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Abstract: This study aims to analyze the electricity consumption of Greater 

Lomé (Togo), a critical issue in view of the increasing needs and imperatives 

of energy transition. We used 63,943 data samples from the Togo Electric 

Energy Company (CEET), covering eight sites spread across three 

municipalities over a period of 84 months (2018-2024). A multidimensional 

statistical approach was used to evaluate active power through nine 

indicators, including central tendency, dispersion and distribution shape 

measures (skewness and kurtosis). The results show three distinct 

distribution profiles: symmetrical, asymmetrical and random. The maximum 

consumption observed varies from 5.643 MW to 9.900 MW, while the 

average consumption is between 2.800 MW and 5.620 MW. The analysis 

reveals similarities between the sites: Four sites (ADIDOGOME, 

DOGBEAVOU, CASABLANCA, GARAGE CENTRAL) show averages 

between 3.000 MW and 3.700 MW; three sites (AVENOU, GAKLI, 

N’DANIDA) show almost identical averages, around 4 to 5 MW. The 

ADEWI site records the lowest average (2.000 to 3.000 MW). Given the 

shape indicators, it is difficult to determine the average production power 

required per site. For this purpose, it is necessary to try in future work the use 

of artificial intelligence to create models and make good decisions. 

 

Keywords: Analysis, Characterization, Electrical Energy, Interconnection 

Station, power Consumption, Statistical Parameters 

 

Introduction 

In today's environment of new information and communication technology, combined with industrialization and home 

automation, the demand for electrical energy continues to grow every day. This is driving research efforts to find solutions 

for the production of electrical energy (Guenoukpati, 2022; Kouzou, 2010). Given that primary energy sources are diverse 

and abundant depending on the environment, there is a need to review the systems for injecting electricity into the grid. 

The problem associated with this production stems from fossil primary energy sources (Manzoor et al., 2018; Saber and 

Venayamoorthy, 2010; Paria et al., 2014). These pollute the environment through their greenhouse gas emissions (Sarhan 

et al., 2023; Gift and Abiodun, 2021). In view of this, policies encourage large-scale electricity production from renewable 

primary sources. Examples include the Paris Climate Agreement and party conferences (Aoife et al., 2017; Tianyu et al., 

2024; Ghezloun et al., 2017). For Africa, it is recommended to use solar photovoltaic, wind, and geothermal energy 

because oil, natural gas, and coal contribute to the rapid destruction of nature. They increase the risk of bush fires, heat 

waves, floods, tsunamis, etc. (Mohamed et al., 2019; Junxiang et al., 2024).  

In addition to all of the above, there are several development plans in our regions. These include the division of 

countries into municipalities (Medewou et al., 2019). That said, since 2018, prefectures have been divided into 

municipalities in Togo, a humid, coastal country in West Africa bordered by Burkina Faso to the north, the Atlantic Ocean 

to the south, Benin to the east, and Ghana to the west (Electricity Sector Regulatory Authority, 2020). The country is 
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supplied with electricity through imports, which accounted for approximately 63% of its total electricity consumption in 

2020 (Norbert, 2019). According to the Electricity Sector Regulatory Authority (ARSE), this figure may have decreased 

with recent initiatives to increase local electricity production (PND, 2018).  In Togo, only the Benin Electricity 

Community (CEB) is responsible for electricity transmission and the Togo Electricity Company (CEET) for electricity 

distribution (Komla et al., 2024a). Based on five economic regions, the country has 39 prefectures and 117 municipalities 

that contribute to local development. However, the economic development of each municipality is strongly linked to its 

self-sufficiency in electricity supply. In order to determine the amount of electricity needed to meet each municipality's 

needs, it is necessary to map their electricity requirements. 

Furthermore, in order to determine the amount of electricity needed to meet the needs of each municipality, it is 

necessary to characterize their consumption. The aim of this study is therefore to characterize the consumption of a 

number of municipalities based on available data. The goal is to use an approach based on statistical analysis of the data 

to define a fixed electricity consumption value per municipality. To achieve this, the study takes into account eight (8) 

areas in three municipalities spread across the Greater Lomé administrative region, namely: ADEWI and GARAGE 

CENTRAL in the municipality of Golfe 3; DOGBEAVOU and N'DANIDA in the municipality of Golfe 4; and 

ADIDOGOME, AVENOU, CASABLANCA, and GAKLI in the municipality of Golfe 5. We will use consumption data 

collected over 84 months, or seven consecutive years, from January 1, 2018, to December 31, 2024. This data is collected 

by CEET at its distribution station in Lomé A. The statistical parameters used for data analysis are: Mean, median, mode, 

minimum, maximum, standard deviation, mean deviation, skewness, and kurtosis (Wang et al., 2022; Shuayb et al., 2023; 

Yates and Khan, 2024; Komla et al., 2024b). Data analysis for each site will first be carried out on a monthly basis for 

the seven years, then annually, and finally for all years combined in order to fully understand the consumption profile for 

effective decision-making. 

The results of these analyses will give the leaders of each municipality a clear idea of how much power to generate in 

order to meet the electricity needs of their population, thereby contributing to their development in this regard. 

Materials 

In this work, we will use the operating data of CEET, collected at its LOME A distribution station. The active powers 

consumed from 2018 to 2024, from January to December, will be used. These data are often automatically recorded on 

the network via an Excel file with a half-hourly range as can be seen in Fig. 1. 

In fact, each site is served by two feeders from different source stations. Thus, in the event of a breakdown on one of 

the feeders, the second is loaded to the maximum possible capacity to take over the maximum load from the faulty feeder. 

 

 
 

Fig. 1: Excel file showing the recording of raw consumption data 
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Indeed, each feeder covering a given area is subdivided into several branches, each branch serving a part of the targeted 

area. Thus, in the event of a failure on one of the branches, the part of the target area supplied by this branch is de-

energized, therefore the consumption on the said feeder drops. If the failure occurs on two or three branches serving 

significant loads, the consumption drops considerably on this feeder, which means that we sometimes record consumption 

three (3) to five (5) times lower compared to normal consumption. In the distribution substation, the data is often 

automatically recorded on the network via an Excel file over a half-hourly range for each feeder. Since the feeders are 

not all created simultaneously, some have more load monitoring data than others. Thus, to carry out this study, we took 

care to process the raw data collected in the substation by considering only the active powers in Megawatt consumed on 

the sites whose data are available for the study period considered. Figure 2 shows the Excel sheet containing the processed 

data. This represents the active power in Megawatts consumed per area, for 84 months, from January 1, 2018 to December 

31, 2024. 

