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Abstract: This research paper proposes a conceptual framework and 

optimization algorithm for pruning techniques in deep learning models, its 

focus is on key challenges such as model size, computational efficiency, 

inference speed and sustainable technology development. The aim of the 

framework is to transition from large neural networks to sparse, efficient 

models, indicating the benefits of pruning in improving model scalability and 

applicability of the pruned models. The proposed framework focuses on 

reducing the model size, optimizing training schedules and facilitating 

efficient deployment in real-world devices. The development of the 

framework involves four stages: Reviewing critical research concepts, 

identifying relationships between concepts and designing the pruning 

framework. Furthermore, this study also introduces a new multi-objective 

optimization algorithm that formalizes the trade-offs between accuracy, 

computational cost, inference time and energy consumption in the pruning 

process. Our experiments demonstrate the method's effectiveness in 

achieving notable model compression while preserving competitive 

performance on a sentiment analysis and linguistic acceptability tasks using 

Stanford Sentiment Treebank (SST-2) and Corpus of Linguistic 

Acceptability (CoLA) datasets. The results of our experiments show the 

BERT Base model being pruned to 25 million parameters gaining an 

accuracy of 96.3% on SST-2 dataset and F1-score of 95.2%. Furthermore, 

the pruned model demonstrated F1 score of 82.3 and 56% of Matthews 

correlation coefficient in CoLA dataset respectively. This framework, along 

with the algorithm, serves as a reference for researchers and practitioners, 

who can select a suitable approach based on the specific application 

requirements for pruning deep learning models. 
 

Keywords: Deep Language Models, Pruning, Efficiency, Pretrained 

Language Models, Sustainable Technology Development 
 

Introduction 

Natural Language Processing (NLP) domain has 

experienced significant progress with the growth of large 

language models based on transformer architecture. These 

models such as Bidirectional Encoder Representation 

from the Transformers (BERT) by Devlin et al. (2019) 

and Generative Pre-trained Transformer (GPT) reported 

in a study by Yenduri et al. (2024) have shown 

outstanding performance on a wide range of NLP tasks. 

The models have excelled in tasks such as classification, 

machine translation and question-answering as revealed 

by Elazar et al. (2021). However, the increasing size and 
complexity of the models (Khan et al., 2019), having 

billions of parameters, requires a significant number of 

computational resources for training and inference. As a 

result, rising energy and performance costs have sparked 

interest in reducing the size of neural networks through 

techniques such as selective pruning as stated by Cheng et al. 

(2024). Marinó et al. (2023) in their study suggested that 

this has led to researchers starting to have more interest 

in pruning techniques which can selectively reduce 

model size and complexity, therefore offer potential 

solutions to lower energy consumption and 

computational demands. These make large models more 
accessible for deployment in resource-constrained 

environments like in mobile devices (Lu and Lyu, 2021; 

Cai et al., 2022). The studies by Cheng et al. (2024); 
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Wang et al. (2024) have also shown that the process of 

pruning presents a great possible solution to make NLP 

research more accessible and sustainable, thereby 
supportive of study by Marinó et al. (2023). 

Studies have shown that available pruning techniques 

and frameworks for pre-trained language models have 

their own shortfalls. The said shortfalls can be attributed 

to factors such as computational overhead, loss of 

accuracy or performance, difficulty in determining 

optimal pruning criteria, or lack of consideration for 

sustainable technological development. According to the 

study of Chitty-Venkata et al. (2023) it has been 

discovered that computational overhead creates a sizable 

hurdle to model adoption, because substantial time and 

resources are needed for pruning large language models. 
For example, the study by Zhu et al. (2023) have 

suggested that loss of accuracy can happen because of 

removal of important weights during pruning, which can 

affect downstream task performance. Deciding on the best 

pruning criteria depends on the specific model at hand, the 

task to be performed and target sparsity level, which adds 

complications to the pruning process (Yang et al., 2022; 

Yeom et al., 2021). Additionally, in related research 

Chitty-Venkata et al. (2023), have also noted that some of 

the pruning methods fail to factor type and sustainability 

of pruning results in unnecessary environmental harm. 

The cited studies highlight that current pruning techniques 
suffer from key limitations, including computational and 

environmental concerns. Therefore, it is crucial to 

advance the knowledge about these challenges and gaps 

for improving the efficacy and efficiency of pruning in 

developing merely effective and sustainable language 

models. As highlighted earlier, key barriers including 

computational overhead, reduced model accuracy, the 

complexity of defining optimal pruning criteria, and 

inadequate attention to sustainable development impede 

the broader adoption of pruning techniques in practice. 

Therefore, in this study we introduce a conceptual 

framework and a novel multi-objective optimization 
algorithm that formalizes pruning as a trade-off between 

accuracy, computational cost, inference speed and 

energy consumption. Through an analysis of these 

conceptual relationships, along with resource efficiency 

and energy consumption, the proposed framework and 

multi-objective optimization algorithm seek to establish 

practical guidelines for enhancing computational 

resource utilization and minimizing energy consumption 

in NLP applications via structured pruning techniques. 

This study aims to look for a balance between the size of 

the models and their accuracy and, also to provide green 

directions in Natural Language Processing. This study 
contributes the following: 
 
 A conceptual framework for guiding pruning 

techniques, schedules, deployment considerations 
and model optimization 

 Survey of key research concepts including model 

pruning, efficiency, inference and sustainable 

technology development 

 Identifying connections between key research 

concepts 

 Design and development of the proposed conceptual 

framework for pruning techniques 

 A novel multi-objective optimization algorithm 

 Evaluation of the pruned model against benchmarks 

 

Related Works 

Pruning techniques in deep learning represent yet 

another key method of downscaling the size of neural 

network models while at the same time enhancing their 

accuracy. These techniques can be broadly categorized 

into two main branches: Structured pruning and 

unstructured pruning, each method offering distinct 

approaches to addressing the challenge of 

overparameterization. 

Unstructured Pruning 

Unstructured pruning, defined by Gupta and Agrawal 

(2022), as identifying and eliminating less important 

individual weights from a neural network. The concept of 

unstructured pruning received its initial groundwork from 

pioneers Poppi and Massart (1998); Hassibi et al. (2002) 

who used magnitude weight pruning. The approach first 

identifies weights of little significance to the model 

outcomes before removing them hence achieving an 

accurate reduction of the size of the model without 

necessarily reducing its efficiency. The understanding of 

pruning methods helps researchers create solutions that 

enhance both performance quality and model size 

reduction without altering accuracy rates. 

