

© 2025 Oscar Efrén Acosta Mayorga and Sang Guun Yoo. This open-access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

One Time Password (OTP) Solution for Two Factor

Authentication: A Practical Case Study

1Oscar Efrén Acosta Mayorga and 2Sang Guun Yoo

1Centro de Posgrados, Pontificia Universidad Católica del Ecuador Sede Ambato, Ambato, Ecuador
2Departamento de Informática y Ciencias de la Computación, Escuela Politécnica Nacional, Quito, Ecuador

Article history
Received: 07-08-2024
Revised: 17-10-2024

Accepted: 23-12-2024

Corresponding Author:
Oscar Efrén Acosta Mayorga
Centro de Posgrados, Pontificia
Universidad Católica del
Ecuador Sede Ambato,
Ambato, Ecuador
Email: oacosta.mayorga@gmail.com

Abstract: Currently, static passwords are no longer secure, they expose

accounts and data, more advanced and sophisticated approaches are required

to guarantee user authentication and operations in digital systems. In this

context, this study investigates how in a practical application, addressing

security challenges in user authentication using One Time Passwords (OTP)

can strengthen two-Factor Authentication (2FA), the use of a sec factor for

authentication has gained popularity and using an OTP adds an extra layer of

protection, strengthening security beyond the traditional password.

Furthermore, it is important to highlight that currently transactions between

existing systems are largely carried out through smartphones with specific

applications due to convenience and widespread presence in modern life. The

objective of this study focuses on generating an OTP solution for two-factor

authentication in a practical case based on an applied research methodology.

The application of this methodology results in an effective system, improving

two-factor authentication by providing security for user access with static

passwords, even if someone gains access to the user’s password, they still

need the OTP code to access. This article presents an authentication system

for 2FA that includes generation and delivery of the access code based on

events (HOTP) or time (TOTP) and uses mobile and email applications for

OTP code delivery. The entire authentication process from enabling 2FA on

the user account to verifying and validating is comprehensively covered.

Keywords: Authentication, Two-Factor-Authentication, 2FA, One-Time-

Password, OTP, TOTP, HOTP, OTPAUTH

Introduction

The safety of digital applications that involve users

and computers is critical and essential component of the

modern digital era. Authentication is vital in the process

of verifying and validating user’s identity in order to

access a system, platform or specific information.
Most software applications in the authentication

process are based mainly on the use of usernames and

passwords, resulting in an ineffective and vulnerable

method of cyberattacks that are increasingly complex and

sophisticated Verma et al. (2023). Relying solely on static

passwords as an authentication method is often not a

sufficient mechanism to counter emerging network

security risks Mahdad and Saxena (2023). The absence of

an additional security layer in authentication process

leaves accounts vulnerable and risk of being

compromised by threats such as brute force attacks and

phishing Williamson and Curran (2021).

One of the most effective methods of increasing

security to improve applications access is to implement

two-Factor Authentication (2FA) Marmolejo Corona et al.
(2023). Two-Factor Authentication (2FA), a subset of

Multi-Factor Authentication (MFA), enhances security

beyond the traditional use of a username and password

Williamson and Curran (2021). 2FA requires the user to

present two distinct authentication factors to gain access

to a system or resource. The first one typically involves a

password or PIN known solely by the user. The second

factor can be a One-Time Password (OTP) generated by an

authenticator device or application Kirvan et al. (2023).

One-Time Passwords (OTPs) represent an efficient

solution to strengthen two-Factor Authentication (2FA),

since generating passwords based on time or counters
reduces the risk of unauthorized access to accounts and

systems Reese et al. (2019). This unique and dynamic

form authentication has been implemented in a variety of

environments, including educational institutions, military,

Oscar Efrén Acosta Mayorga and Sang Guun Yoo / Journal of Computer Science 2025, 21 (5): 1099.1112

DOI: 10.3844/jcssp.2025.1099.1112

1100

government agencies and private companies Kamau and

Mgala (2022). Although OTPs have been widely adopted

in international settings and certain national sectors, it is
worth mentioning that their interaction with this 2FA

mechanism at the local level in everyday applications is

not so widespread.

Despite the benefits of two-Factor Authentication

(2FA), significant challenges still persist in its

implementation in multiple contexts, including low

awareness about the importance of 2FA, insufficient

knowledge and absence of customized OTP solutions than

are not economically accessible. All of this increases the

risk and vulnerability of information systems, making

them more susceptible to possible attacks and

unauthorized access Tirfe and Anand (2022). Therefore,

the effective deployment of practical two-factor

authentication solutions incorporating one time password

as an additional security layer is crucial for enhancing

information confidentiality. However, while OTP

implementations offer an additional layer of security, their

architecture on both the client and server side is not free

from threats.

The purpose of this study is to improve the security of

traditional login systems by means of two-Factor

Authentication (2FA) through a practical solution based

on One-Time Passwords (OTP). The proposed solution

will be evaluated in a practical environment, focusing on

its effectiveness in mitigating risks associated with

unauthorized access and its efficiency in terms of usability

and performance. The solution is based on an applied

research methodology, leading to an effective OTP-based

2FA system. Covers the generation of one-time

passwords, the methods for their delivery, advantages and

disadvantages associated with their use, as well as the

solution in an affordable practical environment. This

approach improves on two-factor authentication process

by providing a secure access method for users with static

passwords, even if someone gains access to the user’s

password, an additional OTP code is required to access

the account adding an extra layer of security.

Implementing 2FA in an on-premises environment is

important to improve cybersecurity. 2FA through an OTP

can help protect a system and data from cyber-attacks

Williamson and Curran (2021).

Related Work

Under the context of authentication through Multi

Factor Authentication MFA, it is ensured that any method

used in one way or another is much more secure than
using only a username and password Williamson and

Curran (2021). Two-Factor Authentication (2FA) through

the use of One Time Passwords (OTP) has been

highlighted as an effective and robust method in

protecting sensitive data and preventing unauthorized

access. When attempting to log in or make a transaction,

the user is given a temporary code that must be entered to

complete identity verification, this adds an additional

layer by reinforcing security and ensuring the individual
is who they claim to be Ali and Ismail (2018).

From this perspective and conceptual framework,

previous research works such as Marmolejo Corona et al.
(2023) have shown that 2FA methods are created from

Single Factor Authentication (SFA) usually referred as
username or email address and access password which

increases the security level as an additional layer to verify
the user’s identity. Following this approach, in Reese et al.

(2019) several 2FA methods are analyzed, it is reflected
that some of these may be less familiar to users, one of

them is the hardware-based Universal 2nd Factor (U2F)
device. In addition, the referenced study identifies

common errors that could exist in the configuration of
third-party applications for OTP generation, for example,

unsuccessful access attempts when scanning Quick
Response (QR) codes or registering access Keys (Keys)

that use Time-based One-Time Password (TOTP)
M’Raihi et al. (2011) or HMAC-based One-Time

Password (HOTP) M’Raihi et al. (2005). Notably,
Reese et al. (2019) highlighted people’s familiarity with

Short Message Service (SMS) authentication due to its
ease of use. However, this can lead to security issues as

text messages can be intercepted or redirected or
delivery delays can occur.

