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Abstract: Image denoising is a vital step in many image processing and
computer vision professions that aims to improve picture quality by
decreasing noise while maintaining important image information. In this
article, a detailed overview is presented of traditional and deep learning-
based picture denoising approaches. Classical methods, such as linear
filtering, transform domain techniques, and patch-based approaches like
Non-Local Means (NLM), are commonly employed because they are simple
and effective in removing Gaussian noise. However, these approaches
frequently struggle with complicated noise patterns and blur fine features.
Recent advances in deep learning, including Convolutional Neural Networks
(CNNs) and other designs such as Generative Adversarial Networks (GANs)
and autoencoders residual networks, have considerably improved picture
denoising performance. These data-driven techniques excel in learning
complicated noise patterns from big datasets, providing superior
generalization across various noise types, including non-Gaussian noise, and
dealing with a larger range of image degradation conditions.
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the technique used to eliminate the unwanted noise from
an image (Kaur et al, 2012). Maintaining the image’s
essential characteristics and structure during the
denoising process is vital. Digital image devices have
been broadly used in a variety of applications, including
individual recognition and remote sensing (Izadi et al.,
2023). The acquired picture is a degraded version of the
latent observation, and the degradation procedure is
influenced by elements such as light exposure and noise
pollution (Ismael & Baykara, 2021). Specifically, noise
is formed during the transmission and compression
procedures as a result of an unknown latent observation.
It is critical to employ image denoising algorithms to
eliminate noise and extract undetected information from
a damaged image (Saxena & Kourav, 2014). Digital
images invariably deteriorate during acquisition and
transmission due to degradation imposed by a variety of
factors. Research into image denoising is an important
issue because it involves many areas where visual data
plays a substantial role. The existence of noise in images
can be represented as random changes in brightness or
color and may badly affect the visual quality and,
consequently, the usability of the images (Swamy &

Introduction

An image is a two-dimensional depiction that
represents the appearance, shape, color, and texture of
objects, scenes, or data. Images can be captured using a
variety of methods, including photography, scanning,
medical imaging, or computer graphics, and then saved,
processed, and shown using digital technology. An image
is made of a grid of tiny elements called pixels. Each
pixel denotes a single point in the image and gives
information about its color and brightness (Shahdoosti &
Rahemi, 2019; Sui ef al., 2018). An image’s resolution is
defined by the number of pixels in its width and height.
Higher resolution implies more pixels, which typically
equals more detail. Pixels in an image could be either
grayscale or colored. In an 8-bit picture, each pixel
carries a single value that represents light intensity,
which typically ranges from black (0) to white (255)
(Chen et al., 2021). In color images, each pixel includes
numerous values that represent distinct color channels,
usually Red, Green, and Blue (RGB). The combination
of these three channels determines the pixel’s final color
(Rakheja & Vig, 2016).

An image is referred to as noisy when its quality is
distorted. Environmental factors, transmission errors, and
sensor limits can all produce noise. Image denoising is
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Kulkarni, 2020; Haneche ef al., 2021). This is especially
critical in medical imaging, for instance, where clear and
sharp images are highly needed for diagnosis and
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treatment planning. Noise might obscure the fine details
of a medical scan, such as an MRI or X-ray, which could
lead to misdiagnosis or additional imaging, furthering the
exposure of a patient to radiation. In astronomy, noise
may potentially affect the vision capabilities of objects
captured in low-light settings, affecting observations and
discoveries of new information (He et al., 2019). Images
that contain noise will significantly affect further image
processing. The quality of further image processing,
including image identification, segmentation,
classification, and so forth, will be impacted by noise in
the image. Removing noise from images can improve
their visual quality and help future image analysis
procedures perform better (Sathasivam & Rahamathulla,
2016). The rise in the development of digital photos and
videos of all types, many of which were captured in
inadequate environments, has increased the demand for
effective image restoration solutions. Even with high-
quality cameras, there is always scope for enhancement
to expand their capabilities.

Research in image denoising is crucial and has wide
impacts on several other disciplines and technologies.
Research in denoising also covers challenges related to
resource-constrained environments like smartphones,
drones, and IoT devices due to limitations in processing
power and energy consumption (Arbaoui et al., 2021).
Lightweight and efficient denoising algorithms have
been developed so that high-quality imaging features can
be extended to these resource-limited devices without
compromising performance (Sagheer & George, 2020).
This requires a sophisticated approach toward denoising,
considering the cross-disciplinary applications in which
image sets are put to use, such as remote sensing and
environmental monitoring (Gaikwad et al., 2016). Noise
in these image sets due to atmospheric interferences or
sensor limitations marks these fields and affects the
accuracy of environmental assessments, disaster
management, and agricultural planning. The inputs from
vision are very important to robotics and autonomous
systems either in navigation or operation (Bhujle &
Vadavadagi, 2019). In the real world, images are
generally noisy, but noise is random and so unknown.
This noise can have numerous causes: Poor image
quality can be caused by poor weather circumstances,
light variations, a digital camera’s image sensor, image
acquisition conditions, or storage and compression
techniques (Charmouti et al, 2019). As a result,
denoising is a significant preprocessing step for
recovering better image quality. As new challenges arise
and imaging systems continue to improve, further
research into noise reduction will be crucial in
developing robust methods that balance noise reduction
against detail preservation and will form an integral part
of ensuring the continued reliability and effectiveness of
visual data in all applications (Huang & Hu, 2018).

e Image denoising is an essential milestone in image
processing that is meant to minimize noise while

retaining essential features such as edges and
textures. However, several challenges make this
process complex.

e The biggest challenge in image denoising is
achieving the correct balance between noise
reduction and the preservation of essential image
features like edges and textures. Over-smoothing
can blur these details, whereas under-smoothing
may leave noise in the image.

e Images can be affected by many types of noise,
including Gaussian noise, salt-and-pepper noise,
Poisson noise, and speckle noise, all of which have
distinct features. The development of a denoising
algorithm that can properly handle many forms of
noise is difficult.

e Noise in an image may not be equally generated,;
some areas may have higher noise levels than
others. This non-uniformity required adaptive
approaches that can adjust the denoising intensity
throughout the entire image.

e For situations such as video denoising or real-time
medical imaging, the denoising algorithm must be
efficient enough to process images fast, which is
difficult, particularly for sophisticated or non-linear
denoising techniques.

Motivation

Traditional denoising approaches, while simple and
efficient, are sometimes unable to adequately satisfy the
demands of current imaging scenarios such as the
requirement to maintain fine features, eliminate random
noise, and manage large-scale, real-time data. Methods
based on spatial filtering, frequency domain
transformations, model-based methods, and, more
recently, deep learning all have strengths and
disadvantages that vary depending on the environment.
The area of image denoising is wide, ranging from basic
filters to extremely complicated machine learning-based
algorithms, each specialized to a certain form of noise
and application. Researchers and practitioners require
advice when selecting the best techniques for their
individual work, and knowing how different approaches
have evolved may contribute to the creation of more
efficient and inventive solutions.