The need to optimize the number of parameters in deep 

learning models for efficient consumption of resources by 

constrained devices is one the main reasons behind 

pruning techniques. The technique works, by making 

some connection values as zero or deleting them out 

reduces the weight value and hence, makes a model more 

resource friendly. In Wiedemann et al. (2020), it was 

observed that using a method of trimming the lower 

weight connections, greatly decreased the size of the 

model (Liang and Liu, 2015). In addition, the magnitude-

based pruning method offers a graceful trade-off between 

size and performance, as according to Gerum et al. 

(2020). While unstructured pruning may have some 

challenges when it comes to sparsifying matrices on some 

frameworks or hardware, this method has one universal 

benefit, it can be used with any network architecture. The 

pruning leads to the fact that deep learning models may be 

efficiently optimized for further deployment to different 

classes of devices, thus promoting accessibility and 

performance in the constrained settings. 
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Structured Pruning 

Neural network compression exclusively benefits 

from the structured pruning methodology which 

constitutes its own subspace within pruning methods. The 

structured approach gradually deletes entire weight 

structures or blocks within the weight networks of large 

pre-trained neural networks. An et al. (2024) confirm 

together with Wang et al. (2020) that structured pruning 

methods operate across structures or blocks of weights. 

Structured pruning achieves significant reductions of 

model size and inference expenses as per the documented 

research findings. Structured pruning enables 

modifications to blocks of weights along with attention 

heads and individual layers or entire structural parts of a 

neural network according to Li et al. (2020); Zhang et al. 

(2021); Shim et al. (2021) respectively. This technique 

provides excellent opportunities for compression along 

with cost reduction by enabling the removal of significant 

weight blocks compared to the base approach. 

Knowledge advancement for professionals comes 

from intense training in structured pruning approaches 

which enable them to optimize model dimensions and 

computing speed during neural network development. 

Research teams can develop efficient real-world high-

performance models for various deployment scenarios 

through combining structured pruning techniques with 

other compression and pruning methods according to 

Cai et al. (2022). 

Limitations and Gaps in Current Prunning 

Approaches 

The available pruning methods and frameworks for 

deep language models have shortcomings and with some 

questions left unanswered. These deficiencies stem from 

multiple factors including computational inefficiency, 

accuracy degradation, challenges in establishing optimal 

pruning criteria, and insufficient consideration of 

sustainable technology development principles. Pruning 

large language models is extremely computationally 

expensive; it takes a large amount of time and resources, 

especially during training (Xiao et al., 2024). Such 

degradation in accuracy might arise from pruning some 

important weights, which impacts the performance of 

downstream task (Cheng et al., 2024). As for the choice 

of, pruning criteria are dependent on the model, task and 

desired sparsity level and is thereby a delicate process 
(Yeom et al., 2021; Li et al., 2024). Moreover, there are 

other pruning strategies that failed to address 

sustainability issues; many of the pruning methods cause 

unnecessary harm to environment (Xiao et al., 2024). 

These studies demonstrate that contemporary pruning 

methodologies encounter multifaceted challenges 

spanning computational efficiency to ecological 

sustainability considerations. Strengthening these 

limitations and gaps this project is the critical step 

forward in addressing the future developments of more 

efficient and sustainable pruning techniques in order to 

unleash the full potential of deep neural network models 

across various sectors, their applications while avoiding 

negative environmental impacts. 

Materials and Methods 

This research presents the new sparsification-driven 

framework in an effort to develop optimized models for 

sustainable technological development. The proposed 

framework seeks to leverage sparsity principles in deep 

learning to facilitate the deployment of compressed 

models onto resource-constrained devices, aligning with 

sustainable long-term technological development 

objectives. Efficient models are those that optimize 

footprint metrics such as model size, inference latency 

and training time while minimizing quality loss and 

improving model generalization. Sparsity in deep 

learning enables compression techniques to target the 

representational efficiency of over-parameterized 

models (Menghani, 2023). “Sustainable technological 

development involves articulating functions to meet 

future demands and societal needs while reducing 

environmental impact” (Vergragt and Jansen, 1993). 

However, sparse-centric approaches to sustainable 

technological development are currently lacking. The 

framework aims to make neural networks more efficient, 

sustainable and effective in real-world applications by 

illustrating techniques for reducing their size, optimizing 

their training schedules and considering practical 

deployment factors.  

The following steps were taken to develop the 

framework: 
 
1) An analysis of literature on the fundamental ideas 

pertaining to the key research topics that include 

model pruning, efficiency, inference and sustainable 
technology development 

2) identifying connections between key research 

concepts 

3) design and development of the proposed conceptual 

framework for pruning 

 

Reviewing Literature on Specific Research Concepts 

This study has undertaken a rigorous and structured 

approach to determine the relationships between the key 

concepts of this research. The structured approach is 
based on Kitchenham guidelines (Kitchenham and 

Brereton, 2013), which include the preparation of 

research questions, a search strategy and research 

selection criteria. 
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Planning the Review 

The general research question which was identified is 

as follows: How can model pruning be used to enhance 

efficiency and support sustainable technological 

development in deep learning models? To make it 

possible to further explore the problem, the general 

question was divided into three narrower sub questions: 

 

1. In what way does pruning help make deep learning 

models more efficient? 

2. What is the association between model efficiency and 

inference performance in sparse models? 
3. How exactly does increased model efficiency impact 

the further development of sustainable technologies? 

 

Developing a Review Protocol 

The objective is to create a conceptual framework that 

guides the implementation of pruning techniques to 

improve the efficiency and sustainability of deep learning 

models. For the search strategy in this study, the key 

concepts represented the search terms that were applied to 
a variety of resources. Boolean search strategy is defined 

as the process of converting a research question into a 

research string with the view of querying a database or 

search engine, (Sivarajkumar et al., 2024). The academic 

internal databases employed in this study include IEEE 

Xplore, Google Scholar, PubMed, semantic scholar and 

ACM Digital Library. Keywords are "model pruning," 

"deep learning efficiency," "neural network optimization" 

and "sustainable AI. 

To fulfill the inclusion criteria, we restricted our sources 

to the articles from the referred scientific journals, evaluation 

reports and technical papers and conference papers of peer 

review. More precisely, we only considered papers that 

focused on the effects of pruning on the model as well as 

papers that focused on the broader issue of sustainability in 

AI and deep learning. We prioritized articles that 

demonstrated a link between the search terms and described 

the relationships between them. Additionally, we included 

articles addressing the search terms in conjunction with any 

of the four core concepts of this study: Model pruning, 

efficiency, inference and sustainable technology 

development (Shao and Zhang, 2020). 