 

 

 

Fig. 2: Excel sheet containing active power data in Megawatt (MW) consumed per site from 2018 to 2024 

 

Methods 

As a method, a statistical characterization on the consumed active power is presented, taking into account: The mean; 

the median; the mode; the Max and the Min; the standard deviation; the mean deviation; the Skewness and the Kurtosis. 

Some details on the method are presented in the following sections. 

Table 1 summarizes the role and relevance of central tendency indicators (mean, median, mode and dispersion (min, 

max, standard deviation, mean deviation used in this study. 

Skewness Coefficient (
1

 ) 

The skewness coefficient measures the asymmetry of the data distribution. Its expression is given by Eq. 6. 

Theoretically for normal distribution, Skewness = 0, If it is greater than zero, the distribution is spread to the right and if it 

is less than zero, the distribution is spread to the left.  
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Table 1: Summary of central tendency and dispersion indicators used in the study 

Category Indicator Role Relevance 

Central 

tendency 

Mean (  ), Eq. 1 Estimates the center of gravity of the data Standard location measure for symmetric 

distributions. Sensitive to extreme values. 

Median 
The central value of a distribution. 50% 

of the data are below and 50% are above 

Extremely robust to outliers. Essential for 

skewed distributions 

Mode 
The most frequent value in the dataset Useful for detecting major peaks and describing 

multimodal or categorical distributions 

Dispersion 

Min and Max, 

Eq. 2 and Eq. 3  

Sets the data limit values Gives the total range; crucial for detecting 

anomalies and outliers 

Standard 

deviation 

( ), Eq. 4 

Measures the dispersion of data around 

the mean 

Standard for quantifying variability. 

Fundamental for confidence intervals and tests 

Mean Absolute 

Deviation  

( MAD ), Eq. 5 

Measures the average distance of each 

point from the mean 

Robust and intuitive measure of dispersion, less 

sensitive to outliers than standard deviation 

 

Kurtosis Coefficient (
2

 ) 

The kurtosis coefficient indicates to what extent the tail of a distribution differs from the normal distribution. 

Indeed, the normal distribution, also called Gaussian distribution, is a continuous probability distribution characterized 

by its symmetry and its bell shape. The probability density function of a random variable " a  " following a normal 

distribution is given by Eq. 7. The expression of the kurtosis coefficient is given by Eq.8. Theoretically for normal 

distribution, the Kurtosis = 3. Thus, if it is greater than 3, the distribution is less flattened than a Gaussian distribution 

and if it is less than 3, the distribution is more flattened than a Gaussian distribution: 
 

𝜇 =
1

𝑛
∑ 𝑎𝑖
𝑛
𝑖=1  (1) 

 
𝑀𝑎𝑥 = max(𝑎1, … , 𝑎𝑛) (2) 
 
𝑀𝑖𝑛 = min(𝑎1, … , 𝑎𝑛) (3) 
 

𝜎 = √(
1

𝑛−1
∑ (𝑎𝑖 − 𝜇)2

𝑛

𝑖=1
) (4) 

 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝑎𝑖 − 𝜇|𝑛
𝑖=1  (5) 

 

𝛾1 =
1

𝑛
∑ (𝑎𝑖−𝜇)

3𝑛

𝑖=1

𝜎3
 (6) 

 

𝛾2 =
1

𝑛
∑ (𝑎𝑖−𝜇)

4𝑛

𝑖=1

𝜎4
− 3 (7) 

 

𝑓(𝑎) =
1

√2𝜋𝜎2
𝑒−

(𝑎−𝜇)2

2𝜎2  (8) 

 
Where: 

 
a  Is the random variable 

  Is the mean, which represents the central value of the data (MW) 

n  Is total number of data in the sample 

ia  Is value of the i ème observation 

  Is standard deviation (MW) 

MAD  Is Mean absolute deviation (MW) 

1
  Is Skewness coefficient 

2
  Is Kurtosis coefficient 
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Results 

In this section, we will first present the monthly statistical results (January to December) for each site from 2018 to 

2024, then the annual statistical results, and finally the cumulative statistical results for all seven years for each site. The 

values recorded in the tables are expressed in MW, with the exception of the skewness and kurtosis coefficients. 

For reasons of ease and convenience related to reading the figures, Table 2 details the study periods considered and 

the codes assigned to the sites in question. 

Table 3 and Fig. 3 present, respectively, the statistical results and the consumption evolution graphs for the months of 

January from 2018 to 2024 for each area. 

 

Table 2: Details of study periods with assigned alphabets according to the sites considered 

N° Area 

Code 

assigned 

Graphical results and tables are 

presented 

Months considered Years considered 

1 ADEWI a 

For each site considered, the 

analysis is based on 

Every month of the year, for all 

the years combined 

Every year, based on all the 

months combined 

All years and months combined 

January 

February 

March 

April 

May 

June 

July 

August 

September 

November 

December 

- 2018 

- 2019 

- 2020 

- 2021 

- 2022 

- 2023 

- 2024 

2 ADIDOGOME b 

3 AVENOU c 

4 CASABLANCA d 

5 DOGBEAVOU e 

6 GAKLI f 

7 GARAGE CENTRAL g 

8 N’DANIDA h 

 

Table 3: Statistical results for the months of January 2018-2024 

 Statistical parameters 

Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

ADEWI 5498 3.090 2.937 2.409 0.792 7.524 1.241 1.054 0.270 -0.754 

ADIDOGOME 5498 3.835 3.891 3.891 0.099 7.623 1.019 0.690 -1.303 4.181 

AVENOU 5498 4.652 4.620 4.647 0.396 9.933 1.376 1.050 0.194 0.285 

CASABLANCA 5498 3.424 3.267 2.475 0.429 6.138 1.078 0.909 0.335 -0.650 

DOGBEAVOU 5498 3.515 3.300 3.300 0.429 8.900 1.326 1.084 0.382 -0.142 

GAKLI 5498 4.892 4.917 5.544 0.726 9.042 1.276 0.995 -0.203 0.687 

GARAGE 

CENTRAL 
5498 3.896 3.902 3.902 0.396 8.283 1.276 1.059 0.079 -0.714 

N'DANIDA 5498 4.309 4.191 3.663 0.363 8.217 0.837 0.673 0.409 0.682 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
Fig. 3: Graphs of changes in consumption for the month of January for each area 

 
The statistical results and distribution histograms of consumption for the months of February from 2018 to 2024 are 

shown in Table 4 and Fig. 4 respectively. 