Below the terms are defined which are used
throughout the paper.

Noise

Noise in images is defined as random alterations in
brightness or color information that may negatively
affect the visual quality of an image. Noise can occur
while an image is captured and might be caused by a
transformation of images. In image processing, noise can
often be seen as an additive or multiplicative component
in mathematical image representations. The specific
equation form used to represent noise is identified on the
type of noise. The additive noise model describes the
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observed image as a sum of the original (clean) image
and the noise. The multiplicative noise model describes
the observed image as a product of the original (clean)
image and the noise (Saxena & Kourav, 2014).

Types of Noise

Figure 1 illustrates the various types of noise. In this
Figure there are 4 types are shown: Gaussian, Salt and
Pepper, Speckle, and Poission Noise.

Gaussian Noise

One of the most common noises is Gaussian noise.
The primary sources of Gaussian noise occur during
acquisition, such as sensor noise caused by inadequate
lighting, excessive temperature, and during the
transmission. Gaussian noise is statistical noise whose
Probability Density Function (PDF) is the same as the
value of the normal distribution, consequently referred to
as the Gaussian distribution. Noise can take on Gaussian-
distributed values. The PDF for Gaussian random
variables is shown by the mean value, gray level, and
standard deviation. The average of all distributed pixels
in an image that has been influenced by Gaussian noise
is zero. Gaussian noise affects all pixels equally in an
image (Han et al., 2021).

Salt and Pepper Noise

Salt-and-pepper noise can be referred to as data
dropout. Images with salt-and-pepper noise can have
shady pixels in bright areas and in dark parts the pixels
are bright. The comparable values for black and white
pixels are 0 and 1 respectively. As a result, the image
impacted by this noise has either an extremely low or
very high value for pixels, i.e., 0 or 1. This sort of noise
can be occasionally created by converter errors like
analog-to-digital or bit errors during transmission. To
eliminate this noise, use dark frame removal and
interpolate around dark/bright pixels (Kumar et al.,
2024).

Speckle Noise

Speckle noise refers to noise caused by
environmental conditions on imaging sensors during
image capture. This form of noise can be recognized in
medical and active radar imagery. Speckle noise takes
place due to the continuous nature of imaging systems, in
which the timing of the waves is extremely important.
The noise is caused by constructive and destructive
interference of returning waves from various scattering
locations on the object being captured. Speckle noise in
Synthetic Aperture Radar (SAR) and other radar imaging
systems is caused by the interference of microwave
signals reflected off diverse surfaces, such as topography,
vegetation, or buildings. Speckle noise in medical
ultrasound imaging is caused by the interference of
sound waves reflected by tiny particles inside the tissue,

such as blood cells or connective tissue. Speckle noise is
also frequent in laser imaging and holography, when
coherent light waves from a laser source reflect off a
rough surface, resulting in interference patterns that
cause speckle (Gai & Bao, 2019).

Poisson Noise

Noise is caused by the statistical character of
electromagnetic waves, including x-rays, gamma rays,
and visible light. X-rays and gamma rays release photons
per unit time. These reasons include the random
fluctuation of photons. The collected photos exhibit
spatial and temporal unpredictability. Photon shot noise
occurs in the lighter areas of an image due to stochastic
quantum fluctuations in the amount of photons detected
at a particular exposure level. Shot noise monitors a
Poisson distribution, which is similar to Gaussian noise.
Poisson noise sometimes known as shot noise, frequently
occurs in photon-limited imaging circumstances (for
example, low-light photography and medical imaging). It
is defined by a Poisson distribution, and the noise is
signal-dependent (Verma & Ali, 2013).

Image Denoising Techniques

Two main categories of denoising algorithms are now
in use: internal algorithms and external methods. While
external algorithms take advantage of natural, clean
pictures that are associated with the noisy image, internal
algorithms wuse the noisy image itself. Numerous
industries, including photography, medical practice,
remote sensing, surveillance, and automated systems like
robots and self-driving automobiles, employ image
denoising. In terms of image denoising, “filters” refer to
methods or algorithms that minimize noise in an image
while maintaining crucial characteristics like textures
and edges.

'SPECKLE NOISE

POISSON NOISE

Fig. 1: Types of Noise
Traditional Approaches

Traditional denoising algorithms, including NLM,
BM3D, wavelet transforms, and Total Variation (TV),
depend on mathematical models and assumptions of
image structures and noise characteristics.
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Advantages: Easy to implement with clear
mathematical theory. These methods can be implemented
in low resource environments and real-time systems.
Their performance and limitations are better understood
and predictable. They work well for general noise
models like Gaussian or salt-and-pepper noise.

Disadvantages: Fail with non-white or complex
noise distributions. They usually also discard fine details
and subtle textures while removing the noises. Require
extensive hand-tuning and never learn the noise
characteristics within the dataset. It gets drastically
ineffective on high intensity or white and colored noises.

Deep Learning-Based Methods

Deep learning models, Convolutional Neural
Networks in  particular, Generative Adversarial
Networks, and auto-encoders, have dominated denoising
pictures using purely data-driven approaches.

Advantages: Effective at extracting subtle picture
patterns and noise distributions from high-capacity
datasets. These techniques can handle massive variants
of noise types and level, including mixed and non-
gaussian noise. Effectively deletes noise while keeping
delicate edge and texture information. Because of
automation learning frameworks, it eliminate the need
for manual parameter adjustment.

Disadvantages: It requires loads of processing power
and sturdy gear. Quality and availability of training
datasets largely impact the performance. Risk of
overfitting can decrease generalization to new data.
Unlike traditional methods, it does not have theoretical
knowledge and interpretability.

Hybrid Approaches

Hybrid approaches attempt to leverage the best of
both  worlds  through  conventional  methods’
interpretability and the flexibility offered by deep
learning. Examples of Hybrid Approach: Wavelet +
CNNCombination; The wavelet decomposition splits the
image into its respective frequency components; Each
frequency component is then further processed for
removal of noise with CNN. Filtering Using Neural
Network Guidance: Conventional filtering techniques
such as bilateral or directed filters are applied to CNN
outputs either pre or postprocessing for preserving edges.
Learning-Based Priors for Regularization: Deep learning
models can be wused as priors in conventional
optimization-based  frameworks (e.g., variational
models).

Conventional Constraints on Deep Learning

Mathematical or physical constraints can be imposed
on deep learning models obtained using conventional
techniques.

Advantages: By combining the strengths of both
strategies results in improved noise reduction and detail

preservation. This method provides a fallback approach
to enhance the robustness of deep learning models. The
possibility of overfitting in deep learning models is
minimized due to constraints imposed by conventional
methods. By restricting deep learning to some specific
subtasks, it reduces the computing overhead.

