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Abstract: To enhance the value of by-products from rainbow trout
processing, the inhibition rate of α-glucosidase (AGIR) is used as indicators.
Optimization of rainbow trout hydrolysate extraction by comparing
Response Surface Methodology (RSM) and BP Neural Network (BPNN)
models. The RSM results: the AGIR is 55.02%. BPNN models predicted the
optimal extraction conditions: 51℃  for temperature,1:2.3 for solid-liquid
ratio, 4.15 h for time and 0.2334% for enzyme dosage. The reactions
obtained under optimized conditions are as follows: the α-glucosidase
inhibitory rate increased to 58.14%. This proves that the BPNN model can
simultaneously improve the hydrolysis degree and α-glucosidase inhibition
rate of the rainbow trout hydrolysate.

Keywords: Rainbow Trout, Enzymatic Hydrolysis Reaction, BP Neural
Network

Introduction
Diabetes is a metabolic syndrome characterized by

impaired insulin secretion and action, leading to a range
of clinical manifestations, including hypertension (Khan
et al., 2019; Fatumo, 2024). A key therapeutic target for
managing type II diabetes is the enzyme α-glucosidase
(Kumari et al., 2024). However, due to adverse effects
such as hypersensitivity and hepatotoxicity associated
with current α-glucosidase inhibitors, research continues
to seek novel, safer alternatives (Alam et al., 2019).

Rainbow trout is a globally cultivated species in
aquaculture. Its flesh is rich in bioactive peptides
(Nguyen et al., 2022; Refstie et al., 2000) and
hydrolysates derived from rainbow trout have
demonstrated significant biological effects, including
antioxidant, anti-inflammatory, and pronounced α-
glucosidase inhibitory activity (Bartolomei et al., 2023).
As α-glucosidase is a key therapeutic target for diabetes
management, these findings are particularly relevant.
Rainbow trout skin, a major processing by-product with
currently low commercial value, represents a promising
source for these bioactive peptides. Therefore, this study
aimed to optimize the extraction of peptides from
rainbow trout skin and assess their in vitro α-glucosidase
inhibitory activity, with a view to developing a potential
high-value product for the food industry.

Bioactive peptides are increasingly being extracted
from marine sources worldwide (Bleakley & Hayes,
2017; Lemes et al., 2016). Rainbow trout, rich in protein

and hydrophobic amino acids, is a promising substrate
for generating such peptides (Zhou et al., 2024). Its skin,
a major by-product of fillet processing with minimal
commercial value, is often discarded as waste (Wang et
al., 2008). However, this protein-rich material holds
significant potential for valorization in food products (de
Andrade Silva et al., 2020).

The enzymatic hydrolysis process used to extract
these peptides is complex. Outcomes vary based on
protease type and activity, which influence cleavage
sites, hydrolysis degree, final bioactivity, and peptide
sequences (Morales-Medina et al., 2016). Critical
parameters, including reaction time, solid-liquid ratio,
temperature, and enzyme dosage, further affect the
process (Coscueta et al., 2021; Martinez-Araiza et al.,
2012).

Traditional optimization using Response Surface
Methodology (RSM) is limited by its quadratic
framework and sensitivity to non-fitting variables (Kuo
et al., 2014). While Backpropagation Neural Networks
(BPNN) effectively model the nonlinear relationships in
enzymatic hydrolysis (Zheng et al., 2013), existing
applications have focused on single objectives (e.g.,
degree of hydrolysis). A comprehensive framework that
simultaneously optimizes for multiple targets, such as
hydrolysis efficiency, bioactive yield, and sensory
quality, is lacking. Furthermore, the dynamic, nonlinear
coupling of process parameters remains underexplored,
hindering real-time adaptive control.
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This study addresses these gaps by integrating a
Genetic Algorithm (GA) for global search with a BPNN
for local gradient optimization (Ermias, 2021). We
introduce parameter sensitivity analysis to guide an
adaptive weight adjustment algorithm, improving model
training and convergence speed. A multi-objective
optimization framework is established by incorporating
two key indicators, degree of hydrolysis and α-
glucosidase inhibition rate, into the BPNN. Their
contributions are balanced using the entropy weight
method for dynamic weight allocation (Piyush et al.,
2021; Mehta et al., 2022; Hang et al., 2021).

