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Abstract: In this part of the research, an implementation of a distributed
vehicle tracking system that uses image processing techniques for real-time
automobile surveillance is done. The system uses OpenCV, Pytesseract and
Optical Character Recognition (OCR) for the extraction of the license plate
information from vehicle images to identify and track vehicles. By doing so,
distributed computing enables the system to handle the massive amount of
video data on different nodes to increase both efficiency and scalability. The
feature of this system is to utilise deep learning models such as YOLO to
detect objects, Deep Sort to track vehicles and ReID to recognise the same
vehicle across different camera angles. The improved vehicle tracking
performance is shown through the distribution of the computing, where the
data are processed in real time, and advanced machine learning is applied to
ensure reliability and accuracy. It is found that DeepSort is superior to the
other models in tracking accuracy, such as occlusion and dense traffic,
whereas YOLO excels in the initial detection. The system is evaluated by
metric such as rank accuracy, precision, recall, and it is found to be
exceedingly reliable in its real-world conditions. Image processing and
distributed computing are proven effective for vehicle tracking in research
that indicated a promising solution to traffic management and urban safety.
In order to improve the future, the constraint of resources and the algorithm
to deal with a complicated traffic environment will be taken into
consideration.

Keywords: Vehicle Tracking, Image Processing, Distributed Computing,
YOLO, DeepSort, Kalman Filters, ReID, Traffic Management

Introduction
Vehicle surveillance systems are crucial for

regulating and tracking car traffic in public spaces,
garages, and buildings. Systems improve greatly with
image processing as well as distributed computing.
OpenCV and Pytesseract image processing technologies
simplify car number plate extraction and identification
from photos. This procedure involves translating pictures
from RGB to black and white, softening and identifying
edges algorithms, and contour classification to identify
the driving licence plate (Alagappan et al., 2022). The
text on car licence plates is extracted using Optical
Character Recognition (OCR). The processing of this
data allows comparison to an existing database to
establish the car’s legal registration condition.
Distributed computing must be implemented to handle
massive volumes of images in real time across many
nodes. This ensures efficient data management and
allows for scalable platforms that can handle high traffic
without losing speed. A web-based interface allows

authorised people to quickly track and supervise
automobile status, admission authorisations, and
extensions. This link allows users to get real-time
warnings and updates (Wu et al., 2023). This technique
allows for the setup of a fully automated system that
enhances safety, reduces traffic, and enhances parking
efficiency, improving automobile tracking efficacy and
dependability.

The growing importance of automotive safety has
driven the invention of advanced monitoring
technologies with visual analysis along with
decentralised technology. Image processing techniques
including backdrop decrease, colour balance, and blob
filtration are needed to identify unusual activities around
parked cars. These advancements enable immediate
surveillance systems using vehicle webcams (Wibowo &
Heriansyah, 2021). Dispersed computing facilitates
processing and analysing data across multiple gadgets,
which may boost system performance. Both email and
SMS notifications can be utilised to notify vehicle
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proprietors about problems. Additionally, an integrated
monitoring website provides real-time image data and
developments, making it simpler to monitor cars. Image
manipulation as well as distributed processing improve
threat detection and automobile safety. This innovative
technology helps authorities investigate by securely
storing and analysing critical images and videos.

Background

In addition to advances in computational image
processing along with distributed technology, automobile
tracking systems have advanced greatly. Early car
tracking used non-vision sensors like The Global
Positioning System and loop analysers. This was because
these sensors were easy to use and required little
processing power. Despite this, the rise of surveillance
footage at traffic crossings has made vehicle monitoring
more accurate and comprehensive. In the end, image
processing allowed vehicle characteristics to be extracted
from video streams, enabling precise auto-recognition
and tracking mechanisms (Huang et al., 2022). The
initial image-based navigation algorithms were hindered
by many camera viewpoints and impediments. Initial
methods experienced these difficulties. Deep Learning
advances, especially the use of convolutional neural
networks including ResNet-50, have improved vehicle
re-identification (ReID). These advances have improved
picture characterisation, making ReID technology more
reliable. More accurate signature-matching strategies
have been developed using discriminative ReID learning.

Distributed technology was essential for managing
the massive quantity of data generated by video streams
from several endpoints. Distributed systems allow real-
time video data processing, enabling continuous traffic
observation and evaluation. Coordinating clocks across
intersections and using strict signature-matching
approaches allowed realistic vehicle movement length
computations (Zaiyi et al., 2021). These systems often
utilise correlation filter trackers. Such devices are
capable of managing fast-moving or form-changing
objects because of their high tracking velocity. Vehicle
tracking improved using cycle information from traffic
signals, addressing traffic arrangement changes. Flexible,
real-time automotive surveillance systems are possible
thanks to modern image processing and distributed
computing platforms. These tools improve roadway
management and smart city sustainability.