Disadvantages: Often it takes a lot of work and
refinement to merge the two paradigms into a single,
cohesive approach. High payoffs could not be guaranteed
based on overlap features. It does require domain
expertise of deep learning and classical methods. Fig. 2
illustrates the various image denoising techniques. In this
figure there are basically 4 types: Spatial Domain,
Frequency domain, Deep learning, and hybrid. The
spatial domain is further classified into Gaussian,
Weiner, Median, Anisotropic, and Bilateral. The
frequency domain has also been further categorized into
Fourier, Wavelet, Discrete, Curvelet, and Shearlet. Deep
learning has further categories like CNN, GAN, Auto
Encoder, and Deep Residual Network. One technique is
the hybrid technique which is the combination of
existing techniques.

Spatial Domain Techniques

Spatial denoising approaches aim to reduce noise
directly in an image's spatial domain, represented as a
grid of pixels. These algorithms work by examining the
intensity values of pixels and their neighbors to
discriminate between noise and actual image content.
Spatial domain techniques are subsequently classified
into 2 categories:

e Linear
e Non-Linear

In general, linear denoising methods act on the pixel
intensities in an image as if they were numerical values.
That is, the destination pixel value will be a linear
combination of all these from source pixels. These
weights are defined by a filter kernel, and combined in
the same way (linear operation) across all parts of an
image. They are simple and computationally efficient,
but usually do not adapt well to image edges.

Most linear denoising methods share the fact that
they perform some linear operation on the pixel values of
an image, i.e., each output pixel value is computed as a
weighted sum over a small neighborhood of input pixel
values. The weights are specified by the filter kernel and
the same linear operation is applied in a uniform manner
across the entire image. These methods are simple and
computational yet do not often adapt very well to local
image features like edges.

Transform Domain Techniques

Transform domain approaches work by converting
the image to a new domain (such as frequency or
wavelet) in which noise and signal may be separated
with greater ease. These approaches revolve around the
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assumption that noise and image characteristics may be
better separated in the transformed domain, allowing for
more influence over the denoising process. Transform
domain is further classified into different categories:

¢ Fourier Transform Denoising

¢ Wavelet Transform Denoising

¢ Discrete Cosine Transform (DCT) Denoising
¢ Curvelet Transform Denoising

¢ Shearlet Transform Denoising

The Fourier Transform translates an image from the
spatial domain to the frequency domain, portraying it as
a sum of sinusoidal functions of varying frequencies. The
Wavelet Transform divides an image into a set of wavelet
coefficients that contain both spatial and frequency
information. Unlike the Fourier Transform, wavelets
offer multi-resolution analysis, making them ideal for
denoising. The Discrete Cosine Transform depicts a
picture as a sum of cosine functions with varying
frequencies. It is commonly used for image compression
(e.g., JPEG) and denoising. The Curvelet Transform is
intended to handle edges and other singularities more
successfully than wavelets by describing the picture as
curves or ridges. This makes it especially suitable for
photographs with strong directional elements. The
Shearlet Transform is an extension of the wavelet
transform that is especially designed to deal with
anisotropic characteristics like edges more effectively. It
breaks down the image into sizes, locations, and
orientations, resulting in a sparse representation.

Image Denoising

———————————

Techniques

e -

|
|
Frequency
Domain

]

|
Deep Learning Hybrid
- S
-

I__

- Weiner -

s Auto Encoder
Deep Residual
-GS

BN Anisotropic o Curvelet

bl Bilateral -

Fig. 2: Image Denoising Techniques

Convolutional Neural Networks (CNN) Based

Techniques

CNNs have transformed image denoising by utilizing
big datasets and learning complicated noise patterns via
deep learning. The recent advancements of deep learning
has influenced the denoising scenario. CNNs and
autoencoders have shown an impressive capacity to learn
complicated noise patterns directly from data, exceeding
traditional approaches in many circumstances. These

techniques have the benefit of being flexible to many
types of noise and image techniques, but they are also
limited by the requirement for huge datasets and
computer systems (Oyelade & Ezugwu, 2021; Perez et
al., 2017).

Hybrid Techniques

Hybrid strategies integrate different approaches,
exploiting their respective strengths to provide excellent
denoising performance. Many recent methodologies use
spatial, transform, and learning-based strategies to obtain
better results (Meng et al., 2022).

In this article, a detailed overview is presented of
traditional and deep learning-based picture denoising
approaches. By comparing PSNR and SSIM, the study
attempts to understand how well image denoising
algorithms, namely WNNM, Guided Filter, NLM,
DnCNN, and BM3D, work for different NV and
understand how these algorithms compromise between
noise reduction and the preservation of structural and
perceptual picture quality by comparing PSNR and
SSIM. As the high PSNR does not directly relate to high
perceptual quality (SSIM), the study emphasizes that it is
important to use both metrics for a balanced assessment.
It is to increase SSIM at higher noise variances without
compromising PSNR for better structural and perceptual
quality of pictures.

Literature Review

Spatial Domain

Li & Suen (2016) introduced the Grey theory applied
in Non-Local Means (GNLM) image denoising method.
Based on grey relational analysis, fewer testing samples
are required and GNLM can achieve better performance
compared with traditional methods by setting appropriate
weights through grey relation coefficients. In contrast to
traditional NLM methods, the proposed GNLM
technique will not suffer from typical problems such as
parameter setting, hence reducing computational
complexity while successfully suppressing noise and
preserving details, especially at edges and corners. A
hybrid approach combining NLM and sparse
representation techniques is presented in Zhou et al.
(2016) to restore images corrupted with mixed noise,
including Gaussian and impulse noises. The method
adopted customized blockwise NLM filtering for initial
denoising and separated noisy pixels into groups by
using the 3-sigma rule before applying sparse coding on
an over-complete dictionary. Excellent performance in
suppressing mixed noise was achieved during clean
image reconstruction. In forward zero-phase filtering of
images with fractional differentiation, Verma & Saini
(2017) suggested a method for designing a 2D Fractional
Differentiation Zero-Phase (FDZP) filter. It is used for
image denoising with forward-backward processing at
noise suppression performances when under attacks of
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Gaussian and speckle noises. For liver ultrasound
images, edge preservation due to FDZP was the best
among all filters because of maximum PSNR values in
comparison with the ones in case of Gaussian smoothing,
anisotropic diffusion and Kuan filters. In Zhuang &
Bioucas-Dias (2018), two efficient hyperspectral image
restoration algorithms are proposed, FastHyDe and
FastHyIn, which is the denoising algorithm and the
inpainting algorithm of hyperspectral images (HSIs) with
missing data, respectively. These methods use low-rank
and self-similarity properties to restore compact and
sparse representations and, therefore, are efficient and
effective for the restoration of HSIs.

