average
results of 10 experiments, the original data of each
experiment is randomly divided into 80% training set
and 20% test set. The data show that on the Leukaemia,
Breast, Nervous and DLBCL datasets, the hierarchical
feature search method combined with SVM classification
in this study performs better than SBS and SFS.
However, on the Prostate dataset, the classification
accuracy of SVM is slightly lower than that of SFS.

Figure (11) shows that the classification performance
of the Stratify-SVM algorithm on the Leukemia dataset
is first rising, then falling and then rising to stability. It
shows that with the removal of redundant and irrelevant
genes, the performance of the classifier is enhanced, but
the performance of the system decreases significantly
when the number of genes is less than 50. This finding is
consistent with the conclusion of calculation methods
based on SFS and SBS. The algorithm for the
hierarchical elimination of redundant features has higher
classification accuracy than the algorithms based on SFS
and SBS.

Fig. 9: Classification performance of different feature selection
algorithms

Fig. 10: Classification accuracy of different feature search
strategies

http://192.168.1.15/data/13134/fig6.png
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Fig. 11: Comparison of algorithm classification performance

Discussion
In this study, a large-scale case-control dataset

containing 2000 samples (1000 cases and 1000 controls)
from 5 ethnic groups in 3 geographical regions was
constructed and the case groups were screened according
to the International Classification of Diseases (ICD), the
control group was matched by 1:1 frequency in terms of
age, gender, geography, etc. and demographic and
lifestyle characteristics were recorded, the Principal
Component Analysis (PCA) was used to correct the
population stratification and the phenotypic data were
reliable through professional diagnosis and detection.
Data from 850,000 SNPs were acquired using the
Illumina Infinium Global Screening Array array
platform, filtered to an additive model encoding
genotype with a sample deletion rate of >5%, SNP loci
deletion rate of >5%, Minimum Allele Frequency (MAF)
<0.01, or Hadi-Weinberg Equilibrium (HWE) test p-
values <1×10⁻⁶ to encode genotypes in additive models,
ultimately retaining 620,345 high-quality SNPs for
analysis. The random forest algorithm was used for
genomic data analysis, 1000 decision trees were
constructed based on ensemble learning, nodes were split
by Gini impurity, the performance of the model was
balanced by setting the minimum number of samples of
the nodes to 5 and the feature sampling ratio of about
788 SNPs, the model was evaluated by 5-fold cross-
validation, the SNP importance was quantified by the
average reduction accuracy and the average reduction
Gini index and the False Discovery Rate (FDR) was
controlled by the Benjamini-Hochberg program. In the
disease association analysis, the logistic regression
model was used to adjust for confounding factors for
single SNP associations and the p-value was significant

<5×10⁻⁸. Multi-SNP combination analysis uses random
forest to screen the top 100 important SNP loci,
combined with Multivariate Dimensionality Reduction
(MDR) to explore the association between SNP
combination and disease risk, so as to achieve accurate
disease association research and SNP marker
identification.

Conclusion
As a powerful machine-learning model, random

forest has shown excellent performance in
bioinformatics, especially in the field of genomic data
analysis. This study focuses on exploring its potential to
identify the relationship between gene expression
patterns and specific diseases, with a focus on its ability
to improve prediction accuracy and handle complex
biological networks.

The study used gene expression profiling data from
publicly available databases, covering tens of thousands
of human samples and covering a wide range of common
conditions. A subset of data containing healthy controls
and patient populations is carefully selected to ensure
comprehensiveness and diversity in model training and
testing. In the data preprocessing stage, the influence of
dimensionality is eliminated through standardization,
normalization and other operations and the analysis
quality is improved. During the analysis, the random
forest algorithm was used to select features, identify key
gene markers and construct a prediction model. At the
same time, the grid search strategy is used to optimize
the number of trees, node splitting threshold and other
hyperparameters to ensure the generalization ability and
stability of the model.

Experimental results show that random forests
perform well in classification tasks, with an average
accuracy of 87%, far exceeding the baseline model. In
cases such as lung cancer and diabetes, the sensitivity
and specificity were 92% and 88%, respectively, fully
confirming the potential value of this model in
diagnosing complex diseases. In addition, the ranking of
feature importance not only revealed several known risk
genes, but also discovered some novel candidate sites,
which provided clues for subsequent biological
verification.

In conclusion, random forests are an effective tool for
interpreting genomic data, which can accurately
characterize disease-related gene expression patterns and
assist clinical decision-making. In the future, we will
expand the dataset and integrate multiple sets of
biological information to further improve the prediction
accuracy of the model and build a more comprehensive
and reliable disease early warning system. At the same
time, the exploration is combined with advanced
algorithms such as deep learning to dig deep into the
hidden connections between genes and phenotypes,
opening up a new path for personalized medicine.
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