According to Shukla et al. (2019) OTP solutions are
essential in two Factor Authentication (2FA) process, but

threats from client side (such as phishing attacks or device
manipulation) and server side (brute force attacks or code

interception) highlight the need for additional measures.

Mobile devices play an important role in exchanging

information and accessing applications through 2FA and

OTP based authentication. Sending SMS is one of the most

commonly used methods for two-factor authentication.

Users register their mobile number and receive SMS during

the system authentication process Ali et al. (2020),

however, it is possible that this method faces security

problems immersed in the roaming of each country or in

the visibility of the code on the phone or in SIM

identification theft or problems associated with loss or

non-delivery of messages Bruzgiene and Jurgilas (2021).
Reese et al. (2019); Tirfe and Anand (2022); Yin et al.

(2020) mentioned that the choice of OTP generation

method depends on many factors, such as security level,
ease of implementation, cost, portability and ease of use.

The most common thing today for 2FA authentication is
to use a smartphone, either by sending the code via SMS

Matelski (2022) or by using specific mobile applications
that generate codes or receive notifications for successful

authentication in 2FA Reese et al. (2019). Clear examples
of mobile applications to generate one-time passwords are

google authenticator, microsoft authenticator and
FreeOTP. These applications implement the Time-based

OTP (TOTP) M’Raihi et al. (2011) and HMAC-based

Oscar Efrén Acosta Mayorga and Sang Guun Yoo / Journal of Computer Science 2025, 21 (5): 1099.1112

DOI: 10.3844/jcssp.2025.1099.1112

1101

OTP (HOTP) M’Raihi et al. (2005) algorithms to generate
OTP codes offline, thereby minimizing exposure to

spoofing attacks Ozkan and Bicakci (2020).

Email is commonly one of the many methods in which

OTP is delivered. A dynamically generated code is sent to

the address that the user has registered or linked in the

system. Bruzgiene and Jurgilas (2021). This method’s

security can be compromised if an unauthorized third

party has access to the user’s email account. In Addition,

should be considered for codes to be delayed by sending

them to an email address or the possibility of messages

being classified as spam, which affects user experience

and authentication effectiveness Ma et al. (2019).

OTP passwords are generated using different

algorithms, one of them is time-based which generates

a code that changes periodically Time-based One-Time

Password (TOTP) M’Raihi et al. (2011) and another

based on the security algorithm Hash HMAC-based

One-Time Password (HOTP) M’Raihi et al. (2005).

However, both HOTP and TOTP process require that

the client and server must share a secret key, which can

create security risks if the server is compromised. Yin et al.

(2020). Despite this, it is one of the methods that, due

to its non-connection dependency characteristic,

strengthens and stands out compared to other methods

Reese et al. (2019).

The unique time-based codes delivery is subject to

external factors such as network coverage for text

messages and calls and internet connectivity for email or

messaging applications. If the user lacks any of these

resources the code will not reach to user’s device,

resulting in the inability to login and verify identity, in this

regard, the HOTP method provides a more flexible option

for users who want to verify their identity, as they are not

restricted by time and can enter the code at any time

Lumburovska et al. (2021).

Similarly, there are other physical 2FA mechanisms for

authentication or transactionality, one of them is to use

tokens such as a USB device or a key object, bank card or

smart card, even biometric solutions are used as alternatives

to reinforce security, they are not widely used since they

require an acquisition cost Binbeshr et al. (2023).

In short, password less authentication (SFA) methods

need to do more strengthen user identity as the

cyberattacks increasingly target easily accessible systems

Matelski (2022). From this perspective, OTP codes

provide an additional security layer by generating

temporary unique values that are used only once in the

transaction, these codes have various generation methods

as indicated in Table (1).

Concerning the OTP generation methods, it is

concluded that time-based methods are the most common,

they occupy a shared key or token, they are easy to

implement and use, some methods are based on

mathematical algorithms, they are more secure, but more

complex. To implement, other methods are based on

hardware and the OTP is generated from the physical

device using a mathematical algorithm or a hash function,

however the problem with these lies in the cost.

Regarding the delivery method of OTP codes, it can

be concluded that SMS is a fast delivery method, the

drawback is that the passwords sent by this means can be

intercepted or not have the reliability of delivery due to

conditions of the telephone network, in addition include

shipping costs which is reflected in an increase in

expenses. Email is the most common delivery method, but

it can take a while to arrive, making it a problem if the

user needs to authenticate quickly. OTP mobile

applications are a secure and convenient way to deliver

passwords, these are generated on the user’s device,

which makes them more difficult to be intercepted,

however, they require a secret key that can be identified if

the server is engaged.

Table 1: OTP generation methods

Method Description Reference

HMAC-based One Time
Password (HOTP)

This uses a hash value and a counter that is incremented
each time a password is generated

Reese et al. (2019); Ali and Ismail (2018);
M’Raihi et al. (2005); Bruzgiene and Jurgilas

(2021); Yin et al. (2020); Lumburovska et al.
(2021)

Time-based One-Time
Password (TOTP)

Uses time, along with a counter, to generate a password Reese et al. (2019); Ali and Ismail (2018);
M’Raihi et al. (2011); Bruzgiene and Jurgilas

(2021); Yin et al. (2020); Lumburovska et al.
(2021)

Physically Unclonable

Functions (PUF)

Generates unique keys based on physical

characteristics of hardware devices

Uysal and Akgun (2023)

Merkle tree-based One-
Time Password (MOTP)

Generate passwords based on Merkle tree structures Yin et al. (2020)

Genetic algorithm Generates passwords based on evolution and
randomness from an initial population

Ali and Ismail (2018)

Oscar Efrén Acosta Mayorga and Sang Guun Yoo / Journal of Computer Science 2025, 21 (5): 1099.1112

DOI: 10.3844/jcssp.2025.1099.1112

1102

Implementation of 2FA is becoming more common

across platforms. Although there are various works and

applications to implement two-Factor Authentication

(2FA) systems using OTP codes, the creation of real

cases of this type can promote competition and

innovation due to the simplicity and usability of user

authentication and learning opportunities, therefore, this

study helps to be familiar with the concepts and practical

implementation of 2FA systems with OTP codes, allows

us to be updated on real-world security challenges, in

addition, by acquiring new skills and capabilities in

understanding 2FA with OTP codes for authentication

improves user security awareness. In this study, HOTP

and TOTP are used as OTP generation methods and as

OTP delivery methods the email, third-party mobile

applications and a custom mobile application associated

to the user account, all of this in a real-life case focused

on 2FA user authentication.