 
Table 4: Statistical results for the months of February from 2018 to 2024 

Statistical parameters 

Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

ADEWI 5020 2.979 2.937 3.194 0.825 8.000 1.029 0.835 0.346 -0.446 

ADIDOGOME 5020 3.685 3.960 0.132 0.099 9.867 1.480 1.051 -0.903 1.502 

AVENOU 5020 4.651 4.595 3.927 0.792 9.735 1.655 1.344 -0.210 -0.515 

CASABLANCA 5020 3.651 3.597 3.655 0.396 6.864 1.113 0.964 0.012 -0.773 

DOGBEAVOU 5020 4.409 4.417 4.417 0.330 8.943 1.096 0.778 -0.390 0.840 

GAKLI 5020 4.980 5.247 5.280 0.363 9.669 1.563 1.183 -0.829 0.688 

GARAGE CENTRAL 5020 4.146 4.290 4.752 0.561 7.953 1.279 1.058 -0.107 -0.363 

N'DANIDA 5020 4.519 4.389 3.960 1.782 9.240 0.831 0.674 0.632 1.066 
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a 

 
b 

 
c 

 
d 

 
e 

 
g 

 
f 

 
h 

 

Fig. 4: Graphs of changes in consumption for the month of February for all areas 
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The statistical results for the months of March from 2018 to 2024 are presented in Table 5. 

 
Table 5: Statistical results for the months of March 2018 to 2024 

Statistical parameters 

Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

ADEWI 5365 3.296 2.937 2.475 0.264 9.900 1.578 1.263 0.918 0.706 

ADIDOGOME 5365 3.554 3.927 0.132 0.099 8.976 1.664 1.258 -0.753 0.316 

AVENOU 5365 5.257 5.255 5.255 0.264 9.966 1.406 1.155 -0.367 0.273 

CASABLANCA 5365 3.699 3.665 3.665 0.396 6.006 1.186 1.000 -0.009 -0.735 

DOGBEAVOU 5365 4.198 3.993 3.168 0.132 9.900 1.731 1.430 0.168 -0.241 

GAKLI 5365 5.392 5.412 5.280 0.264 9.570 1.189 0.855 -0.508 3.433 

GARAGE CENTRAL 5365 4.179 4.202 4.202 0.132 8.085 1.222 0.968 -0.268 0.237 

N'DANIDA 5365 4.467 4.389 3.960 0.297 9.405 0.877 0.710 -0.281 1.239 
 

Figure 5 illustrates the distribution of consumption for the months of March from 2018 to 2024 across all areas. 
 

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 
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g 

 
h 

 
Fig. 5: Histograms of changes in consumption for the months of March for all sites from 2018 to 2024 

 
Table 6 shows the statistical results of consumption at all sites for the months of April from 2018 to 2024. 

 
Table 6: Statistical results for the months of April from 2018 to 2024 

Paramètres statistiques 

Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

ADEWI 5291 2.453 2.310 1.353 0.264 5.808 1.112 0.897 0.754 -0.103 

ADIDOGOME 5291 3.623 3.960 0.132 0.099 8.250 1.695 1.243 -0.801 0.283 

AVENOU 5291 4.872 4.455 3.960 0.924 9.306 1.415 1.208 0.229 -0.670 

CASABLANCA 5291 3.349 3.360 3.360 0.330 6.798 1.015 0.741 0.357 0.193 

DOGBEAVOU 5291 3.610 3.597 3.676 0.495 9.900 1.609 1.332 0.105 -0.781 

GAKLI 5291 5.133 5.115 5.123 0.297 9.174 1.388 1.062 -0.156 1.093 

GARAGE CENTRAL 5291 4.212 4.323 3.993 0.297 8.019 1.388 1.117 -0.092 -0.458 

N'DANIDA 5291 4.347 4.356 4.620 0.594 7.557 0.911 0.741 -0.155 0.547 
 

Figure 6 shows the evolution of consumption at each site for the months of April from 2018 to 2024. 
 

a b 

c d 
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e f 

g h 

 

Fig. 6: Graphs of changes in consumption for the month of April for all areas 

 

The statistical results of electrical energy consumption for the months of May from 2018 to 2024 at the eight areas 

are presented in Table 7. 

 

Table 7: Statistical results for the months of May from 2018 to 2024 

Paramètres statistiques 

Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

ADEWI 5368 2.550 2.409 2.574 0.561 5.643 1.028 0.809 0.729 -0.214 

ADIDOGOME 5368 3.306 3.696 0.132 0.099 6.237 1.398 0.985 -1.428 0.992 

AVENOU 5368 4.288 4.059 3.630 1.089 9.240 1.630 1.328 0.102 -0.711 

CASABLANCA 5368 3.651 3.669 3.669 0.264 8.349 1.240 0.958 0.680 0.419 

DOGBEAVOU 5368 3.574 3.366 3.300 0.198 9.900 1.615 1.305 0.437 -0.243 

GAKLI 5368 4.983 4.983 5.346 0.495 9.801 1.259 0.998 0.104 0.296 

GARAGE CENTRAL 5368 3.628 3.993 0.363 0.231 7.953 1.693 1.390 -0.487 -0.530 

N'DANIDA 5368 4.162 4.224 3.630 0.264 7.062 1.017 0.786 -0.876 1.505 

 

Figure 7 illustrates the evolution of electrical energy consumption at the eight sites for the month of May from 2018 to 2024. 
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a b 

c d 

e f 

g h 
 

Fig. 7: Graphs showing changes in electricity consumption for the month of May for all sites from 2018 to 2024 
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Table 8 presents the statistical results of electricity consumption in each zone for the months of June from 2018 to 

2024. 

The histograms of changes in electricity consumption at each site for the months of June 2018 to 2024 are presented 

in Fig. 8. 

 

Table 8: Statistical results for the months of June from 2018 to 2024 

Statistical parameters 

Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

ADEWI 5367 2.626 2.508 2.623 0.594 5.841 0.973 0.770 0.478 -0.606 

ADIDOGOME 5367 2.668 3.333 2.676 0.099 7.491 1.498 1.255 -0.793 -0.818 

AVENOU 5367 4.154 3.927 3.135 1.188 8.580 1.580 1.351 0.013 -0.922 

CASABLANCA 5367 2.834 2.834 2.834 0.297 5.643 0.857 0.646 0.637 0.289 

DOGBEAVOU 5367 3.245 3.257 2.541 0.132 7.656 1.348 1.102 0.046 -0.394 

GAKLI 5367 4.388 4.422 3.762 0.297 8.910 1.170 0.918 -0.044 0.971 

GARAGE CENTRAL 5367 3.127 3.300 0.330 0.264 7.557 1.494 1.221 -0.283 -0.409 

N'DANIDA 5367 3.735 3.861 4.389 0.165 8.547 1.060 0.856 -0.407 -0.220 

 

 
a 

 
b 

 
c 

 
d  
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e 

 
f 

 
g 

 
h 

 

Fig. 8: Graphs showing changes in electricity consumption for the months of June for all areas from 2018 to 2024. 

 

Table 9 shows the statistical results of electricity consumption for the months of July 2018 to 2024 for all areas. 