Dhanushree et al (2019) gave importance to
underwater acoustic images captured by sonar, as this is
the equipment to identify any object lying below the sea
bottom. To remove de-speckling noise in auditory
images, they have used spatial methods like bilateral and
guided filter. Optimization with an augmented
Lagrangian removes most speckle noises and helps in
getting improved quality images for sonar applications.
In Garg et al. (2019) various filtering techniques were
analyzed, including mean, median, Wiener and adaptive
filters to remove the Gaussian, salt-and-pepper or
speckle noise from MRI images. The authors tested them
based on statistical criteria PSNR and RMSE and, above
all, the obtained values of PSNR significantly surpassed
other filtering techniques in noise suppression. Mahdaoui
et al. (2022) proposed a reconstructed-based compressed
sensing approach: it used total variation regularization
together with non-local self-similarity and utilized an
augmented Lagrangian optimization approach both to
reconstruct the image and remove noise simultaneously,
achieving up to 25% improvement in terms of PSNR and
SSIM performance metrics. Ramamurthy et al. (n.d.)
pursued exploration on the application of bilateral filters
for image denoising. This method, through non-linear
spatial averaging, avoids edge smoothing and focuses on
optimal parameter selection for the filters. This paper
contributed to a better understanding of bilateral filters
and provided insights in extending the technique for the
best possible image-denoising performance.

Transform Based

In Luo et al. (2015) an algorithm was introduced to
adaptively identify the best set of patches from the
corpus to use for image denoising. This work was
approached as a design problem of a filter, and key
contributions  included a group sparsity-based
minimization technique for obtaining the basis function
for the filter and a localized Bayesian prior for
minimizing the computational cost. In Xiong et al
(2016) a special denoising method that relies on adaptive
signal modeling and regularization was proposed. The
approach regularizes each band of the image patch by
modeling distribution in a band-wise manner, thus
utilizing adaptive models while coping with non-
stationarity and variations across the transform bands.

Restored images rely on band-wise adaptive soft
thresholding while ensuring noise suppression is
increased. In Veena et al. (2016) wavelet filter-based
least square approach was developed for image denoising
by extending 1D least square approach to 2D. It was
tested on benchmark images of different types of noise
and different wavelet filters with high PSNR values as
shown in the results, thereby proving the prominence of
wavelet filters in denoising. In Rakheja & Vig (2017)
surveyed various work on image restoration by applying
wavelet transforms. The Wavelet Transform was a useful
noise removal technique, and its evaluations were carried
out with PSNR, MSE, and quality indexes; however, the
work said that images can be denoised effectively only if
there are optimized statistical models and thresholding
techniques. In Lin (2018) an impulse noise removal
method using a combination of an adaptive median filter
(AMF) along with a wavelet thresholding technique
based on a Gaussian Mixture Model (GMM) was
proposed to remove mixed noise. Experimental results
showed that the performance of this method was superior
when compared to the efficiency in the filtering step for
both AMF and wavelet thresholding alone. In Gopatoti
(2018) wavelet, contourlet, and curvelet transforms were
compared in the context of image denoising for
contourlet transforms, finding these superior in terms of
noise removal capabilities and preserving edges in
images better than other transform techniques. In Chen et
al. (2019) wavelet, contourlet, and curvelet transforms
were compared in the context of image denoising for
contourlet transforms, finding these superior in terms of
noise removal capabilities and preserving edges in
images better than other transform techniques. Qian
(2019) presented an AMF-WT-based noise removal
methodology which combined adaptive median filtering
with wavelet decomposition for salt-and-pepper noise
removal. The proposed approach used a new adaptive
threshold function and was outperforming the classical
hard and soft thresholding.

CNN Based

In Zhang et al. (2017) the deep CNN proposed for
image denoising uses residual learning that differs the
noise from an image. The DnCNN model performed well
in the case of blind Gaussian denoising as well as the
JPEG image deblocking and achieved improved speed of
training as well as denoising. Tian et al. (2019) presented
the enhanced CNN (ECNDNet) with difficulty in
training deep networks and performance saturation. It
expanded the context range by having residual learning
and batch normalization in addition to dilated
convolutions and was computationally inexpensive. In
Bajaj et al. (2020) a deep convolutional denoising
autoencoder is designed for removing Gaussian noise in
images. For the reconstruction of clean images at the
output, skip connections were used in order to prevent
gradient fading, and thus higher PSNR values compared
to classical methods were obtained. Thamilselvan &
Sathiaseelan (2018) developed a unique pre-processing
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approach called the Profuse Clustering Technique (PCT),
which is based on superpixel clustering. This technique
includes K-Means clustering, Fusing Optimization
algorithms and , Simple Linear Iterative Clustering and ,
which are then utilized to denoise Lung Cancer images
for more accurate decision-making.

Hybrid Techniques

Gopatoti et al. (2018) assessed various denoising
techniques using wavelet transforms and CNN. Here by
PSNR and MSE comparison was done and CNN proved
to reconstruct the original images from noisy inputs. The
authors of (Yang et al., 2020) applied Ensemble Learning
to boost performance of image denoising by iteratively
combining simple denoisers in a sequential ensemble.
The authors compared a few groups of denoisers and
exhibited noise removal improvements. Goceri (2023),
the researchers applied the same datasets of images with
either speckle or Gaussian noise to the methods available
in the literature. The main three contributions that this
work has made are as follows: (i) A thorough
investigation of the denoising methods available for
dermoscopy images was provided. (ii) The same images
were used for the denoising approaches to allow for
meaningful comparisons. (iii) The visual and quantitative
assessments on a variety of measures were carried out,
with comparison performance ratings provided for each
approach. Chandra et al. (2023) presented the deep
CNN-based color balancing and denoising method
(CNN-CBDT) to improve underwater photos. Color,
particularly green and blue, is a benefit of underwater
properties. Because of its poor color contrast, the image
is fuzzy in nature. The CNN-CBDT recovers the image
with the aid of the CNN’s ReLU team. Finally, the
cutting-edge performance of this technique is proven by
comparing experimental results to those of the GLNet,
Histeq, and ACE algorithms under SSIM, PSNR,
UCIQE, and UIQM. It increases PSNR by 17%, with the
greatest value of 19.580, and SSIM by 15%, with a value
of 0.952. This approach had a calculation speed of 9.868
frames/second. In Shi et al. (2021) a hyperspectral image
denosing approach which consists of two parallel
branches, involving one to handle spatial information
and one handling spectral information was developed.
Using the two modules of position and channel attention
established interdependencies and correlations to
enhance image restoration. Oguzhanoglu et al. (2022)
used two test sites of land cover-use as examples for
noise impact assessment on optical satellite images. To
this end, the effect of denoising methods was tested at
different spatial resolutions on both Landsat 8 and
Sentinel 2 satellites. Since raw images for selected
satellite images were not available, two types of noise
were generated on these images: Gaussian and Stripe
Noise. The methods used for the comparison of both
spatial and frequency domain techniques including
median and wavelet-based methods have been analyzed
concerning their performance in terms of statistical

evaluation in terms of PSNR and MSE. In Ismael &
Baykara (2022) one of the main objectives that
researchers accomplished is introducing and applying a
new hybrid system to the removal of noise from images
caused by the Additive White Gaussian Noise (AWGN).
The Hybrid system uses spatial domain filters with
Median and Wiener filters; it includes a multi-resolution
analysis technique, which includes 2D-Stationary and
2D-Discrete wavelet transform. The hybrid approach that
combines spatial and multi-resolution filters was
proposed in order to remove Additive White Gaussian
Noise from images. Here, the system consisting of
wavelet and median filters shows a higher performance
both in the removal of noise and edge preservation.
Neole et al. (2024) proposed the the hybridization
method which uses the Bivariate Wavelet Shrinkage to
modify the wavelet coefficients. The SSIM value and
PSNR value are used for assessment about quality.
Modify the existing Wavelet Transform to perform image
denoising that increases the PSNR and SSIM compared
with the PSNR and SSIM given by the use of the
existing Wavelet denoising methods. It works well in
highlighting the edges in those images that may be
corrupted by additive white Gaussian noise, at the same
time preserving essential detail information in the
denoised output.