Materials and Methods

The methodology considered for this study is based on

Iterative and Incremental Development (DII) that allows

constant evolution through short development cycles

Solano-Fernández and Porras-Alfaro (2020), allowing

constant adaptation to new requirements and continuous

improvement of the product. This approach allowed the

project to be divided into short iterations, each focused on

developing a specific set of functionalities. In each

iteration, the following activities were performed:

Planning, design, development, testing and evaluation. At

the end of each iteration, an increment of the product was

obtained, which was evaluated to obtain feedback and

make necessary improvements.

The study is divided into small iterations. In each

cycle, a functional version with new features or

improvements is delivered. Between each iteration, the

results are analyzed, comments are collected as a

development guide for the next iteration. Different parts

of the software are integrated and tested continuously

Yacelga et al. (2021). Figure (1) indicates the phases of

this methodology applied in this study.

The Iterative and Incremental Development (IID)

approach applicable to this study consists of the following

phases. In a first phase, security requirements, one-time

password generation methods and transport or delivery

protocols are analyzed. The goal of the sec phase is to

establish the infrastructure of the OTP system, including

the selection of OTP generation algorithms, database

structure and verification logic for OTP codes. In the third

iteration, the development phase focuses on implementing

the OTP software, creating the core functionality to

securely generate, send and verify one-time passwords.

Finally, in the fourth iteration, the OTP application is

refined through security and usability testing,

incorporating feedback to improve the user experience

and ensure the robustness of the system.
It is worth mentioning that each phase is accompanied

by deliverables according to requirements known as

increments, which allows for continuous feedback and

improvement as indicated in Fig. (2). The application of

this methodology solves the correction of errors in case

they exist, resulting in successful authentication to

advance to the next increment.

Proposed Solution

Based on what was indicated in the previous section,

the solution proposal includes incremental phases that

help meet the objective of this study. It should be noted

that before carrying out the phases, it is important to

define the architecture of the system, which ranges from

the user’s interaction with the specific authentication

system, where a token associated with their account is

enabled and generated for later use on the mobile device

or delivered via email depending on whether HOTP or

TOTP method is used, to the interaction with the OTP
code entry on the host system for successful authorization.

The general architecture of the solution is presented in

the diagram in Fig. (3), where the process flow is reflected

with 5 steps described below. However, this architecture

can present vulnerabilities if the appropriate measures are

not implemented. Therefore, in this proposal for the

interaction between backend and frontend, SSL

certificates and request control limits have been

incorporated to optimize the user experience and facilitate

the integration of the processes of generation, sending and

validation of OTP codes.

Fig. 1: Phases-incremental and iterative development methodology

Fig. 2: Increments and phases-iterative and incremental

development methodology

Oscar Efrén Acosta Mayorga and Sang Guun Yoo / Journal of Computer Science 2025, 21 (5): 1099.1112

DOI: 10.3844/jcssp.2025.1099.1112

1103

Fig. 3: General architecture-OTP solution for 2FA authentication

Login and 2FA Setup

The user logs into the host system using common
credentials (username and password). Once recognized

this activates two-factor authentication When 2FA is

activated, the user must choose the OTP delivery method,

either email or mobile app.

For mobile applications that generate temporary

access codes, the host system provides a unique identifier

in two formats: A QR image and a string code of letters

and numbers. The mobile application facilitates reading

the QR code or allows the registration of the string

sequence, subsequently generating the OTP code based on

the provided data. Among the mobile applications that

stand out according to a comparative analysis carried out

based on the last 5 years in google trends for OTP

authenticator apps, google authenticator, microsoft

authenticator and FreeOTP stand out. These are

applications from well-known companies in the

technology sector, such as Google, Microsoft and Red

Hat, they are free and adhere to the RFC 4226 and RFC

6238 standards M’Raihi et al. (2005; 2011).

OTP Code Generation

As a dynamic code generation method, both HMAC-

based One Time Password (HOTP) and Time-based One

Time Password (TOTP) are used. This selection is based

on the literature review whose results are summarized in

Table (1) and also because they are RFC document

standards M’Raihi et al. (2005; 2011) defined by the

IETF. HOTP and TOTP are authentication protocols that

provide a high level of security by generating one-time

passwords using a secret key linked with the user account

and a cryptographic algorithm, such as SHA-1, SHA-256

or SHA-512.

For HOTP, a counter is used that increments by one

with each new validated code, the delivery is carried out

by email when the system validates the user credentials

provided during logging phase. In contrast, TOTP uses the

current time in sec as the time value to generate the unique

code which is provided by the mobile application.

In both cases, libraries that implement standards from

M’Raihi et al. (2005; 2011) were used.

Mobile App Linking

The user installs the 2FA verification mobile

application on their smartphone. The mobile application

asks the user for their credentials to validate it. Once they

have access to the app, they must examine the QR code

generated in step 1 or they are asked to manually enter the

encoded text string. The mobile app links the user account

to the token and preserves the access identifier securely.

Once the mobile application is added, the app has the

possibility of generating codes that have a limited

duration and are usable only once. Using the application

usually generates new OTP codes automatically and

shows them to the user on a clear and easy-to-use screen.

Authentication with OTP Code

When the user needs to identify themselves in the host

system, in addition to their username and password, they

have to enter the OTP code delivered by email or

generated from the mobile app.

Validation and Verification

The host system ensures the reliability of user

identification by comparing the entered username and

password with those stored in the database, ensuring that

the OTP number provided is correct, has not expired and

matches the one generated for the user and the access

token. If the validation is successful, the host system gives

the user the opportunity to transact on it, otherwise, the

system displays an error message and prevents access.

Table 2: OTP delivery methods

Method Description Reference

SMS The password is sent by SMS to the device linked
to the user

Marmolejo Corona et al. (2023); Reese et al. (2019); Ali and
Ismail (2018); Bruzgiene and Jurgilas (2021); Ma et al.
(2019); Raddum et al. (2010); Aparicio et al. (2024)

Email The access password is sent by email to the user Reese et al. (2019); Ali and Ismail (2018); Bruzgiene and
Jurgilas (2021); Ma et al. (2019)

Mobile app The access code is generated in the user’s mobile
application

Reese et al. (2019); Ma et al. (2019); Lumburovska et al.
(2021); Raddum et al. (2010); Papaspirou et al. (2023)

Hardware device The password is generated on a physical device in

the user’s possession

Williamson and Curran (2021); Reese et al. (2019);

Lumburovska et al. (2021); Bruzgiene and Jurgilas (2021)

Oscar Efrén Acosta Mayorga and Sang Guun Yoo / Journal of Computer Science 2025, 21 (5): 1099.1112

DOI: 10.3844/jcssp.2025.1099.1112

1104

Fig. 4: OTP code generation and delivery service

Thanks to the overall system architecture, each
increment addresses specific functionalities that
progressively strengthen system security, the objective in
first increment was to rely on HMAC to generate the OTP

with an email delivery method, however, phishing attacks,
email account compromise, delivery delays, interception
with sniffing tools and automated attacks to decrypt sent
codes, make it necessary to look for more secure and
robust alternatives such as time-based OTP, so in the
second and third increments, the analysis, design,
development and testing is carried out with TOTP, that is,
time-based OTP and a custom mobile application is also
defined to generate the OTP code and interact with the
host system. This modular approach enables iterative
validation and controlled deployment of each component
within an operational environment. Figure (4) provides a

visual representation of the relationship between the OTP
generation process and the delivery methods adopted in
each development phase.