 

Table 9: Statistical results for the months of July from 2018 to 2024 

Statistical parameters 

Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

ADEWI 5445 2.575 2.588 2.588 0.528 7.029 0.888 0.722 0.209 -0.703 

ADIDOGOME 5445 2.653 3.300 0.099 0,099 7.557 1.613 1.348 -0.433 -0.636 

AVENOU 5445 4.062 3.993 4.056 0.462 8.976 1.476 1.194 -0.185 -0.655 

CASABLANCA 5445 2.841 2.640 2.866 0.693 6.798 1.082 0.756 1.560 2.361 

DOGBEAVOU 5420 3.089 3.003 3.300 0.330 7.128 1.124 0.930 0.406 -0.401 

GAKLI 5445 3.925 3.894 3.663 0.198 7.095 1.150 0.892 -0.712 1.287 

GARAGE CENTRAL 5445 3.080 3.267 2.310 0.264 6.204 1.304 1.099 -0.370 -0.547 

N'DANIDA 5445 3.576 3.729 3.828 0.231 7.600 0.995 0.765 -0.515 0.803 

 

Figure 9 illustrates the distribution of electricity consumption across the eight for the months of July from 2018 to 

2024. 
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g h 
 

Fig. 9: Graphs showing changes in electricity consumption for the month of July for all areas from 2018 to 2024 
 

The statistical results of electricity consumption per site for the months of August 2018 to 2024 are presented in Table 10. 
 
Table 10: Statistical results by site for the months of August 2018 to 2024 

Statistical parameters 

Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

ADEWI 5323 2.2849 2.244 2.320 0.759 9.000 0.800 0.621 0.500 0.296 

ADIDOGOME 5323 2.7778 3.333 0.099 0.099 7.194 1.370 1.069 -1.141 -0.106 

AVENOU 5323 3.9849 3.729 3.300 0.627 7.953 1.439 1.180 0.117 -0.678 

CASABLANCA 5323 2.6806 2.541 2.046 0.924 6.000 0.897 0.681 1.101 1.163 

DOGBEAVOU 5323 2.8651 2.805 1.914 0.231 9.600 1.127 0.961 0.295 -0.296 

GAKLI 5323 3.8772 3.993 3.234 0.264 7.623 1.049 0.813 -0.592 1.377 

GARAGE CENTRAL 5323 3.3475 3.333 2.277 0.264 9.306 1.244 1.044 0.345 -0.575 

N'DANIDA 5323 3.5004 3.564 3.960 0.363 6.501 0.992 0.794 -0.209 -0.343 
 

Figure 10 shows the evolution of electricity consumption per site for the months of August from 2018 to 2024. 
 

 
a 

 
b 

 
c 

 
d 
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Fig. 10: Graphs showing changes in electricity consumption for the month of August at each area 

 

Table 11 presents statistical results of electrical energy consumption from September 2018 to 2024 at all areas. 

 

Table 11: Statistical results for the months of September from 2018 to 2024 

Statistical parameters 

Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

ADEWI 5222 2.672 2.277 2.013 0.891 6.996 1.230 0.990 1.067 0.835 

ADIDOGOME 5222 2.826 3.069 2.807 0.099 8.052 1.259 0.854 -0.985 1.206 

AVENOU 5222 4.310 3.828 3.300 1.056 9.207 1.384 1.227 0.491 -0.901 

CASABLANCA 5222 3.074 3.087 2.277 0.264 6.732 1.028 0.868 -0.037 -0.504 

DOGBEAVOU 5197 2.874 2.508 2.310 0.858 6.699 1.170 1.018 0.473 -0.885 

GAKLI 5222 3.827 3.861 3.816 0.231 7.887 1.121 0.837 -0.451 1.054 

GARAGE CENTRAL 5222 3.472 3.503 3.503 0.264 8.019 1.079 0.857 -0.045 0.288 

N'DANIDA 5222 3.636 3.663 4.290 0.462 7.029 1.021 0.817 -0.140 -0.119 

 

Figure 11 illustrates the evolution of electricity consumption at all areas from September 2018 to 2024. 
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Fig. 11: Graphs showing changes in electricity consumption for the months of September for all areas from 2018 to 2024 
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Table 12 presents the statistical results of electricity consumption of the eight sites for the months of October from 

2018 to 2024. 

 

Table 12: Statistical results for the months of October from 2018 to 2024 

Statistical parameters 

Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

ADEWI 5474 3.023 2.739 3.024 0.495 6.963 1.250 1.034 0.663 0.090 

ADIDOGOME 5474 2.588 2.904 2.611 0.099 7.887 1.534 1.169 -0.179 -0.072 

AVENOU 5474 4.748 4.760 4.760 0.099 9.933 1.494 1.273 0.155 -0.246 

CASABLANCA 5474 3.173 3.182 3.182 0.330 6.864 0.925 0.765 0.141 -0.061 

DOGBEAVOU 5474 3.551 3.577 3.577 0.132 8.613 1.423 1.188 -0.224 -0.287 

GAKLI 5474 4.223 4.244 4.244 0.264 9.570 1.596 1.213 0.081 0.019 

GARAGE CENTRAL 5474 3.652 3.729 3.645 0.066 8.514 1.186 0.943 -0.202 0.265 

N'DANIDA 5474 3.821 3.828 3.564 0.231 9.537 1.066 0.779 -0.014 1.969 

 

Figure 12 illustrates the histograms of changes in electricity consumption at the eight sites for the months of October 

from 2018 to 2024. 
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Fig. 12: Graphs showing changes in electricity consumption for the month of October at the eight areas 

 

Table 13 shows the statistical results of electricity consumption for the months of November at all sites from 2018 to 

2024. 

 

Table 13: Statistical results for the months of November from 2018 to 2024 

Statistical parameters 

Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

ADEWI 5238 3.060 2.706 2.376 0.429 8.349 1.427 1.175 0.749 0.425 

ADIDOGOME 5238 2.903 3.300 0.132 0.099 9.438 1.632 1.231 -0.418 0.148 

AVENOU 5238 4.491 4.125 3.300 0.891 9.999 1.743 1.494 0.204 -0.683 

CASABLANCA 5238 3.208 3.212 3.212 0.495 6.270 1.018 0.797 0.303 -0.261 

DOGBEAVOU 5238 3.494 3.234 0.231 0.132 8.910 1.863 1.490 0.149 -0.426 

GAKLI 5238 4.650 4.719 4.719 0.297 9.735 1.515 1.144 -0.156 0.534 

GARAGE CENTRAL 5238 4.082 4.092 4.083 0.528 9.240 1.259 0.993 0.090 0.185 

N'DANIDA 5238 4.224 4.257 4.444 0.297 8.448 1.003 0.736 -0.287 2.361 

 