Fig. 1 illustrates the data flow of an automobile
tracking system powered by AI. The system comprises
four elements: the onboard unit (vehicle), the roadside
unit (communication), the centre, and the roadside sensor
(camera). The vehicle estimates collision threats, issues
warnings, and shares information with the
communication unit. The roadside unit senses and
anticipates vehicle actions while comparing information
with High-Definition (HD) maps. The centre processes
this information to detect vehicles in real time, while the

roadside sensor gathers video data to improve tracking
accuracy. This continuous transmission enhances
predictive capabilities and decision-making throughout
the system.

Fig. 1: Data Flow of AI-driven Automobile Tracking
Technology (Tak et al., 2021)

The analysis of images along with decentralised
technological study for car tracking has advanced urban
transportation analysis. The first tactics concentrated on
enhancing car recognition power by addressing object
distinction, shadows, and lighting conditions. Traditional
systems often struggled with dark cars, night vision, and
extreme weather. In the early 21st century, several
methods were created to overcome these limits (Tak et
al., 2021). Despite this, finding and classifying cars in
various contexts was tough. Since its implementation,
Machine Learning, particularly Deep Learning, has
transformed the observation of traffic. Several methods
have improved traffic image data vehicle detection speed
and reliability. YOLO and R-CNNs are instances of these
approaches. YOLO’s ascent to prominence may be due
to its ability to understand data right away, which is vital
for current systems that regulate traffic.

Distribution computing, which employs multiple
computing devices, has helped build traffic surveillance
networks. Highway cameras, traffic control facilities, and
car communication systems make current data collection
and analysis easier. Data can be obtained by installing
traffic cameras at intersections and sending them to
servers. Deep Learning systems examine photos to
identify, classify, calculate, and forecast car motions on
these servers. In a later step, this data gets compared to
HD maps to improve comprehension (Deng et al., 2024).
Corrective methods exist to address trajectory estimation
inaccuracies triggered by bounding box flaws and
heading mismatches. Enhancing vehicle location
calculations and using low-pass filters improved
trajectory calculations. Artificial Intelligence-powered
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identification and high-definition map links make
automobile monitoring and information available. This
serves to provide comprehensive traffic information,
including lane-specific flows and waiting periods. This
information is essential for roadway administration and
automatic vehicle functioning.

Materials
Table 1: Materials and their usage

Materials Used For
OpenCV Image processing, car number plate extraction

and identification
Pytesseract Optical Character Recognition (OCR) for text

extraction from car plates
YOLO Object detection in vehicle tracking
DeepSort Vehicle tracking, occlusion handling, and data

association
ReID Identifying and tracking vehicles across multiple

camera views
ResNet-50 Feature extraction for ReID (Re-identification)
PyTorch Implementing and training ReID model
Kalman filter Vehicle state prediction and tracking
Siamese network ReID model construction and vehicle feature

comparison
Fisheye and Pan Cameras Video capturing for vehicle tracking under

various angles
Virtual Private Cloud
(VPC)

Data storage and processing in cloud
environment

BackOffice Data analysis and management in cloud
VeRi Dataset Training the ReID model for vehicle re-

identification
Traffic Signal Timing
Data (SPaT)

Synchronization and phase-based vehicle
tracking

GPS Data Location tracking for vehicles
Traffic Control System
Data

Integration with vehicle tracking systems for
real-time management

High Definition (HD)
Maps

Vehicle movement prediction and comparison
with sensor data

Vehicle Registration
Database

Comparison of vehicle data for legal registration
status

Table 1 describes the material components of the
distributed vehicle tracking system. Image processing
and license plate text extraction are done on OpenCV
and Pytesseract. DeepSort deals with tracking and
occlusion, whereas YOLO recognises vehicles. ReID and
ResNet-50 are applied to vehicle identification within a
cross-camera setting, and PyTorch is applied in the
training of the models. Vehicle states will be estimated
using the Kalman filter. The Fisheye and Pan cameras
record the videos, which can be data-analysed in a
Virtual Private Cloud (VPC). The ReID training utilises
the VeRi dataset, and GPS, HD maps help to track and
predict.

Methods
The automobile tracking appliance can detect and

monitor motorists from many camera angles, providing a
full traffic surveillance solution. The system analyses
traffic video footage from many intersections and
provides vehicle itineraries using an architecture that

monitors various things and webcams. The technology
can offer vehicle movement data. Incorporating many
tracking devices and using algorithms with deep
learning, the system achieves excellent precision as well
as effectiveness in real-time vehicle supervision.
Preliminary single-camera surveillance is conducted
using a Deep Learning-based recognition of objects
algorithm. The system uses the "You Only Look Once"
(YOLO) architecture (Huang et al., 2022). It will be
trained by employing fisheye video examples after
development to accommodate fisheye lens aberrations.
The YOLO system can recognise several road items.
These consist of cars, buses, trucks, motorcycles, and
people. This method requires identifying things in every
video frame. Maintaining a continuous tracking ID for
each car spotted across several frames is also required.