The articles were excluded based upon the following: 

Articles that did not relate directly to deep learning or 

pruning techniques, papers and articles with no prior 

experimental results or data, the papers with the search 

terms but not looking into the connection or relevance 

between them were considered irrelevant and thereby 

excluded. We created a standardized data extraction form 

to capture relevant information from each study to achieve 

the data extraction methods, including pruning methods, 

metrics for efficiency, impacts on inference and 

sustainability considerations. 

Conducting the Review 

The identification of research articles was achieved by 

using the ‘AND’ and ‘OR’ Boolean operators to construct 
search strings to extract articles that join terms based on 
research questions. The search strings included the 

following "model pruning AND deep learning efficiency," 
"pruning techniques AND inference performance" and 
"sustainable AI AND neural networks." The strings for the 

OR operator included "model pruning OR deep learning 
efficiency," "pruning techniques OR inference 
performance" and "sustainable AI OR neural networks." 

In the process of selecting primary studies, initially, 

we searched and selected studies based on the titles and 
the abstracts of the studies and then, we checked and 
selected the full text of these studies. Of 500 original 

identified articles, 120 papers were reviewed after 
excluding irrelevant and low-quality articles while 46 
were reviewed in this final review. Data was 
systematically extracted using the predefined form and 

the extraction process was monitored to maintain 
consistency and accuracy. Some of the data considered 
during extraction involved the type of pruning technique 

applied whether structured or unstructured, efficiency 
measurements such as model size and inference latency 
and whether sustainability impacts have been realized 
such as energy efficient consumption. 

Identification of Relationships Between Key 

Concepts 

These interconnections were established from a 

systematic review of the literature in the field. To identify 

studies that reported on the effects of pruning on the 

performance of neural network models, we concentrated 

on papers that described pruning approaches and their 

results. We analyzed and discussed relevant literature 

concerning sustainability in AI and deep learning. Any 

articles that showed utilization of the search terms and 

explained the correlation between the identified search 

terms were included in the study. This involved reviewing 

different articles to see how model pruning affects 

efficiency and inference and how such gains fit 

sustainable technology progress (Singh and Gill, 2023). 

We began by analyzing the effect of model pruning in 

model efficiency. For instance, Tay et al. (2023); Cho et al. 

(2021) suggested that pruning led to smaller model sizes 

and shorter inference time as well as momentous 

acceleration of the training phase. Menghani (2023) has 

further supplemented these findings indicating the top goal 

of pruning as being to achieve different footprint goals. 

Subsequently, we examined the correlation between 

model pruning and inference. Several studies Baccour et al. 

(2024); Ebrahimi et al. (2023); Abdi et al. (2023) have 

demonstrated that only a subset of network parameters 

significantly contributes to model performance. Based on 
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this observation, they concluded that strategic pruning can 

be implemented with minimal impact on model accuracy. 

In the study of He and Xiao (2024), different forms of 

structural pruning approaches were described and the 

work of Jin et al. (2024) pointed out that properly 

integrated approaches were required. 

Last but not least, we assessed the link between 

efficiency and the development of sustainable technologies. 

Schwartz et al. (2020) proposed the notion of Green AI and 

focused on efficiency as well as environmental preservation 
Bolón-Canedo et al. (2024); van Wynsberghe (2021), 

Salehi and Schmeink (2024). Adding to the previous studies 

Zhang et al. (2021); Huang et al. (2022); Strubell et al. 

(2020) presented the measures to compare the efficiency of 

AI models and environmental impact. 

Design and Development of the Pruning Framework 

The relationships identified in the section 

identification of relationships between key concepts 

above were used to design and develop the conceptual 

framework. The output of the identified relationships is 

the proposed framework in Fig. (1). The proposed 

framework illustrates a series of steps that shows model 

pruning pathway to show the efficiency of compressed 

models on edge devices in order to achieve sustainable 

technological development goals. 

Datasets and Preprocessing 

Our approach includes the utilization of a well-

established public dataset which comprises of the SST-2 

dataset as reported by (Wankhade et al., 2022) and CoLA 

dataset as reported by (Warstadt et al., 2019) with training 

and development sets, from the General Language 

Understanding Evaluation (GLUE) benchmark. In our 

experimental design, we employed random seed 

initialization to shuffle and reorder the training datasets, 

thereby ensuring varied data exposure sequences during 

model training. The pre-trained BERT model checkpoint, 

BERT-base-uncased and BERT-large were employed as 
the foundational models.  
 

 
 
Fig. 1: Proposed conceptual framework 

The SST-2 dataset is a binary sentiment classification 

for positive/negative sentiments used for sentence-level 

sentiment analysis tasks. Its standardized labels, well-

formed sentences and accessibility make it highly suitable 

for NLP experiments. We also realized that further 

preprocessing was not necessary because the dataset has 

been extensively validated in NLP research, featuring 

properly structured textual data and consistent labeling 

conventions. It is comprised of 67,000 training samples 

and 872 development samples, which we evaluated based 

on accuracy and F1 score.  

Likewise, the CoLA dataset which is designed for 

linguistic acceptability classification, was employed to 

evaluate the model's understanding of grammatical 

correctness. It contains labeled sentences which are 

categorized as either acceptable or unacceptable and were 

curated by linguists to ensure high data quality and 

reliability. We finetuned our model with CoLA dataset 

containing a training set of 10,000 samples and a 

development set of 1,000 samples, also evaluated using 

accuracy, F1 score metrics and Matthews Correlation 

Coefficient (MCC). 

Training Configurations 

We selected precise training parameters for process 

optimization then set the learning rate at 1e-5 along with a 

batch size of 16 and executed 5 iterations. The training 

arguments included parameters for saving the model, 

loading the best model at the end of training, setting the 

number of training epochs to three and defining the 

evaluation and saving strategies. Accuracy tests and F1 

score evaluations were used to identify the best model 

among the pre-defined 10 saved model variants. To ensure 

the model training efficiency and robustness at the same 

time preventing overfitting while maximizing performance 

the configurations were designed as mentioned above. 