Previous studies have primarily focused on the
effects of enzymatic hydrolysis on peptides, but there is
limited literature on the optimization of enzymatic
hydrolysis for recovering α-glucosidase inhibitors using
GA-BP Neural Networks. This study conducted single-
factor experiments to investigate the impact of papain
protease dosage, solid-liquid ratio, reaction time, and
temperature on the yield of rainbow trout peptides.
Subsequently, the study utilized BPNN to optimize the
extraction process of rainbow trout peptides and
examined their inhibitory activity against α-glucosidase.
By optimizing the extraction process and delving into the
activity of rainbow trout peptides, this research provides
a reference for developing novel, high-value products
from rainbow trout for comprehensive utilization.

Materials and Methods

Materials

Rainbow trout (with a composition of 7.33%
moisture, 18.82% protein, 3.64% crude fat, and 1.06%
ash) was supplied by the Boshan Qinglongtan
Aquaculture Farm. Papain (>200 U·mg and α-
glucosidase (Shanghai Yuanye Biotechnology Co., Ltd..);
PNPG (4-nitrophenyl-β-D-pyranoside, Shanghai Yuan Ye
Biotechnology Co., Ltd.) were used in the study.
Acetonitrile and trifluoroacetic acid were of
chromatographic grade, while other reagents were of
analytical grade. Equipment utilized included the GB204
electronic balance (Mettler-Toledo, Switzerland); THZ-
82 constant temperature oscillating water bath (Jingda
Instrument Manufacturing Factory, TianJin City); 3K30
benchtop high-speed refrigerated centrifuge (Sigma,
Germany); Alpha1-4 vacuum freeze dryer (Christ,
Germany); and Sunrise-basic Tacan SUNRISE
microplate reader (TECAN, Switzerland).

Extraction

The rainbow trout skin was pulverized into a powder
using a grinder, and then distilled water was added in a
specific ratio to facilitate crushing. Papain protease was
added at different reaction temperature and time.
Following the completion of hydrolysis, the enzyme was
deactivated by immersing the solution in boiling water
for 15 minutes, cooled to room temperature, and
centrifuged at 10000 r/min for 20 minutes. The

supernatant was collected and freeze-dried to obtain the
rainbow trout skin enzymatic hydrolysate freeze-dried
powder.

Determination of α-Glucosidase Inhibition Rate of
Rainbow Trout Skin Extract

α-glucosidase inhibition rate was assessed using a
UV-Vis spectrophotometric method, which involved the
enzymatic reaction with PNPG substrate solution. slight
modifications were made to prepare solutions of α-
glucosidase and PNPG at concentrations of 0.25 U·mL
and 2 mmol·L, respectively, in a phosphate buffer saline
(PBS) solution with a pH of 6.8 and a concentration of
100 mmol·L. A 100 μL sample solution and 50 μL of α-
glucosidase solution were transferred to a 96-well
enzyme plate, mixed, and then incubated at 37℃ for 15
minutes. Subsequently, 50 μL of PNPG solution was
added, and the reaction was allowed to proceed at 37℃
for 20 minutes. Finally, 100 μL of sodium carbonate
(NaCO) solution at a concentration of 200 mmol·L was
added to terminate the reaction. The absorbance value
(As) was measured at a wavelength of 405 nm using a
spectrophotometer. The absorbance of the buffer solution
(Ac) was measured in place of the sample solution, and
the absorbance of PBS was measured in place of α-
glucosidase to obtain the absorbance value (An). The
inhibition rate of α-glucosid：

Design of Experiments
The effects of four independent variables: reaction

temperature (X1), reaction time (X2), enzyme dosage
(X3) and solid-liquid ratio (X4) on two dependent
variables: α-glucosidase inhibition rate (Y1) and
hydrolysis degree (Y2) were initially examined using the
One-Factor-At-a-Time approach to establish the
appropriate ranges for the input parameters.