Fig. 2: Automobile Monitoring Approach with Multicamera
Cutting-edge Technology (Nikodem et al., 2020)

Fig. 2 shows a technology using an array of FLOW
cameras connected in a network. These cameras can
record vehicles in real time and transmit information to a
gateway linked to a cloud system. The data is processed
within a virtual private cloud (VPC) environment, where
it is stored and analyzed via the BackOffice. Clients can
then access the processed information through laptops or
similar devices, enabling easy monitoring and tracking of
vehicle movements. This approach enhances real-time
analysis and response speed.

DeepSort, a popular deep learning-based tracking
method, has been incorporated into the system to avoid
occlusion. This is crucial when commercial vehicles are
going through the area. It is crucial in congested
crossroads (Khasim et al., 2022). DeepSort blends
iterative filtering using Kalman, frame-by-frame data
organisation, and single-hypothesis tracking.
Automobiles are temporarily concealed from view, but
this helps preserve their unique traits. This aspect uses
the cosine distance measurement to measure object
property differences. As a result of this, the algorithm
can distinguish automobiles with similar appearances
more accurately.

Multi-camera tracking occurs using a ReID (Re-
Identification) part with a video-based signature. It
matches vehicle tracklets from different camera angles
(Zaiyi et al., 2021). This section extracts car feature
representations using a VeRi-trained deep learning
model. It extracts distinct depictions of features. Siamese
networks are utilised to build the ReID model. This

http://192.168.1.15/data/13280/fig2.png
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architecture has two submodels: classification and
confirmation. This structure is used for ReID model
construction. The car classification model categorises
cars by visual features using the softmax loss method.
However, the confirmation model uses binary
classification to determine whether two car photos
indicate the same vehicle. These two reduction functions
increase the system's capacity to recognise cars across
non-overlapping camera viewings (Dong et al., 2022).

This can be executed via green-light dates and times.
In order to generate a distance matrix, track
characteristics including signature alignment, camera ID,
timezone, and authentic track ID are employed. Finding
the most probable matches is easy with this matrix,
making tracking characterisations from several cameras
easier to compare.

Fig. 3: Vehicle Tracking Methods Employing YOLO (Kunekar
et al., 2024)

Fig. 3 illustrates how vehicle tracking is implemented
using YOLO (You Only Look Once) within a distributed
vehicle tracking system based on image processing. The
process begins with importing the required packages and
loading the YOLO v7 model. Frames are extracted from
a video file and pre-processed to optimize them for
YOLO analysis. The model then detects and counts
vehicles, compiling real-time counts while predicting
traffic signals based on the gathered data. This enables
improved traffic management, with YOLO’s speed and
accuracy allowing efficient integration of object
detection and real-time monitoring processes.

The system also has a section that calculates auto
travel time between intersections. It uses harmonised
timestamps from recorded automobile departures and
arrivals at various crossroads. These timestamps come
from crossings (Dilek & Dener, 2023). The departure and
arrival date stamps from the initial shot of the
automobile passing the line for stopping at each
intersection may be applied to quantify time. This
method provides precise time calculations (Azimjonov &
Özmen, 2021). Travel time data is visualised to analyse
vehicle circulation and identify patterns, which aids
traffic control and scheduling. Distributed technology
serves as an essential component for system efficiency
due to the immediate interpretation of massive volumes
of visual data from multiple sensors. The system's
architecture allows simultaneous video stream analysis.

For automobile identification and monitoring, each
camera works autonomously. The observations from

each camera are integrated and synced to provide a
cohesive representation of automobile paths throughout
the controlled zone. This decentralised technique can
manage massive volumes of data while maintaining
equilibrium, making it ideal for programs that monitor
massive quantities of traffic.

Fig. 4: Car Tracking Strategy using ReID (Han et al., 2023)

Fig. 4 illustrates a car tracking approach based on
ReID (Re-identification) using the DLA-lite model. The
process begins with a sequence of frames input into the
DLA-lite network, where vehicles are detected. The
detection output includes components such as a heatmap,
bounding box size, and center coordinates, representing
the vehicle’s position and shape. Once vehicles are
detected, ReID embeddings are generated, enabling the
model to identify which vehicle in one frame
corresponds to another in subsequent frames. These
embeddings, visualized as colored vectors, act as unique
identifiers to maintain vehicle identity across time,
ensuring accurate and real-time tracking in video
surveillance systems (Song et al., 2019).

Vehicle Detection and Tracking

YOLO Object Detection
YOLO (𝑥, 𝑤, ℎ) = {𝑥, 𝑦, 𝑤, ℎ, 𝑐}

Kalman Filter Prediction
𝑥^𝑘∣𝑘−1 = 𝐹𝑥^𝑘−1∣𝑘−1 + 𝐵𝑢𝑘

Kalman Filter Update
𝑥^𝑘 = 𝑥^𝑘∣𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥^𝑘∣𝑘−1)

Cosine Similarity
Cosine_Similarity(u, v) = ∥u∥∥v∥u⋅v

Vehicle Signature ReID

Classification Loss
Classif(𝑓, 𝑡, 𝜙𝜃) = ∑𝑖=1𝐾 − 𝑝𝑖log(𝑝^𝑖)

Verification Loss
Verif(𝑓₁, 𝑓₂, 𝑠, 𝛾𝜃) = ∑𝑖=1² − 𝑞𝑖log(𝑞^𝑖)

Since this design includes classifications and testing
models, a Siamese network layout for vehicle ReID
technology is essential. Segmentation and validation
losses are essential for network training to acquire
discriminatory depictions of features (Ali et al., 2021).
Stochastic gradient descent and adaptive learning rate
management will improve network characteristics.

http://192.168.1.15/data/13280/fig3.png
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Multi-Camera Vehicle Tracking

Distance Matrix Calculation: 𝑑𝑖𝑗 = 1−cos(𝑡𝑖, 𝑡𝑗).