Optimization Methods of the Pruning Process 

There exist several algorithms which have been 

developed to optimize the pruning process, concentrating 

on balancing model size reduction while maintaining 

performance. The optimization methods in general are 

important for boosting the performance and efficiency of 

deep learning models, especially Pre-trained Large 

Language Models (PLMs) like BERT and GPT etc. The 

study by Michel et al. (2019) which have previously used 

the Attention Head Pruning proved that pruning attention 

heads in transformer models can lead to smallest 

degradation in performance while significantly reducing 

the model size. It was observed that a maximum of 40% 

attention heads could be cut off BERT without a 

noticeable drop in accuracy. The method called Block 

Structural Pruning which was introduced by Lagunas et al. 

(2021), eliminates attention-heads structured and paired 

rows/columns in feed-forward layers. This technique 
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resulted in a 2.4 faster inference with only a slight 

decrease in predictive performance. 

The movement pruning method proposed by Sanh et al. 

(2020) which helps to achieve improved performance in 

high sparsity regimes by concentrating on the weights that 

are changing during training. This approach has been 

successfully implemented to BERT and it has led to 

enhancements in improved accuracy as compared to 

traditional magnitude pruning (Gupta and Agrawal, 

2022). The DistilBERT technique outlined in Sanh et al. 

(2019) is a less complex version of BERT attained 

through knowledge distillation. This model retains 97% 

of BERT's language understanding capabilities while 

being 60% smaller and faster (Tay et al., 2023). Instead 

of selecting a single fixed pruning scheme, adaptive 

pruning techniques adjust the pruning strategy based on 

the model's performance and the importance of different 

layers or components. The study by Yao et al. (2021) 

proposed LEAP, which uses learnable pruning ratios that 

are adjusted during training. This method allows for 

different pruning levels across layers, optimizing the 

pruning process without extensive hyperparameter tuning. 

One-shot pruning techniques prune the model in a single 

step using the importance scores, then standard training is 

done to fine-tune the sparse model. The one-shot pruning 

method introduced by Kurtic et al. (2022) proved that it 

can significantly outperform gradual pruning methods, 

achieving high sparsity without the need for extensive 

fine-tuning. Pruning methods can also target optimization 

of energy consumption and enhancing inference speed 

which are critical for deploying models in resource-

constrained environments (Hasan and Alam, 2023). 

Our proposed novel optimization method offers a 

methodical way to pruning deep learning models, 

concentrating on optimizing performance, computational 

cost, inference time and energy consumption. The process 

starts by initializing the weights 𝑊 of the original model, 

including the model’s accuracy inputs 𝐴(𝑊), acceptable 

accuracy loss threshold 𝜖 , computational cost 𝐶(𝑊) , 

inference time 𝑇(𝑊), energy consumption 𝐸(𝑊) and an 

optional target pruning ratio 𝑝. During the pruning phase, 

a target pruning ratio 𝑝 is specified and 𝑝 ⋅100% of the 

less essential weights, using their magnitude to identify 

them, pruned weights 𝑊 are created through removal of 

those weights. Computational cost 𝐶(𝑊′) of the pruned 

model is then assessed to confirm substantial reductions 

while maintaining acceptable accuracy 𝐴(𝑊′) , where 

𝐴(𝑊′) ≥ 𝐴(𝑊) − 𝜖 . The following step deals with 

inference efficiency, where time taken is recorded as 

𝑇(𝑊′), focusing on reductions while keeping in view the 

accuracy thresholds. After this, the sustainability of the 

pruned model is examined by calculating its energy 

consumption 𝐸(𝑊′)  and minimizing it under the same 

level of accuracy. In some cases where the pruning ratio 

obtained does not give satisfactory performance, the 

algorithm iteratively adjusts 𝑝  to balance pruning 

efficiency and performance. The final multi-objective 

optimization step simultaneously minimizes 𝐶(𝑊′) , 

𝑇(𝑊′)  and 𝐸(𝑊′)  while making sure that accuracy 

remains above the threshold. Finally when the objectives 

shows that they have been met, the algorithm outputs the 

optimized pruned model 𝑊′ along with its performance 

metrics. This method ensures a streamlined approach to 

model compression, effectively balancing accuracy, 

efficiency and sustainability. 

Pruning Selection Criteria 

The importance of pruning selection criteria is to 

identify which weights or parameters to remove from a 

model in order to gain the wished sparsity while 

maintaining performance. In this study the Magnitude-
Based Pruning (MBP) approach was adopted. The 

strategy eliminates weights with small magnitudes because 

these components are considered to have minimal impact 

on model predictions. In the study done by Gupta and 

Agrawal (2022) they proved that the approach could 

significantly reduce model size with minimal accuracy 

loss. Hyperparameter tuning (Saleem et al., 2024) is 

significant while working with optimizing the 

performance of the pruning algorithm, involving the 

adjustment of parameters that control the pruning process, 

like the target pruning ratio 𝑝 and the acceptable accuracy 

loss threshold 𝜀. The training effectiveness of pruning is 

influenced by using adaptive learning rates approach 

together with Adam optimizer for rate adjustments. The 

process is illustrated in detail in the following steps below. 

Step 1: Model Pruning 
 
I. Initialization: Start with the full model weights 𝑊 

 A BERT-base model with 110M parameters 

II. Set target pruning ratio 𝑝: Select the percentage of 

weights to prune, 0 ≤ 𝑝 ≤ 1 

 Target pruning ratio 𝑝 = 0.3, which means 

pruning 30% of the weights 

III. Prune weights: Identify and remove 𝑝 ⋅ 100% of the 

least important weights, e.g., those with the smallest 

magnitudes 

 If 𝑊 = [0.8, −0.5,0.03, −0.1] and 𝑝 = 0.5, 

prune the smallest two weights 

(0.03, −0.1), resulting in 𝑊′ = [0.8, −0.5] 
 

The reason behind the MBP approach is that small-

magnitude weights contribute little to the model's output 

and can be removed without affecting much on accuracy. It 

can be represented as =
|𝑊−𝑊′|

|𝑊|
, where 𝑊 represents the 

original weights and 𝑊 ′ the pruned weights. This approach 

is proved by works like that of (Han et al., 2015) which 

indicated that pruning small-magnitude weights can 

entirely reduce model size while maintaining performance. 



Nyalalani Smarts et al. / Journal of Computer Science 2025, 21 (5): 1113.1128 

DOI: 10.3844/jcssp.2025.1113.1128 

 

1119 

Step 2: Model Efficiency 
 

I. Calculate computational cost 𝐶(𝑊′): Determine 

the FLOPs of the pruned model. The goal is to 

reduce FLOPs compared to the original model. 