First Increment

Analysis

By having an authentication system using username

and password, it is necessary to enable two-factor
authentication, for which, the main requirement is to send
a unique code to the user email account. The system must
generate unique 6-digit OTP passwords based on HTOP

for each user at the time of authentication, they must be
sent by email, subsequently the system must request and
validate the OTP codes entered by the user and finally the

system must register authentication activities including
date, time and access location.

Design

In the web interface, 2FA authentication enables with
email sending option, then in each login entry an OTP
code must be provided in addition to the username and

password. In the authentication process, the service that is
running on the application server obtains the request to
generate the OTP code using HMAC with a one-way

encryption hash, it must store the token and the counter in
the database and must send the code to the email address
associated with the user’s account. The process to generate
the unique 6-digit code with HOTP involves receiving a

counter and the secret key or token. Each time the user
generates a new request; the counter is incremented by 1.
The token and the counter are validated on the server so that

match the request, as described in Fig. (5).

Fig. 5: HOTP authentication

Development

The development is based on the previously carried

out design, uses the technology stack of a PostgreSQL

Database, Backend services through JAVA EE running on

a Wild-fly application server and PHP MVC running on

an Apache Web Server. The service responsible for

generating, delivering and validating the OTP code is

developed using the Java programming language, it

utilizes the jotp library which implements HMAC-based

and Time-based algorithms Delamar (2020), this service

communicates with PostgreSQL database to store

information and allows information exchanges through a

RESTful API.

Using the secret key and counter, an HMAC is

generated which is then truncated to produce a 6-digit

numeric code. The generated OTP code is sent to user

email address, the user enters the received OTP code, the

server compares the received OTP code with the

internally generated values. If they match, the counter is

updated and the authentication is successful. In case of

discrepancies, the server may attempt to synchronize the

counter up to a certain limit before returning an error

message. Both the user and the authentication server must

maintain the same counter value. Each authentication
attempt increments the counter on both sides.

Testing

This section analyzes the performance of the OTP

generation method, which is of utmost importance, since

server load, network latency and the complexity of the

OTP generation algorithm can affect the user experience.

It is important to ensure that the HOTP-based mechanism

is a fast method in the authentication process. The test

uses the server-side System.currentTimeMillis()

statement as a basis for recording execution times and

measuring the performance of the HOTP algorithm.

The test were repeated multiples times simulating

different points of authentication such as, windows, web

and mobile applications and the average times were

recorded to get the best estimate of the system. Tools such

as Apache JMeter, Postman and BurpSuite, contributed to

sending data in the authentication process and thus measure

the generation time of the OTP code based on HMAC.

Oscar Efrén Acosta Mayorga and Sang Guun Yoo / Journal of Computer Science 2025, 21 (5): 1099.1112

DOI: 10.3844/jcssp.2025.1099.1112

1105

Table 3: Average HOTP code generation times

Interaction OTP Generation time [ms]

1 224

2 35

3 25

4 26

5 84

6 47

7 34

8 26

9 23

10 17

Average 54.1

The loading periods were defined as the time required
to generate an OTP code. To obtain a more accurate
estimate of the system’s performance, the average
generation times were recorded as shown in Table (3). The
tests were performed in a controlled concurrent
environment with 100 users interacting 10 times
simultaneously; the spawned threads typically have higher
times in the first iteration, but when they are reused after
completing the OTP code generation, their times decrease
significantly. It is worth mentioning that some threads are
not reused, so the average time tends to increase in

subsequent interactions, as shown in repetition 5.

Second Increment Analysis

Integration with cross-platform mobile applications
that implement one-time passwords becomes an effective
way to interact with 2FA. The apps generate HOTP codes

based on HMAC and TOTP based on time, in addition,
they implement QR code reading that facilitates the link
of the user account through a shared secret and they work
offline, which guarantees continuity of access even in
environments with limited or no connectivity. Although

the delivery of codes by email was a security standard, it
has become obsolete given the sophistication of current
cyber threats, which is why authentication based on
modern applications to guarantee the security of its users
arises as a requirement in this increase.

These results demonstrate the efficiency and

scalability of the HMAC algorithm in concurrent

environments, making it ideal for use as a method for 2FA

authentication. The process flow, as well as the result of

this increase can be visualized in Fig. (6).

The requirement for this solution must include 2FA

using free applications such as Google Authenticator or

Microsoft Authenticator or FreeOTP since they provide a

high level of trust and support as they are developed and

maintained by recognized entities in the technology sector.

In addition, economic barriers must be eliminated without

additional costs and be accessible from multiple platforms.

Design

The system architecture allows new services to be

generated with access token information or QR codes to

be read in the mobile app. The server is designed to handle

authentication process in both generation and validation
requests using a RESTful API with PHP MVC interface.

On the client side, when viewing the QR code or token

through a web form, the Google Authenticator or

Microsoft Authenticator or FreeOTP application is used

for scans the data and stores the shared secret. Once the

user account is linked, depending on whether HOTP or

TOTP was chosen as the generation algorithm, from the

mobile app generates temporary access codes to be

entered together with the username and password in the

web interface. The backend validating the credentials and

code and either grants or denies access to transact in the

host system. The design of the transactionality and
fluidity of the process can be seen in Fig. (7).

Fig. 6: Flow-results increment 1

Oscar Efrén Acosta Mayorga and Sang Guun Yoo / Journal of Computer Science 2025, 21 (5): 1099.1112

DOI: 10.3844/jcssp.2025.1099.1112

1106

Development

Interfaces are implemented to display tokens and QR

images linked to REST services running on an application

server, the google AUTH library is used to generate the

shared secret to be saved in the database and using the

zxing library, an image is generated in Base64 format,

which contains the QR code based on HOTP or TOTP to

be scanned by the Google Authenticator or Microsoft or

FreeOTP Authenticator mobile application.

The generated QR uses otpauth format like

otpauth://type/label?parameters as mention in Google

(2024); Hoffman (2011) where type indicates the type of

OTP, either HOTP or TOTP, the label represents a user

account identifier and parameters contains the issuer and

the secret key as a base. The applications are designed to

read and identify the standard to be generated.

In the authentication process, after validating the user

credentials, the OTP code must be provided, which

according to the generation method is carried out from the

mobile application; On the server, it is validated that the

code corresponds and is not expired. If it is correct, access

is given to transact in the system. Otherwise, there are

options to cancel or re-enter the OTP code.