Figure13 illustrates the evolution of electricity consumption at all sites for the months of November from 2018 to 

2024. 
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Fig. 13: Graphs of changes in electricity consumption at each area for the months of November 2018 to 2024 
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Table 14 presents the statistical results of electricity consumption per site for the months of December 2018 to 2024 
 
Table 14: Statistical results for the months of December from 2018 to 2024 

Statistical parameters 

Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

ADEWI 5332 2.789 2.640 2.833 0.264 9.400 1.080 0.840 0.562 -0.208 

ADIDOGOME 5332 3.475 3.762 3.437 0.099 9.207 1.565 1.094 -0.928 0.878 

AVENOU 5332 4.666 4.323 4.735 1.287 9.636 1.420 1.154 0.566 -0.231 

CASABLANCA 5332 3.399 3.267 3.396 0.396 7.689 1.072 0.868 0.278 -0.332 

DOGBEAVOU 5332 3.473 3.399 3.472 0.330 7.920 1.565 1.285 0.152 -0.579 

GAKLI 5332 4.559 4.653 4.552 0.363 9.075 1.392 1.057 -0.554 0.431 

GARAGE CENTRAL 5332 3.934 3.923 3.923 0.231 8.712 1.277 1.006 -0.042 -0.114 

N'DANIDA 5332 4.404 4.389 4.397 0.264 8.052 0.824 0.648 -0.291 2.811 
 

Figure14 shows the evolution of electricity consumption at each site for the months of December 2018 to 2024. 
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Fig. 14: Graphs showing changes in electricity consumption for the months of December for all areas from 2018 to 2024 

 

Table 15 presents the statistical results of electricity consumption at each area for the year 2018. 

 

Table 15: Statistical results by area for the year 2018 

Statistical parameters 

year Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

2018 ADEWI 8999 3.054 3.234 1.815 0.264 7.029 1.050 0.911 0.008 -0.865 

2018 ADIDOGOME 8999 3.549 3.465 3.432 0.363 9.207 0.804 0.545 1.628 6.291 

2018 AVENOU 8999 6.256 6.204 6.270 0.528 9.999 0.832 0.537 -1.351 12.856 

2018 CASABLANCA 8999 2.237 2.145 1.914 0.264 6.072 0.611 0.410 2.053 8.339 

2018 DOGBEAVOU 8249 4.435 4.455 4.983 0.396 7.425 1.212 1.005 -0.139 -0.504 

2018 GAKLI 8999 4.100 3.960 3.300 0.726 8.217 1.035 0.861 0.380 0.018 

2018 
GARAGE 

CENTRAL 
8999 4.580 4.521 4.290 0.495 9.306 0.842 0.660 0.461 1.139 

2018 N'DANIDA 8999 4.932 4.917 4.950 0.264 8.448 0.633 0.444 -0.587 9.133 

 

Figure 15 shows the distribution of electricity consumption across the eight sites during 2018. 

 

a b 



Krou Iparbè et al. / American Journal of Engineering and Applied Sciences 2026, 19 (1): 1.38 

DOI: 10.3844/ajeassp.2026.1.38 

 

23 

c d 

e f 

g h 

 
Fig. 15: Histograms of changes in electricity consumption during 2018 for all areas 

 
Table 16 presents the statistical results of electricity consumption at each site during the year 2019. 

 
Table 16: Statistical results by site for the year 2019 

Statistical parameters 

Year Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

2019 ADEWI 9228 3.049 2.623 2.320 0.264 6.996 1.300 1.032 0.662 0.133 

2019 ADIDOGOME 9228 4.051 3.960 3.795 0.264 8.976 0.809 0.616 0.295 2.510 

2019 AVENOU 9228 4.319 3.828 3.828 0.264 9.966 1.412 1.170 0.731 -0.149 

2019 CASABLANCA 9228 3.516 3.360 3.669 0.264 7.689 0.884 0.725 0.480 -0.210 

2019 DOGBEAVOU 8454 4.508 4.455 4.290 0.330 8.910 1.253 1.031 0.170 -0.292 

2019 GAKLI 9228 4.974 4.917 4.785 0.264 9.570 0.940 0.707 -0.726 3.651 

2019 GARAGE CENTRAL 9228 4.638 4.554 3.923 0.330 9.240 0.895 0.709 0.178 1.289 

2019 N'DANIDA 9228 4.730 4.620 4.290 1.122 8.415 0.762 0.605 0.353 0.957 
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Figure16 illustrates the evolution of electricity consumption at each site during 2019. 
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Fig. 16: Graphs of changes in consumption for the year 2019 for all areas 

 

The statistical results of electricity consumption for the year 2020 at each site are presented in Table 17. 

 

Table 17: Statistical results by area for the year 2020 

Statistical parameters 

Year Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

2020 ADEWI 9149 2.632 2.491 2.112 0.726 8.000 1.023 0.845 0.522 -0.494 

2020 ADIDOGOME 9149 3.606 3.498 3.300 0.264 9.867 0.841 0.488 1.574 11.351 

2020 AVENOU 9149 3.655 3.465 3.300 0.726 9.933 0.904 0.596 1.996 7.261 

2020 CASABLANCA 9149 3.254 3.135 2.640 0.264 6.732 1.042 0.850 0.244 -0.218 

2020 DOGBEAVOU 8374 3.493 3.300 3.472 0.363 9.900 1.266 1.011 0.822 0.633 

2020 GAKLI 9149 4.354 4.356 4.092 0.264 8.646 0.984 0.775 -0.370 1.064 

2020 GARAGE CENTRAL 9149 2.598 2.475 2.310 0.264 6.765 0.777 0.558 1.519 4.503 

2020 N'DANIDA 9149 4.476 4.570 4.950 0.264 9.537 1.011 0.711 -1.225 3.775 

s 

Figure17 shows the graphs of changes in electricity consumption at the eight sites for the year 2020. 
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Fig. 17: Graphs showing changes in electricity consumption in 2020 for all areas 
 

Table 18 presents the statistical results of electricity consumption at each site during the year 2021. 
 