Summary of Key Findings from Literature Survey

Several image-denoising approaches have been
established by researchers, highlighting diverse
methodologies and their contributions to image
restoration. Here’s an overview of the important
contributions:

e The Grey Theory Applied in Non-local Means
(GNLM) technique employs a grey relational
analysis to address parameter setting concerns in
Non-local Means, enhancing noise suppression
while maintaining image characteristics such as
edges and corners.

e The Fractional Differential Zero Phase Filter uses
R-L integral principles and fractional differentiation
to denoise images, demonstrating remarkable
resistance against Gaussian and speckle noise while
retaining edges.

e Deep learning models like DnCNN and ECNDNet
employ residual learning and batch normalization to
effectively remove noise, resulting in improved
Gaussian noise removal and image restoration.

e Hybrid approaches that incorporate spatial domain
filters and wavelet transformations are offered to
deal with Additive White Gaussian Noise (AWGN)
while maintaining image quality.

Research Gaps

e Handling Multiple Noise Types: Only a few
methods handle mixed noise scenarios (e.g.,
combinations of Gaussian and Poisson noise),
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although several papers focus on specific noise
types, such as Gaussian, salt-and-pepper, or speckle
noise. This is still challenging, especially when
dealing with complex noise distributions in real-
world applications.

e Small Structures Preservation: Accurate diagnosis
and treatment planning require a minute anatomical
detail comprising blood arteries, characteristics of
delicate tissue, and very tiny lesions. Most
denoising algorithms tend to blur out or remove
these small features in an attempt to get rid of noise.
So, there is a need for research to come up with
techniques that will recognize the noise from these
indispensable  tiny  structures for  correct
reconstruction.

¢ Trade-offs in Image Quality: A common dilemma is
balancing image quality and denoising performance.
While some algorithms are quite effective at
removing noise, they often reduce the quality and
structural integrity of the image as a whole. This is
particularly problematic in clinical settings where
high-quality images are necessary for diagnostic
purposes. The lack of generally applicable remedies
underscores the need for further research into
adaptive and hybrid denoising techniques that
enhance image quality without sacrificing critical
diagnostic information.

e Adapting to Domain-Specific Challenges: Many
denoising methods are developed for general-
purpose photos, but they are not targeted to solve
domain-specific problems such as underwater
images, medical imaging, or hyperspectral data.
These domains often have different noise properties
that require specific denoising approaches.

¢ High Complexity of Computation: Advanced
methods often incur a large computational cost,
particularly those based on deep learning (such as
CNNs, 3D attention networks). This limits their
applicability in real-time or resource-constrained
environments, such as drones or mobile devices.

e Ground Truth Data Not Always Available: The
paired noisy-clean picture datasets that are critical
for supervised algorithms are hard to obtain in
practical applications. There is a need to close this
gap by exploring unsupervised or self-supervised
denoising methods that can work without pristine
ground truth pictures.

Applications of Image Denoising

Image denoising has been an important preprocessing
step in a variety of application areas where noise can
significantly affect the quality of the images or the
accuracy of the subsequent analysis. Among the
important application areas, the following are somewhere
denoising is frequently applied:

Medical Imaging

In medical imaging, techniques such as MRI, CT
scans, and X-rays are generally noisy because the

radiation dose is too low or the acquisition times are too
fast, or due to the limitations of imaging instruments.
Therefore, denoising in these cases is very important for
image quality, accuracy in diagnosis, and good
visualization of anatomical structures and pathological
conditions.

Astronomical and Space Imaging

Astronomical images, obtained through telescopes
and space probes, are usually noisy due to low light,
extended integration times, and cosmic radiation.
Therefore, in this field, denoising is extremely important
for the detection of faint celestial objects, quality images
of remote galaxies and stars, and precision scientific
measures derived from them. Astronomical data are not
only visual, but also include measurements regarding the
brightness of stars, distances of galaxies, and movements
of other celestial objects. Noise could inject errors in
these observations; hence denoising provides the
required precision and reliability of data for scientific
research and purposes, such as dark matter research,
cosmic expansion, or atmospheric study on other planets.
Fig. 3 depicts noised and denoised astronomical images.

Fig. 3: Astronomical and Space Image
Surveillance and Security

In surveillance systems, most particularly low-light
camera devices and those Operated in bad weather
conditions, image noise greatly affects video quality.
Denoising helps improve the clarity of the footage and
helps in better recognition of faces, license plates, and
other details, which is important for security and law
enforcement purposes. Figure 4 depicts the noisy and
clear images after filtering.

(a) Noisy SI.

(b) After Gaussian filtering,

(¢) After median filtering.

Fig. 4: Surveillance and Security Image

Microscopy

In microscopy, in particular, fluorescence and
electron microscopy, images are often noised due to low
signal levels that are usually associated with high
sensitivity detectors. In such fields, denoising enhances
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the wvisibility of fine cellular structures and allows
quantitative measurements for biological and material
science applications to be done more precisely. Figure 5
illustrate noised and clear images of microscopy.

(a) Noisy (b) Denoised (c) Denoised (zoomed)

(d) Gradient

Fig. 5: Microscopy Image

Photography and Videography

Noise in consumer photography and professional
videography may happen because of high ISO settings,
low light, or small sensors in the cameras. Denoising is
applied to enhance the quality of images and videos, so
their final outputs will be more pleasing to the eye and
suitable for commercial or artistic reasons. Noise can be
very bothersome in professional video-shooting events
that occur in low light, such as evening or nighttime
productions, or in indoor conditions, or when shot at
night. For this reason, as video is made up of a lot of
frames per second, noise appears as quite irritating spots
or grain at different junctures of the stream. Denoising
techniques clear up the film so that the image becomes
more smoothened, clearer, and looks like film as well,
which promotes higher viewership. Figure 6 depicts the
noisy and clear images of photography.

Original image

Noisy image

Denoised image

Fig. 6: Photography and Videography Image

Noisy cropped image Denoised cropped image

Fig. 7: Remote Sensing Image
Remote Sensing

Remote sensing images, acquired by satellites or
drones, are usually contaminated by noise, which may
emanate from atmospheric disturbances, sensor
limitations, and transmission errors. In this regard,
denoising the images is important for correctly

classifying land cover, conducting environmental
monitoring, managing disasters, and planning cities.
Figure 7 depicts the noised and clear images of remote
sensing.