Single-Factor Experiment
Papain was selected as the enzymatic protease for the

enzymatic hydrolysis of rainbow trout by-products. A
single factor experiment was conducted with α-
glucosidase inhibition rate and hydrolysis degree as
screening indicators. The experimental levels are
selected as reaction time of 1.5 h, 2.5 h, 3.5 h, 4.5 h, 5.5
h, and 6.5 h; reaction temperature of 40.0℃ , 45.0℃ ,
50.0℃, 55.0℃, 60.0℃, and 65.0℃; enzyme addition of
0.1%, 0.2%, 0.3%, 0.4%, and 0.5%; and solid-liquid
ratio of 1:1, 1:2, 1:3, 1:4, and 1:5. The enzymatic
hydrolysis conditions are preliminarily optimized to
determine the optimal factor test parameters. Each
treatment was repeated 3 times, and the results are
averaged.

Response Design

Utilizing the framework of the Box-Behnken
experimental design, a four-factor, three-level study was
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performed, wherein the α-glucosidase inhibition rate
(Y1) and hydrolysis rate (Y2) served as the response
variables. The factors investigated included enzyme
reaction time (A), enzyme addition amount (B), reaction

temperature (C), and solid-to-liquid ratio (D). Table 1
details the factor levels for the experimental design,
which were determined through preliminary single-factor
experiments.

Table 1: Levels of response surface test

Level
Factor
A:Enzymolysis time/h B:Enzyme dosage/% C:Enzymolysis temperature/℃ D:Material-liquid ratio

-1 2.5 0.1 45 1:1
0 4.5 0.2 50 1:2
1 6.5 0.3 55 1:3

Neural Network and Genetic Algorithm
Optimization Process

BPNN Modeling

The Backpropagation Neural Network (BPNN), as a
fundamental type of neural network, is extensively
utilized in various applications. BPNN is composed of
numerous nodes organized into three distinct categories
of layers: the input layer, one or more hidden layers, and
the output layer. The input and output layers correspond
to the elements and corresponding reactions,
respectively. The signal is modified by the activation
function as it progresses from the input layer to the
output layer, passing through the intermediate hidden
nodes. Upon completion of the training process, a
correlation between the variables and the corresponding
outcomes is determined. In this research, the input layer
of the BPNN comprises four neurons, each
corresponding to specific parameters: reaction
temperature, reaction time, solid-liquid ratio, and the
quantity of enzyme added. Conversely, the output layer
of the BPNN consists of two neurons, which denote the
α-glucosidase inhibition rate and the degree of
hydrolysis. The determination of the optimal number of
neurons within the hidden layer is intricately linked to
the prediction results of the model. The quantity of
neurons within the hidden layer can be determined
utilizing equation (1.1). The evaluation of the quality of
the developed models was performed through the
application of analysis of variance (ANOVA), which
involved the evaluation of the coefficient of
determination (R²), the predicted coefficient of
determination (R²-predicted), as well as the calculation
of percentage errors and the root mean square error
(RMSE) in relation to the predicted and observed values.

Where, h is the number of neurons in the hidden
layer, m represents the quantity of nodes within the input
layer, while n denotes the quantity of nodes in the output
layer, z is a tuning constant between 1 and 10 (1≤ z ≤10).

Sample Selection and Training

The models that guaranteed quality are utilized to
identify the best conditions for the procedure of
extraction. In pursuit of maximizing the AGIR and

achieving the highest degree of hydrolysis, the
desirability function methodology was employed to
identify the optimal values of the independent variables.
The validation assessment was conducted in triplicate
under specified ideal conditions, and the α-glucosidase
inhibition rate and degree of hydrolysis (n) are compared
with the predicted values.