 A pruned BERT model may reduce 

FLOPs from 10-2 billion 

II. Verify accuracy: We ensure that the pruned 

model's accuracy 𝐴(𝑊′)  meets 𝐴(𝑊′) ≥
𝐴(𝑊) − 𝜖 

 If the original accuracy is 90% and 𝜖 =
1%, the pruned model's accuracy must 

remain at or above 89% 
 

The process of Accuracy Preservation Constraint 

involves verifying that the pruned model’s accuracy, 

𝐴(𝑊′) , satisfies 𝐴(𝑊′) ≥ 𝐴(𝑊) − 𝜖 , where 𝜖 is the 
acceptable accuracy loss threshold. This constraint 

guarantees the pruned model keeps performance close to 

the original, matching efficiency improvements with 

accuracy preservation. 

Step 3: Inference Efficiency 

 

I. Measure inference time 𝑇(𝑊′): We evaluate the time 

required to process an input. The objective is to 

reduce this time while maintaining acceptable 

accuracy 

 A baseline BERT model takes 50ms per 
input. After pruning, the inference time 

drops to 30ms. 
 

Step 4: Sustainability 
 
I. Compute energy consumption 𝐸(𝑊′) : Using 

NVIDIA power profiler to measure energy usage. 

Minimize energy consumption while ensuring 

accuracy thresholds 

 If the original energy consumption is 100 

Joules, pruning might reduce it to 70 Joules 
 

Sustainability Metrics focus on assessing energy 

consumption 𝐸(𝑊′)  and inference time 𝑇(𝑊′)  to 

evaluate the environmental and operational impact of 

pruning. NVIDIA Management Library (NVML) for 

GPUs and Intel Power Gadget for CPUs were used to 

measure these metrics. The point is to ease hardware and 

energy demands, guaranteeing the pruned model remains 

efficient and environmentally friendly while maintaining 

acceptable performance levels. 

Step 5: Optimal Pruning Criteria 
 

I. Optimize pruning ratio 𝑝: If the initial pruning 

ratio leads to unacceptable performance losses, 

iteratively adjust 𝑝 to achieve an optimal balance 

 Start with 𝑝 = 0.3  If 𝐴(𝑊′)  drops 

below 𝐴(𝑊) −ϵ, reduce 𝑝  to 0.2 and 

re-evaluate 
 

Iterative Adjustment of Pruning Ratio aims to enhance 

the pruning ratio 𝑝 in sequential stages to balance pruning 

success and performance maintenance. The objective is to 
maximize the extent of pruning while ensuring the pruned 

model satisfies 𝐴(𝑊′) ≥ 𝐴(𝑊) − 𝜖 . This approach 

follows the methodology proposed by Frankle and Carbin 

(2018) in their IMP framework, employing iterative 

pruning and evaluation cycles to identify optimally 

sparse, high-performance subnetworks. 

I. Simultaneous optimization: minimize 𝐶(𝑊′), 𝑇(𝑊′) 

and 𝐸(𝑊′) while ensuring 𝐴(𝑊′) ≥ 𝐴(𝑊) − 𝜖 
 

For a trade-off scenario: 
 

 Option 1: FLOPs = 35B, accuracy = 89.5%, 

inference time = 32ms, energy = 75J 

 Option 2: FLOPs = 33B, accuracy = 89%, 

inference time = 30ms, energy = 70J 

 Select the configuration offering the best 

balance based on deployment needs 
 

This approach ensures that pruning improves 

efficiency without overly sacrificing speed or introducing 

significant accuracy loss. It aligns with methods discussed 

by Yeom et al. (2021) which emphasize the importance of 

balancing accuracy, speed and efficiency for practical, 

real-world applications. 

Final Output 

Return pruned model 𝑊′: Once the optimal trade-offs 

are achieved, output the final pruned model 𝑊′, along 

with metrics like 𝐴(𝑊′), 𝐶(𝑊′), 𝑇(𝑊′) and 𝐸(𝑊′). 
 
Algorithm 1: Efficient model pruning optimization 

algorithm 

Input :  Original model weights 𝑊 

   Accuracy of the original model 𝐴(𝑊) 

   Acceptable accuracy loss threshold 𝜖 

   Original computational cost 𝐶(𝑊) 

   Original inference time 𝑇(𝑊) 

   Original energy consumption 𝐸(𝑊) 

   Target pruning ratio 𝑝 (optional, can 

be tuned) 

Output :  Pruned model weights ′𝑊′ 
   Pruned model's accuracy 𝐴(𝑊′) 

   Optimized computational cost 𝐶(𝑊′) 

   Optimized inference time 𝑇(𝑊′) 

   Optimized energy consumption 

𝐸(𝑊′) 

Step 1  Model Pruning 

 I Initialize: Start with the original weights 

𝑊 
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 II Set target pruning ratio: Choose a 

target pruning ratio 𝑝, where, 

 0 ≤ 𝑝 ≤ 1 

 III Prune weights: 

 Compute the pruned weights 𝑊′  by 

removing 𝑝 ⋅ 100%  of the least 

important weights from 𝑊 

 𝑝 =
|𝐖−𝐖′|

|𝐖|
 

Step 2  Model Efficiency 

 IV Calculate computational cost: 

 Measure the computational cost C(W′) 

of the pruned model (e.g., using 

FLOPs) 

 Objective: Minimize C(W′) 

 V Verify accuracy: Ensure that the 

pruned model’s accuracy A(W′) 

satisfies: 

 𝐴(𝐖′) ≥ 𝐴(𝐖) − 𝜖, where 𝜖 is a 

predefined acceptable loss 

Step 3  Inference Efficiency 

 VI Measure inference time: Compute 

the inference time 𝑇(𝑊′)  of the 

pruned model 

 Objective: Minimize 𝑇(𝑊′) 

subject to 𝐴(𝐖′) ≥ 𝐴(𝐖) − 𝜖 

Step 4  Sustainability 

 VII Compute energy consumption: 
Measure the energy consumption 

𝐸(𝑊′) of the pruned model 

 Objective: Minimize 𝐸(𝑊′) 

subject to 𝐴(𝐖′) ≥ 𝐴(𝐖) − 𝜖 

Step 5  Optimal Pruning Criteria 

 VIII Optimize pruning ratio 𝒑 : If 

necessary, adjust 𝑝  iteratively to 
balance performance and pruning 

efficiency 

 Objective: Maximize 𝑝  such that 

𝐴(𝐖′) ≥ 𝐴(𝐖) − 𝜖 

Step 6  Multi-Objective Optimization 

 IX Perform multi-objective 

optimization: 

 Simultaneously minimize 

𝐶(𝐖′), 𝑇(𝐖′) and 𝐸(𝐖′) subject 

to: 

𝐴(𝐖′) ≥ 𝐴(𝐖) − 𝜖 

 X Return pruned model: Once an 
optimal trade-off is reached, output 

the pruned model 𝑊′ 
 

This algorithm describes a way of the multi-

objective optimization procedure that prunes the model 

while maintaining accuracy, reducing computational 

cost, minimizing inference time and optimizing energy 

consumption. Finetuning of the pruning ratio p can be 

done based on the needs of the specific application 

dependent requirements. 