Robotics and Autonomous Vehicles

Cameras and sensors are perception devices for
robotics and independent vehicle systems. Denoising is
critical for enhancing the reliability of the visual
information, as it is critical for navigation, detection of
obstacles, and object recognition; hence, improving
general safety and performance. Figure 8 depicts the
noisy and clear images of the autonomous vehicle (Le et
al., 2023).

Fig. 8: Robotics and Autonomous Vehicles Image

Noisy test images

0
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Fig. 9: Optical Character Recognition (OCR) Image
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Optical Character Recognition (OCR)

Noisy images in OCR systems misrecognize the
character and lower accuracy. Denoising techniques
improve text clarity, hence bettering the performance of
OCR algorithms in various applications, including
document digitizing, automated data entry, and license
plate recognition. Figure 9 illustrates noised and clear
images of OCR.

Underwater Imaging

This would mean that the imaging underwater is
often subject to scattering and absorption of light, which
introduces high noise. Denoising finds an application in
enhancing the quality of underwater photographs and
videos used in marine biology research, underwater
archaeology, and environmental monitoring. Figure 10
depicts the noisy and clear underwater images (Chandra
etal., 2023).

Fig. 10: Underwater Image

Preserving Cultural Heritage

In the cultural heritage domain, denoising is applied
to enhance digital images of artifacts, manuscripts, and
artworks. In this way, such a process assists in the
restoration and analysis of historical pieces for their
better preservation and documentation. Figure 11 depicts
the noisy and clear images of cultural heritage preserving
(Lefkimmiatis, 2017).

Fig. 11: Heritage Image
Augmented Reality (AR) and Virtual Reality (VR)

AR and VR applications require clear images with
high quality. Denoising ensures that artifacts are
completely removed, which provides clear images that
are necessary for users to have more vivid experiences in
the virtual environment. Figure 12 depcits and
application of AR.

Evaluation Metrics for Denoising Techniques

The effectiveness of image denoising algorithms
must be evaluated using objective and quantitative
measures that assess the quality of the image. The basic
aim is to eliminate noise while retaining important

picture characteristics including borders, textures, and
structure. Several performance measures are widely
employed in image denoising, each concentrating on a
distinct component of picture quality.

Fig. 12: AR Image

Peak Signal-to-Noise Ratio (PSNR)

PSNR is the most popular measurement for
measuring image denoising performance. It calculates
the ratio of the highest potential power of a signal (i.e.,
the original picture) to the power of noise, which
influences the quality of its representation.Higher PSNR
values mean better performance on denoising and higher
image quality. Typically, the PSNR will lie between 30
and 40 dB for a high-quality output of denoising, which
depends on the noise level and algorithm efficiency.
PSNR is not adjusted to the human vision; the measure
becomes insensitive to important perceptual differences,
for instance, edge blurring or loss of texture. Equation 1
is the mathematical representation of PSNR.

PSNR = 101log,, &5 M)

where R is the maximum pixel value in the image and
MSE is tne mean square error.

Structural Similarity Index (SSIM)

The SSIM is a perception-motivated metric to
measure the similarity of localized patterns of pixel
intensities, normalized for luminance and contrast. It has
been proven to be perceptually more aligned than PSNR
and MSE. SSIM values lie between -1 and 1; a value of 1
expresses perfect similarity between the denoised and
original image. It considers texture and structural details;
hence, it acts as a better indicator of perceptual quality
compared to PSNR and MSE. SSIM is a very
computational measure and sensitive to small changes in
texture; this could make evaluation problematic in
images with a lot of fine detail. Equation 2 is the
mathematical representation of SSIM.

— (2/—Lzﬂy+cl)(2o'w +02) 2
SSIM = (ui+u§+01)(o§fa§+cz) @

where C; andC, are the constant, u, is the mean of
original image and Hy is the mean of denoised image,
and o is standard deviation.
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Mean Squared Error (MSE)

MSE estimates the average of a squared difference
between the original image and the denoised image. It
will directly indicate the closeness of a restored image
concerning the original image. Lowering the value of
MSE indicates an even better match of original and
denoised images; hence, good performance in denoising.
Similar to PSNR, MSE itself does not consider any
aspects of how humans perceive noise or image quality.
Equation 3 is the mathematical representation of MSE.

MSE = 3 S0 S (Lo(a,b) — L(a, b)) )

where 1, is the original image and /4 is the denoised
image and M.N indicates the size of image.

Natural Image Quality Evaluator (NIQE)

NIQE is a no-reference image quality metric that
estimates the perceptual quality without involving any
ground truth, especially making it helpful in real-world
images where the original clean image is unavailable.
Effective in the case of practical scenarios where the
reference image is either unknown or inaccessible. Less
effective in synthetic noise removal tasks since it might
fail to capture the fine details of the noise structure.
Equation 4 is the mathematical representation of NIQE.

NIQE = d(I; Model, I,, Model) “

where 1, is the test image I, is the natural image and d
is the distance function between the test image and the
natural image.

Universal Quality Index (UQI)

UQI belongs to the family of image quality
assessment metrics with full reference, and it estimates
the quality of an image from the viewpoint of its visual
appearance, considering an original noise-free image as
the reference. The UQI metric was initially developed for
quantifying image distortions based on several
perceptual features: luminance, contrast, and structural

similarities. ~Equation 5 is the mathematical
representation of UQI.

_ AptoltiTod &)
ver (12+13) (o2 +032)

where u is the mean of original image and ug is the
mean of denoised image 0,4 is the covariance between
original and denoised image, and 002, and adzvariance of
original and denoised image respectively.

Normalized Absolute Error (NAE)

NAE is used to test the performance of image
denoising algorithms. It compares the pixel intensities
between the original (noise-free) image and the denoised
image. It gives the absolute difference in the pixel values
across the whole image that is normalized by the sum of
pixel values of the original image. Equation 6 is the
mathematical representation of NAE.

il 3 To(an) ~Tu(a,b)| 6)
A IAC]
where I (a,b) is the pixel value of the original image
at (a,b) position and I4(a,b) is the pixel value of the
denoised image at (a,b) position,and M.N indicates the
size of the image.

NAE =

Perception-based Image Quality Evaluator (PIQE)

PIQE is a no-reference image quality assessment
metric based on the perception of human visual
characteristics. Unlike NAE, it does not require any
reference image, that is, the original image; hence, this
finds a very useful application in real scenarios where the
original-that is, noise-free-image may not be available.
Equation 7 is the mathematical representation of PIQE.
PIQE = w1 Y D, ™

Nhlock a=1

where Ny 1s the number of blocks in the image
and D, is the distortion score for a™ block.

Table 1 gives a brief description of evaluation metrics
that are used in denoising techniques.

Table 1: Comparison of different performance metrics

Metric Description Advantages Disadvantages

PSNR Measures the ratio of Simple, widely used, Sensitive to large
the maximum easy to compute. errors, does not
possible pixel value reflect perceptual
to the noise level (in quality well.
decibels).