This function operates on responses within the range
of [0,1]. The output layer, which consists of two neurons,
integrates the responses received from the hidden layer.
This response is ultimately analyzed through the
application pertaining to a novel transfer function. In this
context, three distinct transfer functions are evaluated:
“Tansig” “Purelin” “Trainlm”.

The 81 sets of input data are divided into three
subsets, with the first subset containing 70% of the
experimental data, which is used for training the neural
network. Training involves the process of identifying the
optimal weight vector and biases that align the generated
responses with the corresponding independent variables.
The LM, as implemented in MATLAB 2019a, was
selected to iteratively adjust the weights and bias in order
to minimize the MSE between the observed and
predicted output variables. A total of 30 training sessions
were conducted for each specified quantity of neurons
within the hidden layer, ranging from 1 to 10, to ensure a
sufficient representation of the data. In each individual
training session, the maximum number of iterations, or
epochs, was constrained to 10000. The validation subset
constituted 15% of the experimental data. During the
iterative process, the errors associated with this subset
are tracked and utilized as a criterion for implementing
early stopping. In this methodology, the training process
was halted upon observing a rise in the validation subset
error for a duration of 10 consecutive iterations. This
mitigates the risk of overfitting, a phenomenon
characterized by a decline in predictive performance
resulting from the overtraining of the network. The
remaining 15% of the experimental dataset is analyzed
separately to calculate the test error.

Genetic Algorithms for Optimal Inheritance

GA demonstrates proficiency in global search, while
the BPNN exhibits greater efficacy in local search.
Consequently, the integration of the GA with the BP
algorithm proves to be highly effective. The objective of

h= ​+zm+n
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employing GA to enhance BPNN is to obtain more
suitable initial weights and thresholds for the network
through genetic optimization techniques. The GA is a
global multipoint search technique employed to address
optimization problems. It utilizes probabilistic transfer
rules to facilitate the search process. Considering each
feature as a genetic individual, the prediction error of the
initialized BPNN is used as the fitness value for the
individual, and the optimal individual, the optimal initial
parameters and thresholds of the BPNN, is searched for
through selection, crossover, and mutation , and then the
actual values of the corresponding parameters are
decoded. When setting the initial parameters of the GA,
the crossover probability and the mutation probability
generally take values between 0 and 1. In this study, the
maximum value of evolutionary generations is
established at 50, the population size is set to be 30, the
crossover probability is determined to be 0.75, and the
mutation probability is set at 0.21.

Statistical Analysis

Design Expert.V8.0.6 and Origin 2022 software are
used for experimental design and data analysis, and
MATLAB 2019a software was used for neural network
construction and training.

Results and Discussion

Single-Factor Experiment Results

Effect of Enzyme Addition on System

As illustrated in Fig. 1, the AGIR initially increased
and then decreased as the amount of enzyme added
increased. The AGIR rose with enzyme addition from
0.1% to 0.2%, reaching a maximum value (38.94%) at
0.2% enzyme addition; the inhibition rate decreased
significantly when enzyme addition exceeded 0.2% (P <
0.05). Under identical conditions, increasing protease
dosage accelerates substrate protein decomposition,
producing more small-molecule peptides or free amino
acids, thereby enhancing the inhibitory activity of
enzyme digests against α-glucosidase (Wu et al., 2019).
Li-na et al. (2018) prepared α-glucosidase inhibitory
peptides from peanut proteins using alkaline protease and
found that AGIR increased with enzyme addition up to
1.2%, then declined when exceeding this level. However,
excessive enzyme addition can cause further degradation
of polypeptides with strong inhibitory activity, altering
amino acid composition and sequence, and thus reducing
inhibition. Therefore, 0.2% enzyme addition was
selected as the optimal level for further optimization.