Table 18: Statistical results by area for the year 2021 

Statistical Parameters 

Year Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

2021 ADEWI 9169 2.852 2.588 2.409 0.495 9.400 1.083 0.889 0.636 0.159 

2021 ADIDOGOME 9169 3.006 3.234 0.330 0.264 7.557 1.547 1.240 -0.672 -0.674 

2021 AVENOU 9169 4.012 4.158 4.455 0.462 8.613 1.222 0.937 -0.064 0.478 

2021 CASABLANCA 9169 3.448 3.300 3.182 0.330 5.874 0.950 0.785 0.212 -0.319 

2021 DOGBEAVOU 8419 3.847 3.861 5.280 0.297 8.580 1.347 1.117 0.150 -0.228 

2021 GAKLI 9169 4.130 3.993 4.719 0.264 8.514 1.505 1.201 -0.038 -0.219 

2021 GARAGE CENTRAL 9169 3.419 3.102 2.970 0.264 8.283 1.329 1.064 0.724 0.173 

2021 N'DANIDA 9169 3.149 3.564 3.960 0.264 6.567 1.044 0.930 -0.425 -0.913 



Krou Iparbè et al. / American Journal of Engineering and Applied Sciences 2026, 19 (1): 1.38 

DOI: 10.3844/ajeassp.2026.1.38 

 

27 

Figure 18 illustrates the distribution of electricity consumption at each site during the year 2021. 
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Fig. 18: Graphs showing changes in electricity consumption during 2021 for all areas 

 

Table 19 presents the statistical results of electricity consumption at the eight sites for the year 2022. 

 

Table 19: Statistical results by site for the year 2022 

Tatistical Parameters 

Year Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

2022 ADEWI 9132 2.424 2.112 1.980 0.528 7.524 1.135 0.903 0.967 0.264 

2022 ADIDOGOME 9132 3.570 3.333 3.891 0.099 8.250 1.060 0.762 0.398 2.701 

2022 AVENOU 9132 3.527 3.729 4.647 0.396 9.075 1.450 1.235 -0.032 -0.815 

2022 CASABLANCA 9132 3.479 3.300 3.360 0.429 8.349 1.253 1.021 0.443 0.119 

2022 DOGBEAVOU 8358 2.714 2.640 3.168 0.297 8.943 1.310 1.056 0.520 -0.015 

2022 GAKLI 9132 4.512 4.620 4.389 0.297 9.000 1.223 0.958 -0.565 0.650 

2022 GARAGE CENTRAL 9132 2.731 2.475 0.330 0.231 7.953 1.640 1.333 0.248 -0.674 

2022 N'DANIDA 9132 3.399 3.366 3.036 0.231 7.600 0.539 0.420 0.533 2.602 

 

Figure 19 illustrates the distribution of electricity consumption at each site during the year 2022. 
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Fig. 19: Histograms of changes in electricity consumption at each site during the year 2022 
 

The statistical results of electricity consumption at the eight sites for the year 2023 are presented in Table 20. 
 
Table 20: Statistical results by area for the year 2023 

Statistical Parameters 

Year Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis  

2023 ADEWI 9298 2.247 2.244 2.310 0.825 5.775 0.850 0.616 1.168 1.885 

2023 ADIDOGOME 9298 3.537 3.762 0.132 0.099 8.052 1.338 0.880 -1.130 1.959 

2023 AVENOU 9298 4.243 4.059 3.498 1.155 8.778 1.077 0.828 0.570 0.711 

2023 CASABLANCA 9298 3.660 3.399 3.212 0.627 6.798 1.183 0.998 0.208 -0.707 

2023 DOGBEAVOU 8523 2.505 2.409 4.417 0.132 9.900 1.380 1.085 0.495 0.863 

2023 GAKLI 9298 5.224 5.181 4.62 0.198 9.735 1.439 1.116 -0.179 0.995 

2023 GARAGE CENTRAL 9298 4.088 4.125 3.762 0.231 8.415 1.003 0.779 -0.118 1.294 

2023 N'DANIDA 9298 3.607 3.564 3.762 0.165 9.174 0.613 0.412 1.241 10.922 
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Figure 20 shows the evolution of electricity consumption during the year 2023 at each area. 
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Fig. 20: Graphs of changes in electricity consumption for the year 2023 for all areas 

 

Table 21 presents the statistical results of electricity consumption at each site during the year 2024. 

 

Table 21: Statistical results by area for the year 2024 

Statistical Parameters 

Year Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

2024 ADEWI 8968 3.245 3.036 3.194 0.660 9.900 1.468 1.142 0.984 1.163 

2024 ADIDOGOME 8968 0.715 0.132 0.132 0.099 7.689 1.492 0.995 2.348 3.948 

2024 AVENOU 8968 5.620 5.808 6.270 0.099 9.405 1.485 1.030 -1.366 2.277 

2024 CASABLANCA 8968 3.105 2.970 3.212 0.429 6.864 0.969 0.734 0.635 0.938 

2024 DOGBEAVOU 8193 3.327 3.003 4.417 0.165 9.900 1.577 1.285 0.800 0.599 

2024 GAKLI 8968 4.659 4.983 5.280 0.231 9.801 2.028 1.644 -0.302 -0.614 

2024 GARAGE CENTRAL 8968 4.034 4.059 3.902 0.066 8.019 1.223 0.880 -0.502 1.454 

2024 N'DANIDA 8968 4.116 4.158 3.960 0.297 9.240 0.842 0.586 -1.025 3.825 

 

Figure 21 illustrates the evolution of electricity consumption at each site during the year 2024. 
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Fig. 21: Graphs showing changes in electricity consumption for the year 2024 for all areas 

 

Table 22 presents the cumulative statistical results (7 years) of electricity consumption at each area. 
 
Table 22: Cumulative statistical results for each area 

Statistical Parameters 

Area Count Mean Median Mode Min Max STD MAD Skewness Kurtosis 

ADEWI 63943 2.783 2.558 2.320 0.264 9.900 1.193 0.953 0.870 0.930 

ADIDOGOME 63943 3.155 3.498 0.132 0.099 9.867 1.553 1.147 -0.707 0.243 

AVENOU 63943 4.511 4.323 4.647 0.099 9.999 1.546 1.283 0.071 -0.462 

CASABLANCA 63943 3.247 3.069 3.360 0.264 8.349 1.098 0.888 0.508 -0.037 

DOGBEAVOU 58570 3.545 3.432 4.417 0.132 9.900 1.521 1.244 0.224 -0.223 

GAKLI 63943 4.567 4.620 4.620 0.198 9.801 1.409 1.089 -0.181 0.614 

GARAGE CENTRAL 63943 3.726 3.861 4.290 0.066 9.306 1.374 1.109 -0.184 -0.065 

N'DANIDA 63943 4.056 4.059 3.960 0.165 9.537 1.023 0.781 -0.330 0.940 
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Figure 22 shows the evolution of electricity consumption at each site for the cumulative seven (07) years. 
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Fig. 22: histograms of changes in electricity consumption on each site for the seven (07) cumulative years 

 

Discussion 

To understand a recurring situation and make optimal planning, the data must go through statistical analysis. Indeed, 

statistics is a scientific method that consists of observing and studying one or more common characteristics for a set of 

collected data (Lejeune, 2010). Unlike the latter, a statistic constitutes a number calculated from the data series (Hogg et al., 

2015; Deisenroth et al., 2020). In the context of this work, the statistical study allowed us to calculate several numbers 

of the central tendency (Mean, median and mode); of the dispersion tendency (standard deviation and mean deviation) 

and of the shape tendency (Kurtosis and skewness). The results present three cases. 