SSIM Measures structural Correlates better Can be less effective
similarity based on with human for texture
luminance, contrast, perception, sensitive preservation and
and structure. to structural fine noise details.

distortions.

MSE Average squared Simple to compute, Does not correlate
difference between foundational metric. with human
the original and perception.
denoised images.

NIQE No-reference metric Suitable when Less reliable for
estimating reference images are synthetic noise.
perceptual quality  unavailable.
without ground
truth.

UQI Simplified version of Simple and
SSIM that measures interpretable.
similarity using
correlation
coefficients.

Does not fully
capture complex
perceptual nuances.

NAE Computes the sum  Provides normalized Less commonly

of absolute error measurement. used, lacks
differences perceptual insight.
normalized by the

sum of pixel

intensities.

PIQE No-reference metric Can assess
that evaluates block- perceptual
based perceptual distortions with no
distortions. reference.

Sensitive to high
texture areas.

Figure 14 displays the denoising performance of five
different methods (WNNM, Guided, NLM, DnCNN, and
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BM3D) applied to noise-corrupted MRI images at
different noise variance levels (0.01, 0.05, 0.09, and
0.50). The result of the algorithms for each noise
variance level is shown in the images in each column.
More severe noise applied to the original picture is
correlated with a higher noise variance. Each row
represents the effect of a specific denoising technique on
all values of noise. WNNM performance significantly
deteriorates with increased noise variability. At high
levels of noise, for example NV = 0.50, the image loses
definition and becomes fuzzy. Guided filter’s
performance is moderately good at low noise variances
(NV = 0.01 and 0.05) but struggles to maintain details
when noise levels are high, causing noticeable
distortions. Similar to the Guided filter, NLM performs
reasonably well at low noise but severely degrades with
larger noise fluctuations. Compared to classical filters,
DnCNN maintains robust performance with only slightly
better structure and detail preservation (e.g., NV = 0.05,
0.09). The best visual quality is achieved by BM3D at all
noise levels. In comparison, it retains details even at high
noise variance (NV = 0.50). In terms of detail
preservation and noise removal, BM3D always
outperforms the competition. DnCNN holds promise,
probably due to its deep learning structure, particularly at
medium noise levels. With increasing noise variance, the
conventional methods such as WNNM, Guided, and
NLM fail and lose important picture information.

Noise Variance

0.05

WNNM

Guided

NLM

BMID

Fig. 14: Sample images with different algorithms at different
Noise Variance

Table 2 compares the performance of five different
image denoising algorithms—WNNM (Weighted
Nuclear Norm Minimization), Guided Filter, NLM (Non-

Local Means), DnCNN (Deep Convolutional Neural
Network), and BM3D (Block-Matching and 3D
Filtering)—under various levels of noise variance (NV).
The results are evaluated using two metrics: PSNR and
SSIM. NV used here are 0.01, 0.05, 0.09, and 0.50,
respectively, covering a low to high range of noise.
Higher PSNR shows better noise removal and closeness
to the original clean image. Higher SSIM denotes better
structural and perceptual quality preservation. WNNM
performs poorly at low NV (for example, NV = 0.01)
with PSNR of 16.98 and SSIM of 0.36. Significantly
improves at higher NVs, especially at NV = 0.50, with
PSNR of 30.16. SSIM decreases drastically for higher
noise levels; structural content is not preserved well.
Guided Filter reasonable PSNR even at lower NVs-for
example, 29.98 at NV = 0.01. Performance degrades at
high noise levels, with a PSNR of 18.56 at NV = 0.50.
SSIM values are generally steady but low for all the
noise levels, and it indicates moderate structural
preservation. NLM is excellent at low NV; the PSNR is
30.64 at NV = 0.01. Performance degrades with an
increase in N'V; the PSNR drops to 18.23 at NV = 0.50.

Table 2: Comparison of different algorithms at various noise
variances by using PSNR and SSIM

Algorithms Noise Variance(NV) PSNR  SSIM
WNNM 0.01 1698  0.36
0.05 2325 022
0.09 23.06 0.25
0.50 30.16  0.06
Guided 0.01 2998 044
0.05 25.60 031
0.09 2382  0.26
0.50 18.56  0.13
NLM 0.01 3064 033
0.05 2494  0.19
0.09 2320  0.15
0.50 18.23  0.07
DnCNN 0.01 31.27 039
0.05 2560  0.25
0.09 2348  0.20
0.50 17.09  0.06
BM3D 0.01 3572 048
0.05 31.10  0.36
0.09 2938 031
0.50 2418  0.18

SSIM values also exhibit a similar trend, which
suggests that structural integrity is difficult to maintain at
higher noise levels. DnCNN achieves the highest PSNR
at low NV (31.27 at NV = 0.01), which is indicative of
the strength of deep learning-based methods. The
performance drops drastically at high NV, and PSNR
drops to 17.09 at NV = 0.50. SSIM values are moderate
but consistent, which reflects good detail preservation at
lower noise levels. BM3D algorithm outperforms all
other algorithms at most noise levels. At NV = 0.01
reaches the maximum PSNR of (35.72) as well as SSIM
value of (0.48). It has great performance at high levels,
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even the noise with 24.18 of PSNR and 0.18 of SSIM
was obtained when NV = 0.50. BM3D indicates the
highest performance among others both PSNR and SSIM
when tested in varying levels of noise and its the most
resilient of the above compared algorithms. DnCNN is
performing excellent at low noise, but it fails with higher
noise, possibly because it overfits on particular noise
levels during training. NLM and Guided filters work
reasonably good at low to medium noise but fail with a
higher noise level. WNNM improves very significantly
with higher noise level by PSNR but failed in the
structural details with poor SSIM. BM3D would excel
both in metrics whereas DnCNN and Guided Filters
maybe useful when a specific noise is more dominant, or
structures are dominant in the respective images to be
denoised.

Discussion

Image denoising methodologies have evolved, each
improving upon the previous techniques. First-generation
Gaussian Filtering applies a Gaussian kernel to
regularize an image and hence remove noise. Median
Filtering is an adaptive linear filter that does a better job
in preserving details but relies on knowledge of noise
characteristics. Wavelet Thresholding is a sophisticated
multi-scale analysis approach; it is more effective yet
suffers from limitation due to threshold selection and
possible artifacts. NLM is an improvement of patch-
based filtering that keeps fine details but increases the
computation. BM3D-Block Matching and 3D filtering-is
based on those patch-based methods and is considered by
the community as the gold standard of -classical
denoising. TV denoising seeks the minimum of total
variation so as to suppress noise while preserving sharp
edges. Deep learning—such as DnCNN—handles
complex patterns of the noise and establishes realistic
clean images. Even though deep learning-based image
denoising techniques have revolutionized the industry,
there are some practical issues that need to be addressed
before they can become mainstream. Some challenges
associated with deep learning methods are:

1. Large Datasets Are Required: Large labeled datasets
are required for a deep learning model to learn
efficiently, especially in cases of CNNs and GANS.

e Data Gathering: Finding huge datasets with
noisy and clean corresponding images is not
easy, especially when considering specialized
domains like astronomy or medical imaging.

e Data Heterogeneity: The diversity in the data
must come at different levels of noising, types,
and possibly image characteristics for
generalized cases. However, getting it in reality
is typically problematic.