Influence of Solid-Liquid Ratio on Enzymatic Reaction
System

As shown in Fig. 2, when the solid–liquid ratio is 1:2,
the α-glucosidase inhibitory activity of the digest reaches
its highest value, with an inhibition rate of 52.18%. At
ratios of 1:1, 1:3, 1:4, and 1:5, the inhibitory activity

significantly decreases (P < 0.05). When the solid–liquid
ratio is 1:1, the enzyme’s diffusion movement is limited,
preventing sufficient binding to the substrate and thus
hindering the enzymatic reaction, which reduces the
inhibitory activity of the digest product on α-glucosidase
(Mora & Toldrá, 2023). Although higher solid–liquid
ratios reduce the viscosity and allow adequate enzyme–
substrate interaction, the lower substrate concentration
slows the enzymatic digestion under the same conditions.
A similar observation was made by O’Meara & Munro
(1984) who used pepsin to generate ACE inhibitory
peptides from soybean protein; when the solid–liquid
ratio was below 1:2, the AGIR increased with enzyme
amount, but declined once the ratio exceeded 1:2
(Mazorra-Manzano et al., 2017). Therefore, the optimal
solid–liquid ratio for enzymatic digestion was
determined to be 1:2.

Fig. 1: Effect of enzyme on enzymatic reaction system

Fig. 2: Effect of different solid–liquid ratios on α-glucosidase
inhibitory activity

Effect of Reaction Time on the System

As illustrated in Fig. 3, the AGIR showed an
increasing trend as the reaction time extended from 1.5
to 4.5 hours. The AGIR reached its maximum value

http://192.168.1.15/data/13348/fig1.png
http://192.168.1.15/data/13348/fig1.png
http://192.168.1.15/data/13348/fig2.png
http://192.168.1.15/data/13348/fig2.png
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(42.63%) at 4.5 hours and then gradually declined with
further prolongation of enzymatic digestion (P < 0.05),
decreasing to 24.42% at 6.5 hours. This decline occurs
because prolonged hydrolysis leads to further
decomposition of peptides with high inhibitory activity,
destroying active groups and reducing α-glucosidase
inhibition (Mazorra-Manzano et al., 2017). These
findings align with those of (Meng et al., 2022), who
prepared α-glucosidase inhibitory peptides from
Antarctic krill protein using complex protease. Their
study showed that AGIR increased linearly between 4
and 6 hours, reaching a peak value of 59.39% at 6 hours,
followed by a gradual decline between 6 and 8 hours.
After 4.5 hours of enzymatic hydrolysis, the degree of
hydrolysis (DH) was 34.95%. Therefore, 4.5 hours was
selected as the optimal reaction time for further
optimization of the enzymatic digestion process.

Fig. 3: Effect of reaction time on the enzymatic reaction system

Effect of Reaction Temperature on the Merad Reaction
System

Temperature influences enzymatic hydrolysis by
affecting enzyme activity. As shown in Fig. 4, within the
range of 40–55°C, the inhibition rate gradually increased
with temperature and reached its maximum value
(54.56%) at 55°C. Although papain’s optimal
temperature is 50°C, AGIR continued to increase beyond
that point, likely because the enzyme’s spatial structure
remained intact within this range. The elevated
temperature promotes effective molecular collisions,
accelerates enzymatic reactions, and exposes active
groups, enhancing α-glucosidase inhibitory activity
(Fernández-Lucas et al., 2017). However, when the
temperature exceeds acceptable limits, the spatial
structure of some enzymes becomes denatured and
inactivated, slowing the reaction and reducing inhibitory
activity. Sánchez & Vázquez (2017) observed a similar
trend when preparing α-glucosidase inhibitory peptides
from Undaria pinnatifida, where AGIR initially
increased and then declined with rising temperature.
Therefore, 55 °C was selected as the optimal reaction
temperature for further enzymatic digestion optimization.