Calculating the distance matrix using track attributes
is essential for reliably comparing tracklets taken by
different cameras. Multi-object surveillance may be
improved by merging tracklets according to merger
criteria. SPaT data is needed to classify tracklets into
phases using green light timestamps. The
synchronisation and navigation precision improve with
this technique.

Travel Time Estimation

Travel Time Calculation: Travel = 𝑡*camera B/arrival −
𝑡*camera A/departure.

Extracting the final tracking data from several
cameras is needed to get image departure and arrival
timestamps. Once the trip is over, subtract the entry
timestamp from the date it leaves to compute the
duration. Time frames for travel will be given to aid
research and traffic flow knowledge. The method used
conveys the mathematical principles and operational
techniques employed for imagery processing alongside
distributed computing for automotive surveillance
systems using detailed equations and processes (Jung et
al., 2018). This includes object recognition, matching of
features, observing, and analytics.

Using several cameras, these methods provide
accurate and efficient traffic control and vehicle tracking.

Error analysis for the distributed vehicle tracking
system is performed in a systematic manner in which
failure modes such as false positives, false negatives, and
tracking failures are studied under different
environmental conditions. The system checks for false
positives to rate false positives; i.e., vehicles where
vehicles are mistakenly identified as present (Wang,
2022). This can be quantified by the False Positive Rate
(FPR), given by:

For false negatives, where vehicles are not detected
when they should be, the system uses the False Negative
Rate (FNR), defined as:

The tracking failures are analysed by understanding
how well the system can keep the vehicles continuously
identified over many frames and camera views,
especially during occlusions or high-density traffic. The
method determines the tracking failure rate as the ratio of
many instances where vehicles are lost in tracking to the
overall number of vehicle detections using a Tracking
Failure Rate (TFR) metric (Elngar & Kayed, 2020).

The method is sensitive to camera resolution, vehicle
speed, and lighting condition changes, and these are

evaluated in a sensitivity analysis. The sensitivity
measures camera resolution for which can be measured
by varying resolution and assessing its effect on the
detection accuracy. The sensitivity of detection accuracy
A to resolution R can be defined as:

Then, its impact on accuracy is evaluated by
computing the partial derivatives S with respect to the
vehicle speed V and L with respect to lighting
conditions. The composite measure is determined by
considering interference parameters and adjusted overall
sensitivity.

Methods like calculating p-values, confidence
intervals, and error margins are applied to validate the
methods for statistical purposes. The p-value is used to
determine, to what degree, are the observed results are
statistically significant (Ali et al., 2021). The test statistic
that is calculated and used for the p-value is compared to
what would be observed under the null hypothesis: its
distribution. The p-value less than 0.05 is interpreted as
statistical significance. CI are computed to convey
plausible ranges of possible system performance metric
values, such as detection accuracy A:

Where,

 is the sample mean, Z is the Z-score, σ is the
standard deviation, and n is the sample size.

The error margins are also computed to quantify the
uncertainty in the system prediction, and this is
performed by measuring the range in which the value of
the actual value is expected to lie (Deng et al., 2024).
The statistical validation ensures the models, such as
YOLO, DeepSort, ReID perform in a targeted way under
any conditions.

Fig. 5: Multi-camera Image Processing System to Track
Vehicle Travelling.

Results
The system uses signature ReID, single-camera

observing, pairwise signature synchronisation, and
phase-based signature integration to provide accurate

FPR =
False Positives+True Negatives

False Positives

FNR =
False Negatives+True Positives

False Negatives

TFR =
TotalDetections

Tracking Failures

CI = ±Â Z ∗
n
σ

Â
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travel-time estimations and exact tracking of many
objects across many cameras.

Fig. 5 portrays the results at two intersections, WUA-
13 and WUA-17. It highlights how efficiently the system
matches vehicles across cameras, with noticeable
differences in travel times between intersections. At
Intersection 1, vehicle travel times range from 511 to 625
seconds, whereas at Intersection 2, they range from 548
to 601 seconds. The consistency in these travel times
demonstrates the system’s success in real-time vehicle
tracking, maintaining a relatively low variance in time
delays. These findings indicate the potential for accurate
identification and tracking of vehicles across wide areas
using this multi-camera system.