First, a good distribution (symmetrical distribution) around a central value. This is observed for the ADIDOGOME 

consumption series in the accounts for the months of January from 2018 to 2024 (Table 3). The average is 3.835 MW, 

the median is 3.891 MW, and the mode is 3.891 MW. The same is true for the AVENOU, DOGBEAVOU, and GARAGE 

CENTRAL areas during the same period. For example, mode = median = 3.300 MW for an average = 3.515 MW at the 

DOGBEAVOU site confirms this observation. This case is also observed at the CASABLANCA area for the months of 

November from 2018 to 2024 with: Average = 3.208 MW; median = mode = 3.212 MW (Table 13). Furthermore, for the 

year 2018 and at the ADIDOGOME, N'DANIDA, AVENOU, CASSABLANCA, and GARAGE CANTRAL areas, the 

graphs in Figs. 15b, Fig. 15h, Fig.15c, Fig. 15d, and Fig. 15g show a good evolution of the histograms in relation to the 

normal Gaussian distribution. Indeed, the normal distribution is symmetrical and bell-shaped on the histograms for a 

good distribution (Montgomery and Runger, 2014). The same situation can be seen for the year 2020 at AVENOU (Fig. 

17c). The same is true for the GAKLI area over the seven-year period (2018-2024). This can be seen in Fig.22.f with: 

The mean = 4.567 MW; the median = 4.620 MW and the mode = 4.620 MW stored in Table 22. In this case, the installed 

power can be planned around the mean for sites that meet this distribution. Some previous studies (Zhaoyuan et al., 2025; 

Rocchetta, 2022; Jena and Sidharth, 2023) confirm this.   

Next, we observe an asymmetrical distribution (median < mean: The mean is influenced by the high values in the data 

series) to the left of the central value. We observe this case for the ADIDOGOME area consumption series for the year 

2024 (Table 21). We thus find 0.715 MW for the mean, the median is equal to 0.132 MW, and the maximum is 7.689 

MW. The same is true for the DOGBEAVOU area during the same year (mean = 3.327 MW; median = 3.003 MW for a 

max = 9.900 MW), thus confirming our observation. These cases are also observed at the DOGBEAVOU (3.493 MW 

for the average, the median is equal to 3.300 MW and the max is 9.900 MW) and AVENOU (average = 3.655 MW; 

median = 3.465 MW for a Max = 9.933 MW) for the year 2020 (Table 17), further confirming our observation. The same 

is true for the GARAGE CENTRAL area (average = 3.419 MW; median = 3.102 MW and Max = 8.283 MW) for the 

year 2021 (Table 18). We can see this in Fig. 18g. This case of left-skewed distribution is more common at the ADEWI 

area. For example: (mean=3.049 MW; median = 2.623 MW for a Max = 6.996 MW) for the year 2019, see Table 15; 

(mean = 2.424 MW; median = 2.112 MW for a Max = 7.524 MW) during the year 2022, see Table 19. We also find: 

(Average = 3.060 MW; median = 2.706 MW for a Max = 8.349 MW) for the months of November from 2018 to 2024, 

See Table 13 and (average = 3.023 MW; median = 2.739 MW for a Max = 6.963 MW) for the months of October from 

2018 to 2024, see Table 12. There are also two isolated cases of right-sided asymmetry. These are AVENOU for the year 

2024 with: Median = 5.808 MW; mode = 6.270 MW; mean = 5.620 MW (Table 21). A similar situation is found in 

ADIDOGOME for the months of February from 2018 to 2024 with: Median = 3.960 MW; mode = 0.132 MW; mean = 

3.685 MW (Table 3). These observations are confirmed by Fig. 21c and Fig. 4b. Given these irregularities, taking into 
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account a fixed electrical power to be installed to meet the consumption needs of these sites requires further work. 

Finally, a random distribution (neither symmetrical, nor asymmetrical to the left, nor asymmetrical to the right) around 

a central value. This is observed for the consumption series for the ADIDOGOME area for the months of August from 

2018 to 2024. The average is 2.777 MW, the median is 3.333 MW, and the mode is 0.099 MW (Table 10). The same is 

true for the DOGBEAVOU and GARAGE CENTRAL areas during the same period. For example: Mean = 3.347 MW; 

median = 3.333 MW and mode = 2.277 MW at the GARAGE CENTRAL area confirm these cases of random distribution. 

In this study, these cases are more frequent at the ADIDOGOME area (mean = 3.554 MW; median = 3.927 MW and 

mode = 0.132 MW for the months of March from 2018 to 2024 (Table 5)). We have: Mean = 3.006 MW; median = 3.234 

MW and mode = 0.330 MW during the year 2021 (Table 18). Then: mean = 3.623 MW; median = 3.960 MW and mode 

= 0.132 MW for the months of April from 2018 to 2024 (Table 6). After: Mean = 2.903 MW; median = 3.300 MW and 

mode = 0.132 MW for the months of November from 2018 to 2024, see Table 13. Subsequently: Mean = 3.306 MW; 

median = 3.696 MW and mode = 0.132 MW for the months of May from 2018 to 2024 (Table 7). We also find: Mean = 

3.155 MW; median = 3.498 MW and mode = 0.132 MW for the seven cumulative years (Table 22). Then, for the months 

of July from 2018 to 2024, we find: Mean = 2.653 MW; median = 3.300 MW and mode = 0.099 MW (Table 9). Elsewhere, 

for the GARAGE CENTRAL area, we have: mean = 3.628 MW; median = 3.993 MW, and mode = 0.363 MW for the 

months of May from 2018 to 2024 (Table 7). Then, for the months of July from 2018 to 2024, we find: Mean = 3.080 

MW; median = 3.267 MW and mode = 2.310 MW (Table 9). Similarly, for the months of March from 2018 to 2024 

(Table 5), we have: Mean = 4.179 MW; median = 4.202 MW and mode = 4.202 MW. In the case of these types of random 

distributions, characterization presents many difficulties for decision-making. This necessitates, for the sites mentioned 

here, the use of artificial intelligence to determine the appropriate processing power. The work of Jhade et al. (2023); 

Mishra et al. (2019); Fay et al. (2021); Hassan et al. (2021) confirms this position.  

Since the analysis of central tendencies did not allow us to rule on data mining for a fixed decision, the calculations 

are carried out on dispersion characteristics. Here, we used the standard deviation and the mean deviation. Indeed, the 

standard deviation is a measure of the dispersion of a statistical series around its mean. The more dispersed the 

distribution, the less the values are concentrated around the mean. In this case, the standard deviation will be high. 