Fig. 4: Effect of reaction temperature on the enzymatic reaction
system

BPNN Optimization

Results of α-Glucosidase Inhibition Rate of Rainbow
Trout Enzyme Digests

On the basis of one-way test, enzyme addition
amount, reaction time, reaction temperature, and solid-
liquid ratio are selected and tested by Box-Behnken
experimental design. The experimental results are shown
in Table 2. The factors and outcomes presented in Table
3 were analyzed using multiple quadratic regression
fitting with Design-Expert 130, resulting in the following
model regression equation Y = 45.377 +15.34846A +
2.816B + 15.6544C + 464.25383D + 0.1055AB +
0.105AC-3.07AD - 0.6125BC-10.6894BD -12.17069CD
-0.133775 A2 - 0.626201B2 -4.61583C2 -501.22629D2.

Table 3 indicates that the F for this model was 26.09,
with a corresponding P of less than 0.01, thereby
categorizing the model as extremely important. The p-
value for the lack-of-fit was 0.2457, which exceeds the
threshold of 005. This suggests that the model wasn’t
significantly influenced by the lack-of-fit factor. The R²
was calculated to be 0.9631. Furthermore, the disparity
between the Adjusted R² and the Predicted R² was found
to be 0.1341, which is less than the threshold of 0.2. This
suggests that the model sufficiently represents the actual
conditions. The significance values associated with
factors A, B, C, D presented in Table 3 were all below
0.05, suggesting that the Y was significantly affected by
these factors. Furthermore, the significance values for
factors A, B, C, D were below 0.01, The significance
values for factors A, B, C, and D were all below 0.01,
showing that factors had highly significant impacts on Y.

Figure 5 illustrates that the response variable Y
exhibited an initial increase followed by a decrease as the
levels of the factors A, B, C, and D were elevated in
interactions involving two elements. The best conditions
identified through the analysis were determined to be
51℃  for temperature,1:2.3 for solid-liquid ratio, 4.15 h
for time and 0.2334% for enzyme dosage.

http://192.168.1.15/data/13348/fig3.png
http://192.168.1.15/data/13348/fig3.png
http://192.168.1.15/data/13348/fig4.png
http://192.168.1.15/data/13348/fig4.png
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Table 2: Results of Enzymatic reaction

Sample number Enzyme dosage/% Material-liquid ratio Enzymolysis time/h Enzymolysis temperature/℃ α-Glucosidase inhibition
1 0.2 1:2 6.5 60 44.41
2 0.2 1:2 6.5 50 43.48
3 0.2 1:1 6.5 55 37.26
4 0.2 1:3 6.5 55 48.10
5 0.1 1:2 6.5 55 42.03
6 0.3 1:2 6.5 55 42.70
7 0.2 1:1 4.5 50 44.47
8 0.2 1:3 4.5 50 47.12
9 0.3 1:2 4.5 50 46.45
10 0.1 1:2 4.5 50 40.38
11 0.1 1:3 4.5 55 42.56
12 0.1 1:1 4.5 55 49.27
13 0.2 1:2 4.5 55 54.87
14 0.2 1:2 4.5 55 55.21
15 0.2 1:2 4.5 55 56.33
16 0.3 1:1 4.5 55 45.66
17 0.3 1:3 4.5 55 40.52
18 0.3 1:2 4.5 60 42.04
19 0.1 1:2 4.5 60 45.13
20 0.2 1:1 4.5 60 32.69
21 0.2 1:3 4.5 60 46.35
22 0.2 1:1 2.5 55 40.94
23 0.2 1:3 2.5 55 42.77
24 0.3 1:2 2.5 55 43.48
25 0.1 1:2 2.5 55 43.21
26 0.2 1:2 2.5 60 42.17
27 0.2 1:2 2.5 50 39.63