Testing

Unit tests were carried out for the generation of tokens

and QR images, generation times were tested with

multiple users at the same time. Integration tests were

carried out to verify the complete 2FA Authentication
Flow, here communication errors between components

were detected and corrected, which guaranteed a fluid and

correct interaction as in Fig. (8).

Mobile applications such as Google Authenticator and

Microsoft Authenticator and FreeOTP executed on

Android and iOS platform were used to generate OTP

codes, which were entered in the authentication process

and were successfully validated. Users installed and
associated their accounts with these free mobile

applications. Security tests where focused on identifying

and mitigating vulnerabilities in the system with sensitive

information when generating the QR code.

Third Increment Analysis

The data flow by having a mobile application that

generates OTP codes for successful authentication and

linked to the user account and mentioned in the previous

increments, is presented as an essential requirement of this
phase. However, the functionality of the solution was

heavily dependent on third-party applications, which

could introduce vulnerabilities or changes in the policies

of the developing companies.

Design

Thanks to the previous increments, it is possible to

reuse the backend architecture and add new features for

enabling 2FA and authentication via OTP codes. A

fundamental part is the URI format of the QR code, whose
components are explained in Table (4). From the mobile

application, when reading the QR image, account data

linked with the shared secret is stored in the device’s local

SQLite database to subsequently generate the OTP code

for authentication in host system.

Fig. 7: OTP authenticator app

Fig. 8: Flow-results increment 2

Oscar Efrén Acosta Mayorga and Sang Guun Yoo / Journal of Computer Science 2025, 21 (5): 1099.1112

DOI: 10.3844/jcssp.2025.1099.1112

1107

Table 4: QR code URI components

Component Description

Scheme OTP URI scheme

Type OTP type, can be HOTP or TOTP

Label Identifier composed of the issuer and account
name

Secret Secret key in Base32 format

Issuer Provider name or service name

Algorithm Hash algorithm SHA1, SHA256 or SHA512.
(Optional, default SHA1)

Digits Number of digits in the OTP code, can be 6 or 8.
(Optional, default is 6)

Counter HOTP initial counter

Period OTP code generation time. (for TOTP only,
default 30 sec)

The design mockups in the mobile application are

given by Fig. (9), where the user interface is clear and

simple when linking accounts by scanning QR codes or

registering tokens, every time the user enters the account

the current OTP code is presented to be linked to the

authentication system.

By having user stories where the actors involved in

this process interact with the host system, customized

communication flows are defined for each use case:

Login, enabling 2FA, linking the mobile application,

generating OTP codes and authentication with OTP

code. The mobile application reads QR codes

according to the otpauth format in Google (2024);

Hoffman (2011), in which the type is identified for the

generation of OTP either through HOTP or TOTP,

stores encrypted information locally and is accessible

through passcode, it was developed in Flutter with a

focus on the Android system.

Development

Considering the overall process flow for successful

authentication, new options were developed in the host

system with 2FA enablement and integration to the

mobile application. The user requests in the web interface

running on a Nginx server linked to local services

developed using Jakarta REST that their account has

support for two-factor authentication, selects the type of

code to validate based on counter or based on time and

generates the QR code together with a token or secret in

Base32, the considerations for the QR code are based on

Table (4) while the options for registering the token are

defined in the mobile application. The programming

languages used up to this point at the backend and

frontend level for web with client-server architecture are

Java, Php and JavaScript, including the Laravel and Vue

as frameworks.

The mobile application was developed in Flutter

focused on the Android platform, it has a local SQLite

database and maintains connection with RESTful

services. It maintains a security layer to access and

generate new OTP codes. The user scans the generated

QR code and the application stores the associated account

in its database, the display of the temporary access code

is presented on a screen according to the selected account.

Fig. 9: Mobile app

Oscar Efrén Acosta Mayorga and Sang Guun Yoo / Journal of Computer Science 2025, 21 (5): 1099.1112

DOI: 10.3844/jcssp.2025.1099.1112

1108

Table 5: Tests-owasp mobile top 10 2024 Foundation (2024a-b)

Risk Test Resource State

M1: Weak server-side
controls

Lack of authentication and authorization controls
on the server

Burp suite Low

M2: Insecure data storage Absence of resource protection in local device
storage

Mobile security framework, SQlite
database browser

Medium

M3: Insufficient transport
layer protection

No network encryption and communications using
HTTPS certificates

Burp suite, wireshark Low

M4: Unintended data

leakage

Incorrect handling of static data in code Mobile security framework,

SonarQube

Low

M5: Poor authorization
and authentication

Scarcity of authentication and access authorization
mechanisms for the application

Mobile security framework Low

M6: Broken cryptography Nonexistence of cryptographic algorithms Mobile security framework Low

M7: Client-side injection Inadequate SQL injection protection Flutter packages Low

M8: Security decisions via

untrusted inputs

Insufficient validation of user inputs Mobile security framework,

SonarQube

Low

M9: improper session
handling

No session tokens Mobile security framework Medium

M10: Lack of binary
protections

Deficiency in code obfuscation Flutter Low

Testing

For this increment, two types of base tests were carried

out, one applied to the security of the mobile application

and another aimed at the functionality and effectiveness
of the 2FA authentication process through the

participation of a group of users with existing accounts in

the host system:

1. Both static and dynamic analysis were performed to

ensure the protection of sensitive data and its integrity

in transactionality, carrying out tests of the mobile

application according to Owasp Mobile top 10 update

2024 Foundation (2024a), These tests have 10 critical

points that ensure compliance with best practices and

security standards. Table (5) shows the OWASP

Mobile Top 10 2024 points, the approach of the tests

carried out, the resources used and the results

obtained, considering the OWASP Risk Rating

Methodology Foundation (2024b), where the value is

low if it is less than 3 (Low), medium if it is less than

6 (Medium), high if it is less than 9 (High) and critical

if it is 10 (Critical)

2. Referring to the current process of adding 2FA

authentication, according to the user stories in the

analysis section, there are 44 users (teachers) with

specific profiles in the existing system who need to

interact with sensitive information and use OTP

codes to access them. These users with an average

age range of 42 years, with a minimum level of

university education, 80% were unaware of the 2FA

authentication method and of these, 90% were

unaware of the name of one-time codes (OTP),

however, they have used it in other access methods

Results and Discussion

Each increment was focused on overcoming the

security drawbacks of the previous one, following an

iterative and continuous improvement approach in a

successful authentication. Throughout the different

iterations, a continuous improvement in the functionality

and security of the application is observed. It was detected

that the DII methodology allowed greater flexibility and

adaptability to the requirements of each stage.

In the first iteration, a simple enable and use

functionality was implemented with generation of codes

based on HMAC and delivery by email, increasing the

protection of unauthorized access to the application. This
method is easy to configure for users who want to increase

security in a simple and fast way to their authentication.