Image processing has been employed to prepare the
transportation video data from many cameras at three
crossroads. The compilation includes an uncut
transportation video. This video was taken employing
fisheye and pan cameras with different resolutions. The
video clips from the pan sensor are 1280x720, while
those from the fisheye sensor are 1280x960. Each video
clip is 16-20 minutes long and divided into 8-9 sections
(Huang et al., 2022). The single-camera surveillance
component uses YOLO object identification to recognise
cars in every frame. DeepSort, which uses cyclical
Kalman selection for mobility anticipation and
sequentially data association, monitors discovered
objects. For precise forecasting of vehicle states, Kalman
filter algorithms are applied (Mostfa & Ridha, 2019).
This module tracks cars in specific camera angles
throughout the process.

Fig. 6: Pairwise Signature Matching Implementation

Fig. 6 shows the Pairwise Signature Matching
Implementation, demonstrating the system’s ability to
match vehicles effectively across different camera
angles. It applies the ReID technique, using a signature
discriminator threshold of 0.7 and a ResNet-50 model
trained on the VeRi dataset. This approach enables
efficient vehicle matching through unique phase-based
signature analysis. PyTorch is used to finalize the ReID
signature distinction deployment. The minimal
differences in travel times confirm the system’s
effectiveness in real-time vehicle identification and
tracking, supporting its accuracy and stability in multi-
camera environments (Wang, 2022).

ReID calculates travel time between crossings by
extending the matching process. After calculating the trip

length based on intersection data, the algorithm considers
the chronological sequence in which automobiles pass
through intersections. Phase-based corresponding has
become a useful strategy for accurately predicting drive
times between crossings. Travelling times can be
calculated more accurately (Ge et al., 2023). The
distributed computing component processes data from as
many webcams as possible. The multi-object multi-
camera navigation software processes fisheye and pan
camera data. The method independently analyses three
fisheye and two pan-sensor video sequences. It maintains
two tracking stations concurrently. This decentralised
approach makes managing data from several camera
angles economical. Examining the trial results yields a
lot of automotive tracking system productivity data. The
qualitative investigation shows that signature matching
works (Tak et al., 2021). This has been demonstrated
visually via vehicle engagement patterns, camera
monitoring, and estimated travel lengths.

Fig. 7: Signature ReID Evaluation

Fig. 7 illustrates the Signature ReID Evaluation,
showing that the system effectively matches vehicle
signatures across different camera angles. The top-10
matching performances demonstrate that the vehicle
signatures from multiple cameras consistently identify
the correct query vehicles, as indicated by the sorted list
of vehicle images. These findings confirm the high
accuracy of the system in detecting and tracking
vehicles, with top-ranked matches in all queries. This
highlights the efficiency of the ReID approach in
handling multi-camera vehicle tracking and signature
matching in real time.

In the quantitative results, rank-1, rank-5, rank-10,
and mean average accuracy (mAP) are utilised to
evaluate the signature ReID network. These criteria
assess the network's reliability using the test dataset, the
system showed excellent accuracy in all cases,
encompassing single and multiple searches. The research
found that the system can track automobiles from many

http://192.168.1.15/data/13280/fig6.jpeg
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camera angles and determine the travel time between
passageways. It is said that the technology matches
vehicle signatures and monitors cars at different stages
and intersections well.

The system's outstanding precision and low rate of
recall imply this. The technology also performs real-
time, handling fisheye and pan camera recordings below
the required standards (Chiang et al., 2023). This is
another system benefit. In order to prevent future issues,
independent traffic evaluations should be executed. This
is crucial for larger crossings with complex flow of
traffic. Updating the technique to include grid
networking and an assortment of guidelines, including
left and right turns, may increase the system's capacity to
handle a broad spectrum of traffic problems.

Due to the combination of algorithms for image
processing with collaborative computing, a car tracking
system may offer highly precise and effective tracking
remedies for traffic control operations (Elngar & Kayed,
2020).

Fig. 8: Travel Time Surveillance Findings

Fig. 8 illustrates travel time surveillance, showing the
travel time distributions between two intersections, A-B
and B-C. The data indicate that vehicle travel time from
Intersection A to B ranges between 511 and 625 seconds,
while from Intersection B to C it ranges between 548 and
601 seconds. These results reveal minimal variation in
travel times, implying that the system performs with high
accuracy and minimal delay. The effective cross-camera
vehicle matching further demonstrates the efficiency and
real-time tracking capability of the multi-camera system.

There are advantages and disadvantages to using
photographic processing and dispersed computation to
track motor vehicles. Durable ReID allows perfect auto-
matching over a wide variety of camera angles. This
allows for good tracking even in difficult traffic
conditions, which is a major benefit. A distributed
computing system improves versatility and rapidity by
efficiently handling data from several cameras (Wu et
al., 2023). Traffic administration and optimisation may

benefit from the phase-based matching approach, which
estimates journey time. The trip time estimate is another
use of this method. Given that, it is vital to consider
further downsides. As it uses models that have been
trained for signature ReID, the system's adaptability to
different scenarios and automobiles may be limited. This
may impair accuracy in certain cases. Distributed
computing requires a lot of RAM and powerful GPUs,
which may cause problems in zones with scarce
resources (Deng et al., 2024).