Results and Discussion 

In this section, we provide a comprehensive overview 

of the results and discussions, beginning with a detailed 

analysis of the framework's components and how they 

were achieved. The section then presents the outcomes of 

the practical experiments, including a comparative 

analysis against state-of-the-art methods. Specifically, the 

model was tested and benchmarked against existing 

pruning models on CoLA and SST-2 datasets. We carried 
out the evaluation focusing on key metrics across all 

experiments which includes accuracy, computational 

cost, inference time and energy consumption. The trade-

offs between these metrics were analyzed from different 

pruning ratios, highlighting the balance between 

maintaining model accuracy and optimizing resource 

efficiency. To ensure the reproducibility of the 

experiments, detailed complete codebase was made 

publicly available at GitHub repository at: 

https://github.com/nksmarts/Efficient-Model-Pruning.git. 

This transparency facilitates validation and further 

exploration by the research community. 

Sparsification Schemes 

The research investigated multiple sparsification 
approaches which play an essential role during neural 
network pruning where model sparsity and ephemeral 
sparsity were analyzed. Here our findings highlight that, 

these sparsity techniques play a crucial role in improving 
the effectiveness of overparameterized models by 
selectively removing weights, neurons, filters, channels and 
heads. Another aspect is the effectiveness offered by 
ephemeral sparsity that adapts during the computation of 
specific examples, for instance, dropout, Rectified Linear 
Unit (ReLU) and conditional computations. Neutral 
networks fully benefit from real-time optimization because 
their flexible structure enables them to operate smoothly 
within practical situations. 

Findings correlates with Liang and Liu (2015) view on 
dropout as the form of ephemeral sparsity, but it 

generalizes on this concept by including other methods of 
dynamic sparsification such as conditional computations 
and gradients sparsity. The value of this study lies in the 
clear demonstration of how both model and ephemeral 
sparsity can improve neural networks for practical use. 
Pruning algorithms works quite well in practice by 
reducing the size of networks and the number of floating 
points needed at test time while improving the 
generalization of models. 

Sparsification Schedules 

The next pivotal component of the framework to 
discuss is the sparsification schedule, which prompts the 

https://github.com/nksmarts/Efficient-Model-Pruning.git
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question of when and how sparsification should occur. 
Achieving model sparsity often involves the application 
of a pruning schedule and there exist three distinct classes 
of training schedules that can be employed in the pruning 
process: The train then sparsify schedule, sparsify during 
training schedule and train-then-sparsify (Li et al., 2024). 
The train then Sparsify schedule entails training the neural 
network to convergence and subsequently applying 
sparsification to the fully trained model. This approach 

ensures that the model reaches optimal performance 
before introducing sparsity. Conversely, the sparsify 
during training schedule incorporates sparsification 
throughout the training process itself, which may 
encompass iterative sparsification involving gradual 
pruning over multiple epochs. The train-then-sparsify 
schedule encompasses regrowth, where after pruning, the 
network is allowed to partially regenerate while 
maintaining the desired sparsity level. 

Each of these scheduling methods fits into a generic 

schedule where some stages may be omitted. Firstly, the 
network structure is initialized, either by loading it from a 

disk, utilizing a framework, generating it randomly, or 
employing a sparse construction strategy such as Single-

shot Network Pruning (SNIP). Subsequently, the 
network’s weights are initialized, either randomly or with 

pre-trained weights and specialized strategies like 
synaptic flow may be employed for sparse networks. The 

training of the network occurs through either dense 
scheduling or sparsity-based regularization up until the 

convergence endpoint or a specified number of iterations 
completes. After training, various components of the 

network undergo pruning and potential, optionally the 
network may undergo retraining to further enhance 

accuracy. Higher-quality outcomes become possible 
through successive iteration of training schedules. 

Weight values can be reset within the training 
procedure based on operational needs. The training 

process of sparse networks implements these stages which 
help generate successful outcomes. The selection of 

optimal scheduling combined with sparsification 
technique optimization allows researchers to develop 

efficient accurate models for neural network pruning 
whereas they contribute to sustainable artificial 

intelligence technology development. Model deployment 
for practical use becomes possible once a model reaches 

effective fine-tuning. 

Deployment 

The deployment of pruned models into real-world 

applications requires attention to three main factors which 

include ease of deployment and power consumption 

alongside other costs. We underscore that pruning indeed 

not only decreases the size of the model and the 
computational cost but also makes the model easier to 

deploy on different platforms, including cloud servers and 

mobile platforms. Additional support for the aspect of 

pruning comes from Shao and Zhang (2020), where energy 

consumption by pruning methods was reduced during both 

operation and training, thus making the models more 
sustainable in energy-constrained environments. This is in 

line with the now trending environmentally sensitive AI 

systems development (Lu and Lyu, 2021). 

The study provides a comprehensive perspective of 

deployment obstacles yet faces constraints because fast 

data processing may jeopardize the accuracy levels. The 

performance of reduced models continued to meet real-

time requirements though cutting down models would 

typically result in performance degradation. The study 

sought to explain the possible key considerations that can 

be useful in determining how to employ pruned models or 

models with fewer parameters in real-world applications 

including resource use, conservancy and practicality. 

The Potential Impact of Model Optimization 

This research investigates how AI model optimization 

transforms application development as well as software 

programming techniques and hardware requirements and 

academic investigations. Our key findings reveal that 

optimized models offer significant advantages in creating 

faster and more efficient AI applications that can be 

deployed at the mobile and edge-end computing paradigm 

as discussed by Cai et al. (2022). Model optimization 

serves two main purposes for software development by 

speeding up the process through shorter training periods 

and decreased testing cycles which enables teams to deliver 

products more swiftly. Model optimization shortens the 

entire software development process while decreasing 

training durations and test cycles. The evidence supports 

the premise that optimization is the key enabler of the 

progress in the general efficiency of AI in various sectors. 