While this solution allows us to introduce a basic level of

additional security to traditional credentials, there are still

some glaring vulnerabilities. Delays in email delivery due

to external factors, such as mail server congestion or

network issues, impact the user experience. Additionally,

the risk of email interception and the possibility of

messages being filtered as spam reduce the reliability of

the system. These issues highlighted the need for more

robust, real-time solutions and prompted the search for
alternatives in the second increment.

The first increase reflects user usability because it is

simple and easy to configure and use, compared to generic

email-based 2FA implementations, this increment

incorporates customized token lifetimes and centralized

server-side validation, reducing exposure to token reuse

and phishing vectors, the sec increase reflects that users

prefer multiplatform and zero-cost apps, they have no

delays in code delivery, they work offline and are more

secure when generating the code since it changes from

Oscar Efrén Acosta Mayorga and Sang Guun Yoo / Journal of Computer Science 2025, 21 (5): 1099.1112

DOI: 10.3844/jcssp.2025.1099.1112

1109

time to time which makes it less prone to brute force

attacks, this approach decouples token generation from

any vendor-specific cloud infrastructure, improving both
privacy and interoperability additional, the server module

is extended to validate HOTP or TOTP tokens against

synchronized time windows, enhancing security

boundaries without modifying the client’s authentication

workflow. However, the features offered by these apps do

not satisfy the needs of users to manipulate data in

transactions subsequent to authentication. Table (6)

presented, highlights the advantages of a custom solution

over free 2FA Apps. While free tools such as Google

Authenticator, Microsoft Authenticator and FreeOTP

offer a fast and affordable solution, they lack the
flexibility, security and customization that larger

organizations or those with specific security requirements

need. This increment provides full control over token

generation behavior, logging, and error handling routines,

allowing fine-tuned integration with internal identity

management systems. A custom application not only

provides greater control over security and user

experience, but also allows for integration and scalability

that is much more aligned with business demands.

In response to the observed limitations, the sec

increment, images in QR format are generated containing

a shared secret which are read by free multi-platform
mobile applications, by generating authentication codes

directly on the user’s device, these apps reduced the delay

issues and security vulnerabilities associated with sending

codes via email. However, new challenges arose, such as

reliance on third-party apps, which, while reliable, do not

provide direct control over security or user experience. In

addition, managing compromised accounts and devices is

difficult, as the apps did not provide an easy way to revoke

access.

Finally, in the third iteration, a proprietary, adaptable

and customizable mobile application was implemented

that has access to system accounts and allows adding

external accounts based on the Google (2024); Hoffman

(2011) standards, the data control and deletion from the
host system improves with respect to other mobile apps of

the second increment.

Adding 2FA authentication with OTP codes provides

additional security mechanisms, based on the analysis of

Tables (1-2), the system supports both counter and time

generation, has delivery methods by email or through

multiplatform mobile applications, both online and offline

and a free custom-made app.

Two-Factor Authentication (2FA) processes are

implemented in several stages to enhance system security

and significantly reduce the risk of unauthorized access.
The modularity of the approach ensures that each phase

can be independently evaluated and optimized, enabling

continuous improvement and refinement of the

authentication process. Initially, the user enters his or her

credentials, which are verified by the host system. Once

these credentials are verified, an OTP code is generated

using two possible methods: HOTP using an incremental

counter or TOTP based on time. HOTP sends the code to

the user’s email, while TOTP generates it on the mobile

app by a shared secret. The user receives this code and

enters it into the system to continue with the

authentication. The system verifies the OTP code; if it is
correct and up to date, access is granted. This process

ensures that only authenticated users have access by

combining the information that user knows (credentials)

and the information they have (OTP). Implementing 2FA

via HOTP, TOTP along with a trusted verification

architecture not only improves transaction security and

data integrity, but also achieves continuous and adaptive

system improvement through iterative development in a

successful authentication. Table (7) shows technical

values for HOTP and TOTP that were successfully used

in the OTP solution process flow for 2FA authentication.

Table 6: Comparison matrix: Free 2FA mobile apps vs custom app

3 Free 2FA apps (Google Authenticator,
Microsoft Authenticator, FreeOTP)

Custom 2FA app

Flexibility and control With no control over development or
customization. They only allow the
generation of OTP

Complete control over design, functionality, and
security. Customizable to fit specific needs

User experience Standard interface for all users, no
customization option. Functionality limited to
OTP generation

Fully customizable interface. Enhance the
experience with notifications, deep integration

Support and maintenance They depend on updates from third-party
developers. No control over the release
schedule or features

Control over technical support, maintenance and
updates. Rapid response to problems and
vulnerabilities

Scalability and adaptability Scalable, but not tailored to specific
requirements. Fixed functionalities

Highly scalable and adaptable to new
requirements. Support for new authentication

factors as needed

Implementation and maintenance Free or low-cost, without customization or
control options

Custom development, it results in a more robust
and adaptable solution

Oscar Efrén Acosta Mayorga and Sang Guun Yoo / Journal of Computer Science 2025, 21 (5): 1099.1112

DOI: 10.3844/jcssp.2025.1099.1112

1110

Table 7: HTO and TOTP analysis

Criteria HOTP TOTP

RFC RFC 4226 RFC 6238

Generation HMAC with a counter value as initializer HMAC with time as initialization parameter

Connection Purely online process No connection required

Synchrony Same counter between server and client Same time between server and client

Validity Codes do not expire until used Codes are generated at certain intervals of time

Use Easy to use, event-based More secure with time generated codes

Table 8: Results-OTP generation and delivery method

Generation Delivery Users %

HOTP Email 21 48

HOTP, TOTP Free app 16 36

HOTP, TOTP Own app 7 16

 Total 44 100

Functional testing applied at each increment along

with security and usability testing in which users

initiate the authentication and 2FA enablement process

provide a successful flow in the generation, delivery

and validation of OTP codes. The security and

reliability of using a time-based temporary code

generator is improved compared to the event-based

method, although the HOTP-generated email delivery

method improves user acceptability as it is simple and

does not require interaction with third parties,

communication is entirely dependent on external

servers, which makes access difficult and slow.

Additionally, acceptance tests were carried out to

identify the most used and enabled method according to

the complete development of the system. The results are

shown in Table (8), where it is concluded that 48% of

users prefer the OTP code delivery method via email due

to its simplicity in configuring authentication options for

2FA. Meanwhile, 36% use valid applications

implemented in official stores from recognized providers

to save and generate the time-based access code. This is

because they prefer free apps over paid ones, and these

apps are available on multiple platforms. Only 16% use

their own app. The variation in percentages is influenced

by the trade-off between security and usability, where

multi-factor authentication, complex passwords or access

restrictions make the system more secure, but often at the

cost of a less fluid or more complicated user experience.