Obstacles, illumination, and camera settings issues
may also affect system functionality. These factors may
cause vehicle surveillance and identification mistakes
(Herunde et al., 2020). The displayed methods boost
vehicle monitoring exactness and potency, but in
progress modification and efficiency are needed to
surpass restrictions and ensure reliable performance in an
abundance of situations in reality.
Table 2: Statistical Validation

Models p-value Confidence Interval (CI) Error Margin (EM)
YOLO 0.032 0.85 ± 0.05 ±0.03
DeepSort 0.048 0.90 ± 0.04 ±0.02
ReID 0.027 0.88 ± 0.03 ±0.01

The analysis in Table 2 shows that the ReID model is
the best of the three because it has the lowest p-value of
0.027, which implies stronger statistical significance. It
also possesses a confidence interval of 0.88 0.03 and the
closest margin of error of ±0.01, which is an indication
of a high level of precision in its performance. It means
overall that ReID gives the least chance of error, likely
results in vehicle tracking compared to both YOLO (p-
value 0.032, margin of error ±0.03) and DeepSort (p-
value 0.048, margin of error ±0.02). Thus, ReID is
effective in terms of accuracy and statistical reliability.

Finally, statistical validation results indicate that all
three models have statistical significance (as shown by
their p-values). Each model has a reasonable range of
performance reflected in the confidence intervals, the
latter representing the models’ expected detection
accuracy. Error margins show the uncertainty levels of
their predictions, and ReID is the most uncertain among
all the prediction classes. Overall, the findings reinforce
that the models are stable and dependable in vehicle
detection, tracking and identification in a variety of
circumstances.

As shown in Fig. 9, the analysis results of Table 3
reveal that DeepSort performs best under lighting
conditions, recording a maximum Rank-1 accuracy of
0.88 and a mean average precision (mAP) of 0.90. ReID
also performs well under occlusion with a Rank-1
accuracy of 0.88. YOLO demonstrates strong accuracy in
scenarios involving varying camera angles, achieving a
Rank-5 accuracy of 0.94. Overall, all three models
exhibit good performance under different conditions.
YOLO excels under lighting and camera angle variations

http://192.168.1.15/data/13280/fig8.png
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but drops slightly during occlusion, whereas DeepSort
consistently achieves high accuracy, especially in well-lit
conditions. ReID maintains solid performance across
most scenarios, showing slight degradation only in
occlusion cases. In summary, DeepSort and ReID prove
more robust to challenging environments, with strong
detection, tracking, and identification capabilities.
Table 3: Performance Metrics

Models Condition Rank-1
Accuracy

Rank-5
Accuracy

Mean Average
Precision (mAP)

YOLO Lighting 0.85 0.94 0.88
YOLO Occlusion 0.80 0.90 0.82
YOLO Camera

Angle
0.83 0.92 0.85

DeepSort Lighting 0.88 0.96 0.90
DeepSort Occlusion 0.80 0.94 0.82
DeepSort Camera

Angle
0.85 0.97 0.90

ReID Lighting 0.83 0.92 0.88
ReID Occlusion 0.88 0.94 0.86
ReID Camera

Angle
0.81 0.94 0.91

Fig. 9: Comparison between Each Model

Figure 9 depicts how the YOLO, DeepSort, and ReID
work in various conditions. ReID always achieves the
highest performance in all conditions with the best
results for Rank-1, Rank-5, and mean average precision (
mAP). Although YOLO and DeepSort experience ups
and downs when subjected to different lighting
conditions, occlusion, and different camera angles, ReID
remains stable. This implies that ReID has better
robustness and reliability to track vehicles, and hence,
the most effective model even in the harsh conditions of
various environments.

The final performance is the result of the contribution
of each component to special detection and tracking
aspects. DeepSort is able to track frames with accurate
vehicle detection even when the vehicle is occluded,
while YOLO is an initial vehicle detection with almost
adequate accuracy in various conditions. ReID restores
the problem of consistency in tracking from a more
restricted camera angle to a broader situation by having
successfully used it for vehicle ID on multiple angles.
This accounts for detection, continuity and identification

in different types of scenarios, and together they
constitute a robust system.

Since DeepSort is the most superior model compared
to the rest due to its good tracking capabilities including
handling occlusions and keeping continuous
identification over time. This also integrates it to Kalman
filtering and to iterative data organization for reliable
performance under high density traffic conditions. Even
though YOLO and ReID do pretty well in detection and
identification, DeepSort is way superior with respect to
robustness and accuracy in general under different
scenarios.