Table 3: Evaluation of the RSM model

Source Sum of Square df Mean Square F P Significance
Model 633.94 14 45.28 26.09 <0.0001 **
A 152.23 1 152.23 87.72 <0.0001 **
B 9.83 1 9.83 5.66 0.0321 *
C 67.07 1 67.07 38.65 <0.0001 **
D 67.74 1 67.74 39.03 <0.0001 **
AB 5.38 1 5.38 3.10 0.1000
AC 1.38 1 1.38 0.7956 0.3875
AD 7.21 1 7.21 4.15 0.0609 *
BC 5.34 1 5.34 3.08 0.1014
BD 17.14 1 17.14 9.88 0.0072 *
CD 3.57 1 3.57 2.06 0.1733
A 152.23 1 152.23 87.72 <0.0001 **
B 9.83 1 9.83 5.66 0.0321
C 67.07 1 67.07 38.65 <0.0001 **
D 67.74 1 67.74 39.03 <0.0001 **
Residual 24.29 14 1.74
Lack of fit 20.42 10 2.04 2.11 0.2457
Pure error 3.87 4 0.9679
Cor total 658.23 28
R2 = 0.9631 Adjusted R2 = 0.9262 Predicted R2 = 0.7921 Std. Dev. = 1.36

BPNN Hidden Layer Node Optimization

The BPNN modeling is carried out using MATLAB
and the BPNN is trained using the test data. In the
process of training the neural network using the software,
81 sets of experimental data are randomly divided into

training, validation, and testing parts for the iterative
training of the BPNN model in accordance with the ratio
of 70%, 15% and 15%. The optimal number of hidden
layer nodes was determined using a standard empirical
formula. Based on this formula, a range of 2 to 13 nodes
was selected for testing. Table 4 displays the MSE of the
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BPNN model set up with different quantities of hidden
neurons. When the number of neurons in the hidden

layer is 10, the BPNN model achieved its minimum MSE
of 00068 after 55 iterations, as illustrated in Figure 6.

Fig. 5: The three-dimensional surface plot and contour analysis of the model
Table 4: Number of nodes in the hidden layer and MSE

Number of Nodes Mean Square Error
2 0.0311
3 0.0493
4 0.0359
5 0.0219
6 0.0683
7 0.0146
8 0.0239
9 0.0293
10 0.0067
11 0.0145
12 0.0202
13 0.0916

BP Neural Network Modeling

The smaller the MSE value of the MSE evaluation,
the higher the accuracy of the constructed neural network
model in predicting the test data. The learning and
training process of BPNN is shown in Figure 7. From the
curve shown in the figure, it can be seen that the network
training is more stable and converges rapidly, and the
neural network after the enzymatic reaction reaches the
set mean-square error target requirement of the network
performance after 49 iterations, which indicates that the

structure and parameters of BP Neural Network model
established by the research are more reasonable and can
be used for the fitting research of Freshening
Technology. This indicates that the structure and
parameters of the BP Neural Network model established
in this study are reasonable and can be used for the
fitting study of the Melad freshening technology.

Fig. 6: Training process of BP Neural Network model for
sensory scores

http://192.168.1.15/data/13348/fig5.png
http://192.168.1.15/data/13348/fig5.png
http://192.168.1.15/data/13348/fig7.png
http://192.168.1.15/data/13348/fig7.png


Yingke Chu et al. / American Journal of Biochemistry and Biotechnology 2025, 21(3): 401-411
DOI: 10.3844/ajbbsp.2025.401.411

408

Fig. 7: BP Neural Network model correlation coefficient
evaluation

Evaluation of Correlation Coefficients for BP Neural
Network Models

The output values and target values for the training,
validation, testing, and overall datasets have been
quantified, and the associated correlation coefficients
have been computed, as illustrated in Figure 7. The data
presented in the figure indicates that the correlation
coefficient (R) values for the training set (099803),
validation set (09978), test set (098964), and the overall
prediction set (099648) suggest that BPNN model has
superior regression and fitting performance. In Figure 8,
the majority of data points are distributed closely along
the 45°line, suggesting a strong correlation between the
test results and the predicted values generated by the
BPNN. The target value and the output value of the
neural network model exhibit a substantial positive
correlation, thereby providing further evidence that the
BPNN model has been effectively developed with a high
degree of fitting accuracy.