Otherwise, it remains low or even zero. The lowest value of the standard deviation (0.539 MW) is observed on the 

N'DANIDA area for the year 2022 (Table 19) while it is 2.028 MW for the GAKLI site as the highest value for the year 

2024 (Table 21). Through this work, we observe that the majority (more than 90%) of the standard deviation values are 

around 1 MW, making it possible to establish an approximation of 1 MW as the power margin to be installed in the areas 

considered. Observation confirmed by the work of (Zhaoyuan et al., 2025; Rocchetta, 2022; Jena and Sidharth, 2023). 

Regarding the shape of a statistical data distribution, the calculation of skewness and kurtosis allows us to determine 

the observations. Skewness uses the power of 3 to measure the asymmetry around the mean, identifying tails that are 

shifted to the left or right. Kurtosis, using the exponent 4, measures the prominence of peaks and the weight of tails, 

giving more importance to extreme values. Unlike skewness, which is directional, kurtosis focuses on the magnitude of 

deviations. Theoretically, for a normal distribution, Skewness = 0 and Kurtosis = 3. In the context of the results presented 

by this work, kurtosis values around 3 are only seen at the GAKLI area (Table 5 and Table 16). Thus, we find kurtosis = 

3.433 for the months of March 2018 to 2024; kurtosis = 3.651 during the year 2019 for the GAKLI site. Kurtosis values 

around 3 are observed at the N’DANIDA and ADIDOGOME areas with: a kurtosis = 2.811 for the months of December 

from 2018 to 2024 on the N’DANIDA area (Table 14) and a kurtosis = 2.510 during the year 2019 for the ADIDOGOME 

area (Table 16). Regarding skewness, the more symmetric the data are, the closer it is to zero. In the case of our study, 

the skewness value closest to zero is observed at the CASABLANCA area (skewness = 0.009, see Table 5) in the months 

of March from 2018 to 2024. Other skewness values close to zero are also found at the AVENOU areas (skewness = 

0.013 for the months of June from 2018 to 2024 (Table 8); skewness = 0.064 for the year 2021 (Table 18) and skewness 

= 0.071 for the seven cumulative years (Table 22)); of GAKLI (skewness = 0.038 for the account of the year 2021 (Table 

18)) and skewness = 0.044 for the months of June from 2018 to 2024 (table 8); of N’DANIDA (skewness = 0.014 for the 

account of the months of October from 2018 to 2024 (Table 12)); of GARAGE CENTRAL (skewness = 0.042 for the 

account of the months of December 2018 to 2024 (Table 14)); skewness = 0.045 for the account of the months of 

September from 2018 to 2024 (Table 11); skewness = 0.079 for the account of the months of January from 2018 to 2024 

(Table 3); skewness = 0.090 for the account of the months from November 2018 to 2024 (Table 13) and skewness = 

0.092 for the account of the months from April 2018 to 2024 (Table 6)) and DOGBEAVOU (skewness = 0.046 for the 

account of the months from June 2018 to 2024 (Table 8). By the way, kurtosis and skewness help us understand the 

symmetry and concentration of values relative to the mean. In the context of our results, skewness and kurtosis do not 

provide us with in-depth information on the distribution of the data because they are very rare around their normalized 

values. This does not make them essential for understanding the nuances of our data and does not make it easier for us to 

choose the necessary and sufficient electrical power to produce to meet the consumption needs of the explored areas. The 
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work of Blanca et al. (2020); Thomas et al. (2020) confirms our position.  

On the eight (08) areas, the consumption peaks are between 5.643 and 9.900 MW. The average consumption is 

between 2.800 and 5.620 MW. Furthermore, we note that the areas of ADIDOGOME, DOGBEAVOU, CASABLANCA 

and GARAGE CENTRAL have similar average consumption patterns with values often between 3.000 and 3.700 MW. 

Similarly, the areas of AVENOU, GAKLI and N'DANIDA have almost identical average consumption profiles of around 

4.000 and 5.000 MW. The average consumption of the ADEWI area is generally between 2.000 MW and 3.000 MW, 

making it low compared to the other seven areas. However, in 2024 the ADIDOGOME site shows an unusual average 

consumption. We observe an average consumption of 0.715 MW for a max = 7.689 MW, i.e., an average consumption 

decreases of 79.78% compared to that of the year 2023 (Tables 20 and 21). It becomes the lowest average consumption 

recorded in this study for all areas and all periods combined. Furthermore, during the period from May to August from 

2018 to 2024, there is a decrease in average consumption and peak consumption at almost all sites compared to that of 

the period from September to November and that of the period from December to April from 2018 to 2024. There is also 

a slight increase in average consumption during the period from December to April from 2018 to 2024 compared to that 

observed during the period from September to November. 

Conclusion 

This study presents an approach based on the statistical analysis of available data to evaluate the consumption of 

electrical energy by municipality. To achieve this, this study takes into account eight (8) areas of three municipalities 

distributed in the administrative region of greater Lome, namely: ADEWI and GARAGE CENTRAL of the municipality 

of Golfe 3; DOGBEAVOU and N’DANIDA of the municipality of Golfe 4 and: ADIDOGOME, AVENOU, 

CASABLANCA and GAKLI of the municipality of Golfe 5. The consumption data (power in MW) of the eight (08) sites 

for 84 months (7 years), from January 1, 2018 to December 31, 2024 provided by the Togo Electric Energy Company 

(CEET), Lomé A station, served as materials to develop this work. In total, 63,943 samples per area were processed. As 

a method, a statistical characterization on the active power consumed is carried out, taking into account: The mean; the 

median; the mode; the Max and the Min; the standard deviation; the mean deviation; the Skewness and the Kurtosis. The 

results reveal three distinct distribution profiles: Symmetric, asymmetric and random around a central value. However, 

skewness and flattening do not provide us with in-depth information on the data distribution because they are very rare 

around their normalized values. Regarding the dispersion, we observe that the majority (more than 90%) of the standard 

deviation values revolve around 1 MW, allowing us to establish an approximation of  1 MW as the power margin to be 

installed in the considered areas. 

Taking these results into account, the characterization of consumption reveals the importance of statistical analysis of 

available data to assess electrical energy consumption by municipality. However, we find ourselves with difficulties in 

choosing the electrical power to install due to the distribution of data in relation to the statistical metrics used. The call 

for more in-depth studies is required by exploitation and exploration of models to achieve optimization. All things 

considered, the achievement of the development of municipalities must initially involve an increase in electricity needs 

and the autonomy of its production based on available primary sources, it is necessary to establish a necessary electrical 

power consumed by each. The rest will be the decisions and regulations necessary for its achievement. 
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