The results highlight the architectural, algorithmic,

and operational distinctions inherent to each OTP method,

underscoring how their selection can be aligned with

specific system requirements, delivery constraints, user

interaction models, and authentication workflows. This

analysis informs the design and implementation of

adaptive and context-aware authentication mechanisms

by exposing implementation-level considerations relevant

to developers, security engineers, and system architects

operating in diverse deployment environments.

Conclusion

Based on the literature review, the study of the two

Factor Authentication process 2FA that was put into

practice provides several important findings about the

security and efficiency of this authentication method. By

requiring a second authentication factor such as an OTP

code sent via email or generated by a mobile app, the risk

of unauthorized access is significantly reduced even if the

user’s credentials have been compromised.

On the client side, phishing attacks remain a common

threat, where attackers trick users into entering their OTP

codes on fraudulent sites. On the server, incorrect time

synchronization between the client and the server can

allow replay attacks, where old code can be reused if not

handled properly.

Common methods such as HMAC-OTP (HOTP) and

Time-based OTP (TOTP) are used to generate temporary

passcodes. HMAC-OTP (HOTP) uses a counter that

increments with each new authentication code. This

method is implemented using SHA -256 and sent via

email, ensuring that each code is unique and can only be

used once. However, its reliance on counter and email

delivery can lead to delays and potential timing issues.

Time-based OTP (TOTP) generates the OTP code with

the current time as the value. Implementing TOTP

through mobile applications provides greater flexibility

and speed in code delivery.

Using a QR code represented by a common URI

format, the apps simplify the process of setting up and

using 2FA. In addition, the clear and user-friendly

interface of the mobile app allows you to use OTP codes

easily and efficiently.

The existing system architecture ensures reliable

verification of OTP credentials and codes. By verifying

that the OTP has not expired and matches the OTP

generated for a specific user, the system ensures user

authenticity and prevents unauthorized access. This

Oscar Efrén Acosta Mayorga and Sang Guun Yoo / Journal of Computer Science 2025, 21 (5): 1099.1112

DOI: 10.3844/jcssp.2025.1099.1112

1111

enables secure transactions and reduces the risk of fraud

and identity theft.

Iterative development and continuous improvement for

incremental approaches in systems development enable

continuous and adaptive improvement. The first increment

focused on implementing HOTP via email, while

subsequent increments focused on TOTP with mobile

applications. While the implementation helps improve key

security aspects, continuous education and training of users

are also essential. Guidance and support must be provided

to ensure proper configuration and use of 2FA.

Ongoing user education and training is critical to

ensuring that 2FA is configured and used correctly,

thereby maximizing its effectiveness and minimizing

issues that can arise due to misuse or lack of knowledge.

Acknowledgment

We sincerely thank the Centro de Posgrados, Pontificia

Universidad Católica del Ecuador Sede Ambato, Ambato,

Ecuador, for the academic opportunity in a higher master

degree level as well as the services provided.

We appreciate the efforts of the editorial team in

reviewing and editing our study and we are grateful for

providing the resources and platform necessary to share

our findings with a wider audience through this

publication. We believe that our One Time Password

(OTP) solution offers an important advance in the

security of electronic transactions and the protection of

online information.

Funding Information

This study was conducted without external financial

support. No grants, institutional funding, or third-party

financial contributions were received for the conception,

execution, or publication of this manuscript.

Author’s Contributions

Oscar Efrén Acosta Mayorga: Responsible for the

research and development of this article, including

designing, implementing and testing the software used in

the study. Conducted a comprehensive review of the

relevant literature. Wrote the full manuscript, responsible

for the integration of findings and preparation of the study

for submission and review.

Sang Guun Yoo: Supervisor of the entire research

project, expert strategic guidance throughout the process

as well as ensuring the technical quality of this study and

giving the final verdict on the suitability and accuracy of

the study performed.

The collaboration between both authors ensured the

quality and scientific rigor of the article.

Ethics

The authors confirms that the manuscript is original,

created by the authors, contains unpublished material, has

not been submitted elsewhere, accurately represents their

own research, is well-contextualized within existing

literature and there are no ethical issues involved.

References

Ali, A. N. M., & Ismail, M. M. (2018). Acquiring the

Clouds Using Otp. IJRCS - International Journal of

Research in Computer Science, 1(4), 15–17.

Ali, F. A. B. H., Hanza, M. Z. B. M., & Mohd Sukri, M.

A. B. (2020). Two Factor Authentication by Using

SMS for Web Based Application. International

Journal of Information Technology Infrastructure,

9(6), 21–24.

https://doi.org/10.30534/ijiti/2020/02962020
Aparicio, A., Martínez-González, M. M., & Cardeñoso-

Payo, V. (2024). App-Based Detection of Vulnerable

Implementations of OTP SMS APIs in the Banking

Sector. Wireless Networks, 30(7), 6451–6464.

https://doi.org/10.1007/s11276-023-03455-w

Binbeshr, F., Por, L. Y., Kiah, M. L. M., Zaidan, A. A.,

& Imam, M. (2023). Secure PIN-Entry Method

Using One-Time PIN (OTP). IEEE Access, 11,

18121–18133.

https://doi.org/10.1109/access.2023.3243114

Bruzgiene, R., & Jurgilas, K. (2021). Securing Remote

Access to Information Systems of Critical
Infrastructure Using Two-Factor Authentication.

Electronics, 10(15), 1819–1869.

https://doi.org/10.3390/electronics10151819

Delamar, A. (2020). Jotp -2fa Otp Utility in Java.

https://amdelamar.com/jotp/

Foundation, O. (2024a). Owasp Mobile Top 10 — Owasp

Foundation. https://owasp.org/www-project-mobile-

top10/

Foundation, O. (2024b). Owasp Risk Rating

Methodology.

https://owasp.org/wwwcommunity/OWASP Risk

Rating Methodology

Google. (2024). Key uri Format. GitHub Repository.

https://github.com/google/googleauthenticator/wiki/

Key-Uri-Format

Hoffman, P. E. (2011). Requirements for Internet-Draft

Tracking by the IETF Community in the Datatracker.

https://doi.org/10.17487/rfc6293

Kamau, J., & Mgala, M. (2022). A Review of Two Factor

Authentication Security Challenges in the

Cyberspace. International Journal of Advanced

Computer Technology, 11(5), 1–6.

Kirvan, P., Loshin, P., & Cobb, M. (2023). What is Two-

Factor Authentication (2fa)? Identity and Access

Management. https://authy.com/what-is-2fa/

https://doi.org/10.30534/ijiti/2020/02962020
https://doi.org/10.1007/s11276-023-03455-w
https://doi.org/10.1109/access.2023.3243114
https://doi.org/10.3390/electronics10151819
https://amdelamar.com/jotp/
https://owasp.org/www-project-mobile-top10/
https://owasp.org/www-project-mobile-top10/
https://owasp.org/wwwcommunity/OWASP
https://github.com/google/googleauthenticator/wiki/Key-Uri-Format
https://github.com/google/googleauthenticator/wiki/Key-Uri-Format
https://doi.org/10.17487/rfc6293
https://authy.com/what-is-2fa/

Oscar Efrén Acosta Mayorga and Sang Guun Yoo / Journal of Computer Science 2025, 21 (5): 1099.1112

DOI: 10.3844/jcssp.2025.1099.1112

1112

Lumburovska, L., Dobreva, J., Andonov, S., Trpcheska,

H. M., & Dimitrova, V. (2021). A Comparative

Analysis of Hotp and Totp Authentication

Algorithms. which One to Choose? Security and

Future, 5(4), 131–136.