¢ Costs of Annotation: It takes a lot of effort and
money to produce clean ground truth images
for supervised algorithms. Either way, taking
clear images in real-world situations often
requires either special tools or good luck.

1884

e Limitations of Synthetic Data: Even though
synthetic datasets are often used to compensate
for the lack of real data, they could not
completely represent the complexity of noise
in real-world scenarios, which may lead to
suboptimal model performance when used on
real images.

2. Significant Computer Power: Because deep learning
models involve iterative optimization and many
parameters, training them is computationally
expensive.

e High-End Hardware: Researchers and small
businesses might find the high memory and
processing capacity of GPUs or TPUs
necessary for training too expensive.

e Energy Consumption: Deep model training
consumes a lot of energy, thereby increasing
the cost of operations and environmental
issues.

¢ Inference Costs: Even implementing deep
learning models for real-time applications
(such video denoising or medical imaging)
may require a significant amount of processing
power, even though training requires a lot of
resources.

e Delay Problems: Complex models can cause
delay, which can impair performance in time-
sensitive applications like surveillance or
driverless cars.

3. Specific Issues with Generalization and Overfitting
for the Domain: Models created using certain
datasets could not be carried over to new data or
different noise distributions. For example, a model
that has been trained using Gaussian noise will not
work on speckle or salt-and-pepper noise.

e Overfitting: Deep learning models may do
great on training data but bad on noisy pictures
in the real world if there is either inadequate or
uneven training data.

4. Model Design and Training Architecture Selection
Complexity: To find the best architecture for image
denoising is very difficult because it requires a lots
of experience and trial.

e Hyperparameter Tuning: It can be some trial
and error in order to find the correct
hyperparameters, like learning rates, batch
sizes, and regularization factors.

¢ Long Training Times: Based on the size of the
dataset and the sophistication of the model, a
deep learning model may be trained for hours
or days.

5. Interpretability and Black-Box Nature: The inability
of deep learning models to be interpreted is one of
the common criticisms. Unlike traditional
approaches with well-established mathematical
underpinnings, it may be hard to understand or
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justify the predictions made by a deep learning
model. Trust and acceptability are limited in critical
applications like medical imaging due to its black-
box nature.

6. Problems with Real-Time Deployment:

¢ Footprint of Memory: This model is enormous,
making it challenging for large-scale
deployment on resource-limited edge devices,
like drones and smartphones.

e Instant Inference: An always-open problem to
decrease inference time with model size in
ways that don’t deteriorate the performance.
Although deep learning techniques for image
denoising provide unmatched performance, the
difficulties posed by the need for a lot of data
and a lot of processing power continue to be
major obstacles. Making these approaches
accessible and useful for wider applications
requires addressing these problems through
creative data collection strategies, effective

model design, and computational
optimizations.
Case Study

Medical imaging is a notable area of current real-
world denoising applications. In recent years, denoising
techniques have been applied widely in MRI and CT
scans to enhance the clarity of pictures. Noise in medical
imaging may be caused by low-dose scans or ambient
conditions during imaging, which complicates diagnosis.
Algorithms like BM3D, DnCNN, and deep learning-
based techniques have been used to enhance picture
quality. For example, COVID-19 CT scans Denoising
techniques were applied to CT scan data in the COVID-
19 era to help identify lung diseases while minimizing
radiation exposure and scanning time. Even with noisy
or limited data, algorithms helped create sharper images
for more accurate diagnosis. Another vital application
domain of denoising is underwater photography. For
example, Coral Reef Monitoring In aquatic settings,
imaging often has issues with noise due to lessened
visibility, especially when operating at deeper depths and
scattering caused by water particles as it filters the light.
The images of underwater environments are being made
better by BM3D and DnCNN that now easily track the
status of a reef or follow how the biodiversity changes
with time. Al models have been applied using deep
learning techniques to improve the quality of camera or
sonar data for autonomous submarines and underwater
robots. Underwater Archaeology Case Study Denoising
methods are used in underwater archaeology to improve
the visibility of submerged buildings or historic
shipwrecks that have been photographed by Remotely
Operated Vehicles (ROVs).

Conclusion

In this study, a comprehensive overview of image-
denoising techniques is provided, paying attention to the

development from classical methods to the most recent
advances in deep learning-based systems. Image
denoising, a fundamental pre-processing step in image
analysis, makes an effort to improve the quality of
images by eliminating undesirable noise while retaining
important information like edges and textures. Various
ways to address this difficulty have evolved throughout
time, each with its own set of strengths and limitations
based on the nature of the noise and the image’s features.
Traditional image denoising approaches, such as linear
filtering (Gaussian filters, Wiener filters) and transform-
domain  methods (wavelet transforms, Fourier
transforms), have been widely researched and utilized in
real-world  circumstances. These algorithms are
straightforward to apply and produce good denoising
results, particularly in the case of Gaussian noise.
However, they frequently struggle with more
complicated noise patterns such as speckle, Poisson, or
salt-and-pepper noise, which can result in over-
smoothing of edges and loss of fine information in the
image. Transform-based approaches, such as wavelet
denoising, contourlet, and curvelet transformations,
enhanced performance by exploiting multi-resolution
analysis and collecting geometric patterns in pictures.
Non-Local Means (NLM) and dictionary learning
methodologies established a strategy of utilizing self-
similarities in images. By averaging comparable patches
from the images themselves, these approaches effectively
retained image structures and outperformed previous
denoising methods. The development of deep learning
has drastically changed the field of image denoising.
CNNs and other deep architectures, such as
autoencoders, residual networks, and Generative
Adversarial Networks (GANs), have outperformed
standard approaches for denoising applications. These
models can automatically learn complicated noise
patterns and image characteristics using data-driven
methods, allowing them to handle a broad range of noise
types, including Gaussian, Poisson, and mixed noise.
CNN-based denoising algorithms, such as DnCNN and
its derivatives, have demonstrated a high degree of
generalization across varied noise levels without
previous knowledge of noise distribution. Despite their
success, deep learning-based methods come with their
own set of challenges. These models require substantial
amounts of labeled training data, high computational
resources, and careful architecture design to avoid
overfitting or performance degradation on unseen data.
Additionally, while deep networks excel at noise
removal, they may occasionally produce artifacts or fail
to preserve very fine image details, especially in edge-
sensitive applications. To mitigate these issues, hybrid
methods combining the strengths of classical and deep
learning techniques are emerging. Such methods aim to
leverage the interpretability and simplicity of traditional
approaches while harnessing the powerful feature
extraction capabilities of deep networks. To summarize,
the field of image denoising has made great progress,
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moving from traditional approaches to more advanced
and automated deep learning algorithms. The particular
application, noise characteristics, and available computer
resources primarily determine the optimal denoising
approach.
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