Fig. 10: Performance Evaluation

As illustrated in Fig. 10, the quantitative analysis of
YOLO, DeepSort, and ReID models is based on
precision, recall, and F1-score metrics. YOLO achieves a
precision of 0.85, recall of 0.80, and an F1-score of 0.82.
DeepSort records a precision of 0.88, recall of 0.84, and
an F1-score of 0.84, while ReID demonstrates balanced
performance with precision, recall, and F1-score values
of 0.85, 0.83, and 0.85, respectively. The results indicate
that DeepSort outperforms YOLO and ReID due to its
ability to track vehicles effectively under occlusion and
dense traffic conditions, making it the most reliable
model for continuous vehicle identification. YOLO
performs best for initial vehicle detection, especially
under varying lighting and camera angles, whereas ReID
excels in identifying vehicles across different cameras.
DeepSort’s integration of Kalman filtering and iterative
data association contributes to superior accuracy and
consistency in real-world environments.

This has been found that all three models had similar
failure modes, namely false positive, false negative and
tracking failures and especially in high-density traffic
and occlusion conditions. Generally, YOLO was known
to generate a lot of false positives, especially in poor
lighting and occluded environments. In the case of
normal conditions, DeepSort is robust but fails in
tracking during occlusion and even fast-moving vehicles.

In the case of ReID, false negatives under occlusion
were problematic for distinguishing vehicles at different
angles. The detection accuracy was very sensitive to
camera resolution, although both higher and lower
resolutions enhanced accuracy for all models. As with

http://192.168.1.15/data/13280/fig9.png
http://192.168.1.15/data/13280/fig9.png
http://192.168.1.15/data/13280/fig10.png
http://192.168.1.15/data/13280/fig10.png
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tracking precision, vehicle speed influenced the
correctness of tracking, with tracking falsely identifying
more with faster speeds, particularly with YOLO. The
lower accuracy for YOLO and all models was dominated
by lower lighting conditions. The analysis overall was
found to be that camera resolution and lighting were
crucial in maintaining optimal performance of vehicle
tracking systems.

The vehicle tracking system was many times tested in
the real world to the extremes to test its robustness. The
tests were conducted in extreme weather (heavy
precipitation including rain and fog) that made it difficult
to determine vehicle location accurately. The system was
also tested in varying lighting conditions, from fully
bright daylight to low lighting environments at night,
whose lighting conditions changed. The system was
evaluated on dense traffic scenarios and was able to track
multiple vehicles, especially in the case of occlusions
and rapid vehicle motion through the intersection. The
system would behave correctly, with some amount of
false positives, false negatives and tracking failures in
these high vehicle density and poor visibility conditions.
Some atmospheric challenges, such as weather out of the
ordinary and foggy nights, undercut the total
effectiveness and accuracy of the system, even though
the tests had demonstrated that it was perfect.

In testing of the models, different levels of robustness
were achieved for different traffic patterns, vehicle types
and camera angles. Under stable conditions, lighting, and
camera angle, YOLO did quite well with high accuracy
in lighting and camera angle tests, reaching a rank 1
accuracy of 0.85 for lighting and 0.83 for camera angle.
Nevertheless, it had a Rank of 1 accuracy (0.80) under
occlusion. Rank-1 accuracy of 0.88 in lighting and 0.85
in camera angle tests is the highest achieved by all, with
consistent performance in both cases. It was notable for
its robustness to occlusions that it maintained a Rank 1
accuracy of 0.80. In lighting, ReID had solid
performance, scoring 0.83 in Rank 1 accuracy, and was
slightly lower in occlusion, 0.88 in lighting and 0.81 in
camera angle tests. To test under dense traffic as well as
different vehicle types, the system performed well, with
DeepSort achieving the best accuracy again, especially in
noisy environments, which demonstrates its superiority
in real-world applications.

This analysis uses several potential limiting models.
Although YOLO is great for getting an initial vehicle, its
accuracy decreases as vehicles become occluded or move
quickly, resulting from dense traffic conditions. Another
drop is also in low low-light environment. Although
DeepSort has a strong tracking ability, it is challenged
when presented with very high vehicle density, where
occlusion may still hinder continuous tracking. In
addition, Kalman filtering plays a major role, and it may
not do well in situations with quickly changing traffic
(Mostfa & Ridha, 2019). Although useful for multi-
camera vehicle identification, ReID is subject to

challenges in discriminating such vehicles under
occlusion from different viewpoints. Physically, it
requires higher computational resources for the accurate
matching, which makes it not as efficient as in the cases
of real-time applications with large datasets. They lack
the ability to identify the overall performance in
complex, noisy or dynamic traffic environments.

Due to resource constraints (limited memory and
processing power), the system suffers from huge
performance degradation in the distributed vehicle
tracking system (Vallikannu et al., 2022). On the
contrary, when there is insufficient available memory, the
system may not be able to process a large number of
video files and resulting in slow data handling and might
result in a system crash (Wang et al., 2023). It may fail to
process objects sufficiently in a timely manner, resulting
in reduced real-time performance of the system.
However, this becomes quite visible when we are dealing
with multiple video streams at the same time because
these models, like YOLO, DeepSort, and ReID require
huge computational resources. Higher latency, lower
accuracy in vehicle identification, and a greater number
of false-positive and false-negative interactions are
possible to experience under such conditions (Zaiyi et
al., 2021). Such failure may result in vehicle tracking
interruptions if all necessary data is not processed by the
system in extreme cases. The influence of these resource
limitations increases with an increasing number of
cameras or the increasing complexity of the traffic
environment, and limits system reliability and efficiency.