BP Neural Network Model Training Accuracy Analysis

Figure 8 shows the regression straight line between
the network output value Y and the network target value
X for the test sample of the BPNN model. The network
output value Y is the output value calculated using the
trained genetic BPNN model. The network target value
X is the measured value that the BPNN is trained to
achieve. As illustrated in the figure, the correlation
coefficient R of the regression straight line is 0.98787,
which are all close to 1. In addition, the regression line
basically coincides with the straight line with slope 1
(Y=X), which indicates that the output value of the BP
Neural Network has very little deviation from its target
value, and it is a very effective prediction method.

Fig. 8: Regression analysis of target and network outputs after
the enzymatic reaction

Genetic Algorithm Optimization and Validation Tests

The GA is utilized to identify temperature and
enzyme addition amont as critical variables from four
enzymatic hydrolysis parameters. BPNN Is subsequently
developed to establish a nonlinear mapping relationship
based on experimental datasets, which reduced the mean
MSE of hydrolysis degree prediction from 0.042 in
conventional univariate models to 0.006. To further
enhance model performance, a parameter sensitivity
analysis framework was incorporated, coupled with an
adaptive weight adjustment algorithm that optimized
network training dynamics. This hybrid approach
achieved a 40% acceleration in convergence speed while
maintaining high prediction accuracy， demonstrating
superior efficiency in enzymatic hydrolysis process
modeling.

Comparative Examination of RSM and BPNN
Models

Analysis of Model Error Comparison

The error analysis related to RSM and BPNN is
shown in Table 4. The model was assessed by calculating
and comparing several statistical metrics, including the
R², RMSE, MAD, and Spherical Probability Error (SPE).
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n denotes the quantity of samples, Y signifies the test
value,  indicates the mean of the test samples, Y
denotes the predicted value generated by the model, and

 refers to the mean of the model's predicted values.
Table 5: Parameter comparison of two models

Model R RMSE MAD SPE
RSM 0.94877 0.9017 4.0727 1.96
BPNN 0.99648 0.3687 4.1746 0.74

The RMSE, MAD, and SPE values were low, while
the model's R was high, suggesting that the model
demonstrated strong accuracy and reliability (Wu et al.,
2019). Table 5 demonstrates that the R² for the BPNN
model exceeded that of the RSM. Additionally, the

RMSE and SPE values for the BPNN model were lower
than those of the RSM, suggesting that BPNN model
outperformed the RSM in terms of predictive accuracy.

Validation of the Optimal Solutions Derived from the
Models

In Table 6 the AGIR of 58.61 （mg/g） predicted by
the BPNN exceeded the 56.44 （mg/g） forecasted by
the RSM, while also exhibiting a lower relative error
compared to the RSM model. Consequently, it can be
inferred that the BPNN model demonstrated greater
efficacy compared to the RSM in optimizing the
extraction process. The outcome aligns with the
conclusions drawn by Li-na et al. (2018).

Table 6: Comparison and Validation of the Models

Model time/h Temperature/℃ solid-liquid ratio enzyme dosage Predictive value Actual value Std.Dev
BPNN 4.15 51 1:2.3 0.2334 58.61 58.14 0.80
RSM 4.55 50 1:2 0.1933 56.44 55.02 2.51

Conclusion
In this study, we performed single-factor experiments

using rainbow trout skin as the raw material. The α-
glucosidase inhibition rate served as the evaluation
metric, while reaction temperature, reaction time, solid-
liquid ratio, and enzyme concentration were the variables
tested. The optimal reaction conditions for enzymatic
hydrolysis are: reaction temperature of 55℃ , enzymatic
hydrolysis time of 4.5 h, solid-liquid ratio of 1:2, and
enzyme addition amount of 0.2%. According to the
factor level and response value of Box-Behnken test,
RSM, BPNN model are established to optimize
enzymatic hydrolysis conditions. The AGIR of the
rainbow trout hydrolysate prepared under the optimal
conditions of the BPNN at a concentration of 20 mg/ml
is 58.14%±2.78, which is 3.09% higher than that of the
RSM model. This proves that the optimization of this
experiment can simultaneously improve the AGIR of the
rainbow trout hydrolysate.
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