From this perspective, the present research shares common 

views with (Singh and Gill, 2023) by underlining that 

further improvements on the model are critical for the 

development of new techniques in the AI field. 

Experiments 

The neural network pruning evaluation process took 

place through Google Colab execution while employing 

PyTorch deep learning library against Python version 

3.10.12. The computational setup included an NVIDIA 

Tesla T4 GPU and a TPU v2-8 for accelerated processing. 

The pruning process was applied to BERT-base and BERT-

large models when processing SST-2 and CoLA datasets. 

The training configuration consisted of a batch size of 16, a 

learning rate of 2 × 10−5 and a total of 5 iterations. The 

convergence threshold was set at 0.001 during the 

optimization process while Adam optimizer together with 

a cross-entropy loss function minimized the loss output.  

The summary of network parameters and accuracy metrics 

appears in Table (1) before and after pruning occurs. 
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Table 1: Network pruning reduces parameters without 
compromising predictive performance 

Network Top-1 Error (%) Parameters 
(Millions) 

BERTBASE-ref 

BERTBASE-pruned 

6.5, 

6.1 

110  

20 

BERTLARGE-ref 
BERTLARGE-pruned 

5.5, 
5.2 

345  
90  

 

Table 1 demonstrates the efficiency of network pruning 

in reducing model parameters while potentially improving 

predictive performance. For BERT-BASE, pruning 

decreased parameters from 110M to 20M and slightly 

improved Top-1 error (6.5% →  6.1%). Similarly, for 

BERT-LARGE, parameters reduced from 345M to 90M 

with a Top-1 error improvement (5.5% → 5.2%). These 

results indicate that pruning not only significantly 

compresses models but may also enhance accuracy, likely 

due to eliminating redundant parameters and improving 

generalization. The findings align with prior work, 

confirming that well-designed pruning preserves 

performance by retaining critical weights. A key 

advancement in this study is the detailed evaluation of Top-

1 error gains—an aspect often overlooked in similar 

research. However, further work is needed to assess 

generalizability across other architectures and tasks. 

Table 2 shows that our pruned model with (25M 

parameters) outperforms BERT-base and BERT-large on 

SST-2 and CoLA datasets. The SST-2 task leads to 

improved accuracy of 96.3% and F1 values of 95.2% 

when using RoBerta compared to BERT Base with 93.5% 

accuracy and 92.5% F1 score and BERT-large with 94.9% 

accuracy and 93.5% F1 score (Liang et al., 2021). The 

model reaches an F1 score identical to BERT-large 

(82.3% vs. 82.1%) and displays MCC performance at a 

level comparable to BERT-base’s score (0.56 vs. 0.54) on 

CoLA dataset. The pruning technique reduces the model 

size with no deterioration or potential improvement in 

performance for essential NLP tasks. 

Previous research (Xu et al., 2021) found that bigger 

models perform better because their vast number of 

parameters can pick up on intricate patterns. The final 

models maintain their accuracy levels when processed 

effectively for efficient compact structure generation. 

The importance of effective pruning for resource-

constrained devices has been experimentally proved 

given that big models do not work well in such 

environments. Our pruned model reduces size by 5.5× 

versus BERT-base while improving performance, 

aligning with Zhang et al. (2024)’s findings on 

optimization and deployment potential.  

This work advances model compression research by 

establishing pruning best practices and a framework for 

multilingual applications. Table 3 compares our pruned 

model (20M parameters) with BERT variants. While 

BERTBASE (110M parameters) achieves 92.43% 

accuracy (MCC=0.600) on SST-2, DistilBERT (66M 

params) shows reduced accuracy (90.37%) but higher 

MCC (0.623), with 40% size reduction (Sanh et al., 2020). 

Our model outperforms both, achieving 93.1% accuracy 

with 5.5× compression versus BERTBASE, 

demonstrating that strategic pruning can produce smaller 

yet more accurate models.

 
Table 2: Performance and compression rates of pruned models compared to BERT baselines 

Model 
Parameters 

(M) 
SST-2 Accuracy 
(%) SST-2 F1 Score 

CoLA F1-
Score (%) CoLA MCC Compression rate 

BERT-base 110 ~93.5 ~92.5 ~81.54 ~0.54 1 (Baseline) 

BERT-large 345 ~94.9 ~93.5 ~82.1 ~0.60 1 (Baseline) 

Pruned Model 25 ~96.3 ~95.2% ~82.3 ~0.56 5.5 relative to BERTBASE 

 
Table 3: Comparison of pruned model with other BERT variants 

Model Parameters (M) SST-2 Accuracy (%) CoLA MCC Compression rate Source 

BERTBASE 110 93.5 0.600 N/A Li et al. (2020) 

DistilBERT 66 90.37 0.623 ~40% reduction compared to 

BERTBASE 

Sanh et al. (2019) 

TinyBERT 42 87.5 N/A ~62% reduction compared to 

BERTBASE 

Jiao et al. (2020) 

BioBERT 110 82.41 N/A Not specified Rohanian et al. (2024) 

MobileBERT 25 76.16 N/A ~77% reduction compared to 

BERTBASE 

Rohanian et al. (2024) 

MiniLM 22 83.2 N/A ~80% reduction compared to 

BERTBASE 

Treviso et al. (2023) 

LadaBERT-1 44 92.8 0.89 2.5 (relative to BERTBASE) Mao et al. (2020) 

LadaBERT-2 44 90.7 0.82 5.0 (relative to BERTBASE) Mao et al. (2020) 

Our Pruned Model 30 93.1 0.82 5.5 relative to BERTBASE  
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Compared to models like TinyBERT and 

MobileBERT (62-77% smaller), our pruned model 

achieves higher accuracy (87.5% vs. 76.16%) while 

maintaining significant size reduction (Jiao et al., 2020; 

Rohanian et al., 2024). This demonstrates our technique 

improves both compactness and performance. Like 

LadaBERT, we achieve an effective accuracy-efficiency 

trade-off, but with superior compression ratios. This 

implies that our pruning method is quite promising for 

deploying transformer models in resource-constrained 

settings, where reducing computational overhead and 

achieving higher performance is imperative. 