M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., &

Ranen, O. (2005). HOTP: An HMAC-Based One-

Time Password Algorithm.

https://doi.org/10.17487/rfc4226

M’Raihi, D., Machani, S., Pei, M., & Rydell, J. (2011).

TOTP: Time-Based One-Time Password Algorithm.

https://doi.org/10.17487/rfc6238

Ma, S., Feng, R., Li, J., Liu, Y., Nepal, S., Diethelm,

Bertino, E., Deng, R. H., Ma, Z., & Jha, S. (2019). An

Empirical Study of SMS One-Time Password

Authentication in Android Apps. Proceedings of the

35th Annual Computer Security Applications

Conference, 339–354.

https://doi.org/10.1145/3359789.3359828

Mahdad, A. T., & Saxena, N. (2023). SoK: A

Comprehensive Evaluation of 2FA-Based Schemes

in the Face of Active Concurrent Attacks from User

Terminal. Proceedings of the 16th ACM Conference

on Security and Privacy in Wireless and Mobile

Networks, 175–186.

https://doi.org/10.1145/3558482.3590183

Marmolejo Corona, I. V., Serrano Manzano, G. A.,

Bautista Aguilar, F. A., & Santiago Gonzalez, Y. F.

(2023). Seguridad en Sistemas de Autenticación:

Análisis de Vulnerabilidades y Estrategias de

Mitigación. XIKUA Boletín Científico de La Escuela

Superior de Tlahuelilpan, 11(22), 39–43.

https://doi.org/10.29057/xikua.v11i22.10802

Matelski, S. (2022). Humancomputable Otp Generator as

an Alternative of the Two-Factor Authentication.

EICC ’22: Proceedings of the 2022 European

Interdisciplinary Cybersecurity Conference, 71–64.

https://doi.org/10.1145/3528580.353284

Ozkan, C., & Bicakci, K. (2020). Security Analysis of

Mobile Authenticator Applications. 2020

International Conference on Information Security

and Cryptology (ISCTURKEY), 18–30.

https://doi.org/10.1109/iscturkey51113.2020.9308020

Papaspirou, V., Papathanasaki, M., Maglaras, L.,

Kantzavelou, I., Douligeris, C., Ferrag, M. A., &

Janicke, H. (2023). A Novel Authentication Method

that Combines Honeytokens and Google

Authenticator. Information, 14(7), 386–423.

https://doi.org/10.3390/info14070386

Raddum, H., Nestås, L. H., & Hole, K. J. (2010). Security

Analysis of Mobile Phones Used as OTP Generators.

Information Security Theory and Practices. Security
and Privacy of Pervasive Systems and Smart Devices,

6033, 331–324.

https://doi.org/10.1007/978-3-642-12368-9_26

Reese, K., Smith, T., Dutson, J., Armknecht, J.,

Cameron, J., & Seamons, K. (2019). A Usability

Study of Five Twofactor Authentication Methods.

15th Symposium on Usable Privacy and Security

(SOUPS 2019, 357–370.

Shukla, V., Chaturvedi, A., & Srivastava, N. (2019). A

New One Time Password Mechanism for Client-

Server Applications. Journal of Discrete
Mathematical Sciences and Cryptography, 22(8),

1393–1406.

https://doi.org/10.1080/09720529.2019.1692447

Solano-Fernández, E., & Porras-Alfaro, D. (2020). El

Modelo Iterativo e Incremental Para el Desarrollo de

la Aplicación de Realidad Aumentada Amón_RA.

Revista Tecnología En Marcha, 33(8), 165–177.

https://doi.org/10.18845/tm.v33i8.5518

Tirfe, D., & Anand, V. K. (2022). A Survey on Trends of

Two-Factor Authentication. Contemporary Issues in

Communication, Cloud and Big Data Analytics, 281,

285–296.
https://doi.org/10.1007/978-981-16-4244-9_23

Uysal, E., & Akgün, M. (2023). P/Key: PUF Based

Second Factor Authentication. PLOS ONE, 18(2),

0280181.

https://doi.org/10.1371/journal.pone.0280181

Verma, S., Singh, M., Chaturvedi, K., & Tripathy, B. K.

(2023). An Efficient Multifactor Authentication

System. Computational Intelligence in Pattern

Recognition, 725, 109–122.

https://doi.org/10.1007/978-981-99-3734-9_10

Williamson, J., & Curran, K. (2021). The Role of Multi-
Factor Authentication for Modern Day Security.

Semiconductor Science and Information Devices,

3(1), 16–23. https://doi.org/10.30564/ssid.v3i1.3152

Yacelga, A. R. L., Espinoza, J. L. A., & Vásquez, R. A.

D. (2021). Aplicacion De La Metodolog ́́ıa

Incremental En el Desarrollo De Sistemas de

Informacion. .́

http://scielo.sld.cu/scielo.php?pid=s2218-

36202021000500175&script=sci_arttext, 13(5),

175–182.

Yin, X., He, J., Guo, Y., Han, D., Li, K.-C., & Castiglione,

A. (2020). An Efficient Two-Factor Authentication
Scheme Based on the Merkle Tree. Sensors, 20(20),

5735–5967. https://doi.org/10.3390/s20205735

https://doi.org/10.17487/rfc4226
https://doi.org/10.17487/rfc6238
https://doi.org/10.1145/3359789.3359828
https://doi.org/10.1145/3558482.3590183
https://doi.org/10.29057/xikua.v11i22.10802
https://doi.org/10.1145/3528580.353284
https://doi.org/10.1109/iscturkey51113.2020.9308020
https://doi.org/10.3390/info14070386
https://doi.org/10.1007/978-3-642-12368-9_26
https://doi.org/10.1080/09720529.2019.1692447
https://doi.org/10.18845/tm.v33i8.5518
https://doi.org/10.1007/978-981-16-4244-9_23
https://doi.org/10.1371/journal.pone.0280181
https://doi.org/10.1007/978-981-99-3734-9_10
https://doi.org/10.30564/ssid.v3i1.3152
http://scielo.sld.cu/Scielo.Php?Pid=S2218-36202021000500175&script=sci_arttext
http://scielo.sld.cu/Scielo.Php?Pid=S2218-36202021000500175&script=sci_arttext
https://doi.org/10.3390/s20205735