Discussion
Analysis of the distributed vehicle tracking system

has provided a number of crucial results indicating that
the innovative technology of image processing and
distributed computing is productive. The system
developed good precision and reliability when detecting
the location of vehicles from various camera perspectives
and environments, particularly in a real-time
environment. As demonstrated statistically, the vehicle
tracking accuracy was checked with the help of various
indicators, including Rank-1 accuracy, mean average
precision (mAP), and travel time estimations, which
indicated the consistency of the system. DeepSort
became the most trustworthy one; it worked better than
YOLO and ReID in certain complex situations,
especially in dense traffic and occluded settings. YOLO
performed well when detecting vehicles early on,
particularly in different lighting conditions and also
camera positions, whereas ReID was useful in
identifying vehicles consistently in non-overlapping
views. The system proved to be capable of following
vehicles with minimum time lapse, and thus it was
capable of giving accurate information on the time taken
to travel between intersections.

Although these strengths existed, the study also
discovered that there are some limitations and challenges
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that affected the performance of the entire system. The
first was the tendency of the system to make false
positives, false negatives, and even tracking failures
where the traffic was dense or it occurred during
occlusions. As an example, YOLO had an accuracy drop
in occluded vehicles or when moving fast to produce
false positives, particularly under low-light conditions.
DeepSort has shown itself to be a powerful tracker, but
in high-density traffic, it also had difficulty when
tracking was interrupted by occlusion even in high-
density traffic. ReID is accurate in vehicle re-
identification, but it was unable to distinguish between
vehicles occluded and those in other camera angles.

The environmental conditions, including the lighting
problems and weather effects, including rain and fog,
also affected the functioning of the system, and thus
worsened the accuracy of detecting and tracking vehicles
(Nikodem et al., 2020). The system is also resource-
demanding, and thus, its demand had to consumes a lot
of computing capacity, which leads to a bottleneck in the
system. The huge amount of information that could be
created by several video streams burdens the possibility
of system to process data in real-time, particularly in
cases of many cameras used or in complex traffic
conditions. It caused increased latencies and a decrease
in identification accuracy and even crashes of the system
in environments where resources are low (Kunekar et al.,
2024).

In order to overcome these weaknesses, the study
proposes a number of possible solutions. To develop a
more robust tracking algorithm, one can address the
problem of using enhanced occlusion handling with the
system to improve its performance in occlusion
circumstances. Also, the models should be streamlined to
be less cognitively taxing, potentially through the
integration of edge computing or changing more cost-
efficient data-handling strategies (Han et al., 2023).
Embedding of complex machine learning algorithms,
including better feature extraction and cross-modal
sensory merging, may work on enhancing performance
in harsh environmental conditions. Additionally,
applying adaptive models to varying density and
environmental situations would enable the property of
scalability and reliability of the system used in the real
world.

Conclusion
Traffic management and monitoring may be

enhanced by adding the processing of photographs and
remote technology to automobile tracking systems.
Comprehensive study and evaluation have proven that
this strategy improves auto identification and tracking
over a wide range of perspectives and intersections. A
systematic strategy that includes YOLO object
identification, DeepSort surveillance, and ReID signature
identification may accomplish exact tracking even in

congested areas. This occurs because the systematic
technique needs a combination of these components.
Distributed computing can quickly handle and analyse
massive volumes of sensor data.

The findings showed distributive computing's
effectiveness. Phase-based signature matching can
estimate intersection travel time. This technology
improves congestion control and maximising which are
crucial to transit. The system's ability to be modified
quickly and handle various traffic circumstances shows
the capacity to improve road travel quality and safety
(Elngar & Kayed, 2020). Planning for the future requires
considering many potential options and scenarios. First,
algorithms must be constantly designed and refined to
circumvent limits and improve responsiveness to a wide
range of traffic conditions and drivers. This is the only
method to get past these limits. Additionally, overcoming
distributed computer resource boundaries is crucial. This
may be achieved by searching for novel system
structures or optimising components.

Persistent study and creation should prioritise the
latest innovations including machine learning and
artificial intelligence in order to enhance fleet control
systems. This allows future improvements. This entails
researching new methods for identifying, tracking, and
interpreting data to improve its reliability and
pinpointing. Grid connections and advanced traffic
administration systems may improve the system's ability
to handle complex traffic scenarios. Collaboration with
transit agencies and industry partners is necessary to
acquire real-world data and feedback for system creation
and validation. This speeds up production and
confirmation (Wu et al., 2022). The findings suggest that
image analysis along with collaborative assessment
might reduce the possibility of road accidents. These
technologies may improve urban congestion prevention,
protection and economy with continued study and
collaboration.
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