In Fig. (2), the training curves for accuracy and F1 

score for the two pruning ratios of 50 and 70% during each 

training step have been presented. The results of the 

experiments show that pruning ratios have similar 

performance trend in accuracy and F1-scores during 

training phases. The graph specifies exponential growth 

at the initial stage, after which there’s moderate 

stabilization near 0.963 score for accuracy and F1-score 

of 0.952. For instance, the model pruned at 70% pruning 

ratio provides marginal improvement in performance of 

the corresponding 50% pruning ratio during early and 

mid-stages of training. This illustrates that a much higher 

pruning percentage can support the retained subnetworks 

for efficient learning early on (Parnami et al., 2021). The 

noticed stabilization aligns with (Jaiswal et al., 2023) 

principles which illustrate that well-pruned models 

converge optimally when guided by structured 

optimization strategies. However, the unforeseen initial 

performance equality between the two pruning ratios 

underlines the need for enhancement of pruning 

thresholds to yield the best results of early-stage training. 

These results reinforce the framework's capability to 

balance model size and accuracy while achieving high 

computational efficiency.  

The training and validation loss trends of 50 and 70% 

pruning ratio on the SST-2 dataset through the training 

step are presented in Fig. (3). The graph shows that both 

training and validation loss are steadily reducing as the 

training progresses, proving that the model is generalizing 

well with good optimization. Most importantly, it clearly 

shows that the 50% pruning setup has a slightly less 

validation loss than the 70% pruning setup which suggests 

better generalization. For example, the validation loss of 

the 50% pruning at step 2000 stabilizes around 0.22, 

whereas that of the 70% pruning is slightly higher, likely 

due to the reduced model capacity associated with higher 

pruning rates (Gordon et al., 2020). 
These results, aligned with the previous literature, show 

that there is a trade-off between pruning aggressiveness and 

how the model is performing. While pruning ratio of up to 

70% were reported to reduce computational overhead and 

increase model efficiency, but it can also bring about 

underfitting as seen through slower convergence of training 

loss (Gupta and Agrawal, 2022). However, the model has 
sufficient representational capacity for the sentiment 

classification task as demonstrated by the two pruning 

ratios which have close performance even at 70%. This can 

be explained by the fact that the pruning methodology was 

able to both optimize the algorithms to be efficient and 

accurate at the same time. 

 

 
 
Fig. 2: Accuracy and F1 score across pruning ratios and steps 

 

 
 
Fig. 3: Training and validation loss oversteps and pruning ratios 

 
Table 4: Performance comparison between original and pruned models 

Metric Original model (W) Pruned model (W′) Relative change (%) 

Accuracy (%) 93.5% 96.3 +3.0 

FLOPs (B) 48 24 -50 

Latency (ms) (CPU) 120 85 -29.2 

Latency (ms) (GPU) 15 12 -20 

Energy consumption (J) 30 20 -33.3 
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Table (4) shows that pruning can be effective by 

reducing the computational cost and some performance 

metrics related to the BERT model. Specifically, pruning 
resulted in a reduction of the total FLOPs by half from 48-

24 billion, resulting in a more computationally efficient 

model. The decrease in both CPU and GPU latency 

resulted in the reduction in FLOPs, the CPU latency 

showed some improvement by 29.2% from 120-85 ms 

and GPU latency by 20% from 15-12 ms. Also, energy 

consumption was also reduced by 33.3%, from 30-20 

joules clearly showing the efficiency gains demonstrated 

by the pruning technique. It is note stating that, besides all 

these improved efficiencies, an increase in accuracy 

demonstrated by the pruned model which rose by 3.0 from 
93.5-96.3%, is contrary to the typical expectation of a minor 

accuracy drop post-pruning. These results also follow recent 

research on model pruning, asserting that pruning can lead to 

both reduced computational costs and improved 

performance under certain conditions (Ramesh et al., 2023). 

The observed increase in accuracy may be explained by 

the usefulness of the pruning strategy to retain the 

preferred parameters and exclude the less relevant ones. 

Conclusion 

This study introduces and proposes a new conceptual 

framework and developing a new multi-objective 

optimization algorithm to enhance the performance and 

sustainability of pruning approaches in DL models. The 

proposed framework is designed to address several major 

problems linked to the model size, computational 

efficiency and sustainability of technologies based on 

neural networks by translating complex, over-

parameterized neural networks into sparse, optimized 

models. This brings one of the biggest benefits of pruned 

models that can be easily scaled and particularly in the 

most resource-constrained environments such as mobile 

devices. This study supports the hypothesis that proper 

pruning can drastically reduce both the number of 

parameters and computational complexity to gain high 

accuracy in models with application of magnitude-based 

pruning. The multi-objective optimization algorithm 

proposed here formalizes the trade-offs between 

accuracy, computation cost, inference speed and energy 

consumption when pruning and links the technical with 

sustainable of AI models. 

The Limitations of the Framework and 

Opportunities for Future Work 

The framework presented for pruning and optimizing 

BERT models demonstrates significant potential in 

enhancing model efficiency while maintaining accuracy. 

However, a couple of limitations call for consideration. 

Firstly, hence by using magnitude-based pruning it 

doesn’t necessarily mean it will always yield optimal 

results for different tasks and datasets. In general, small-

magnitude weights are often dismissed as insignificant, 

this approach may overlook the importance of certain 

weights that in spite their size can amplify certain tasks 

proportionally to their weights. Moreover, the iterative 

adjustment of the pruning ratio, while beneficial, can be 

computationally intensive and may require multiple 

rounds of evaluation, it can make it challenging in relation 

to the speed of model deployment in time-sensitive 

applications. Additional limitation has to do with 

adaptability of the framework across different hardware 

platforms. Currently, the idea is mostly applied to well-

characterized, standard GPU and CPU structures, which 

at present will not obviously map well to specialized 

hardware with different computational capabilities. 
Subsequent studies should question how the proposed 

framework can be applied to other problem domains and 

analyze new pruning strategies discussed with the focus 

on technical and environmental concerns. Future work 

could explore the interplay between learning rates and 

pruning thresholds to further optimize convergence 

behavior across diverse datasets. This exploration could 

lead to improved methodologies that not only solve the 
problem of developing a better-pruned model for 

subsequent tasks but also contribute towards broader 

understanding of pruning strategies which are effective in 

large transformer models. Researchers can also explore 

the dynamic pruning techniques or add some specific 

task-related fine-tuning to achieve superior accuracy and 

efficiency in the short time. Discover long-term effects of 

pruning as far as the model generalization and the 

influence of pruning methods to various sets. 
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