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Abstract: Pleural effusion is an abnormal accumulation of fluid in the
pleural cavity, posing a significant thoracic issue with various causes. Even
with a variety of diagnostic techniques, accurate diagnosis remains
challenging. Delays in diagnosis and treatment heighten the risks of the
disease. In this paper, we introduce a novel approach by leveraging the Grey
Wolf Optimizer (GWO) to systematically optimize pretrained models for
detecting pleural effusion in chest X-rays. Our need for optimization stems
from the obstacles encountered in recent studies on diagnosing pleural
effusion. Previous studies have relied on trial-and-error parameter tuning,
which has entailed high computational costs and made training more
difficult. Proper parameter tuning improves model performance. Therefore,
in this paper, we utilize the GWO model to fine-tune the parameters and
enhance the performance of our pretrained model performance in detecting
pleural effusion. However, due to the challenges of applying the
optimization model to the entire dataset, we will use a subset, referred to as
the "Small ChestX-Ray14" dataset. This not only reduces the computational
demands of optimization but also addresses the dataset imbalance in
ChestX-Ray14, which could affect performance. The GWO-ResNet18
model achieved a significant improvement in performance on the Small
ChestX-Ray14 dataset, attaining an Area Under the Curve (AUC) of 95.1%
and an accuracy of 89.07%. In comparison, the baseline ResNet18 model
achieved an AUC of 93.3% and an accuracy of 86.59%. Building on this
success, the optimized hyperparameters were transferred to the full ChestX-
Ray14 dataset to evaluate the model’s performance on a larger scale,
resulting in an AUC of 88.48%, compared to 87.36% with unoptimized
hyperparameters. This surpasses both ResNet18 with unoptimized
hyperparameters and state-of the-art methods. Our results indicate that
optimizing pretrained models, specifically through the use of GWO,
improves medical image interpretation and enhances disease diagnosis, such
as that of pleural effusion.
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Introduction
Thoracic diseases, such as pneumonia, tuberculosis,

cardiomegaly, and pleural effusion, are among the most
common serious health issues, causing millions of deaths
each year. Therefore, early diagnosis and treatment of
these diseases are crucial in the medical field, as they can
save many lives. (Mostafa et al., 2022; Singh, 2024).
Pleural effusion is an abnormal accumulation of fluid in
the pleural cavity. It is one of the most serious thorax
diseases, caused by a variety of reasons, and despite the

availability of several diagnostic modalities, its diagnosis
is still challenging (Chen et al., 2021; Liu et al., 2022).

One of the most commonly used medical imaging
techniques in diagnosing lung diseases is chest
radiography, also known as Chest X-ray (CXR) (Usman
et al., 2022). CXRs have many advantages, such as their
low cost and ease of use. Therefore, they are frequently
utilized to diagnose lung diseases such as tuberculosis,
pleural effusion, and interstitial lung disease. However,
accurately interpreting and analyzing CXR images
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remains a significant challenge for doctors, as
distinguishing between similar diseases relies on the
judgment of experienced specialists. Despite the high
demand for medical image analysis, the number of
qualified doctors capable of providing precise
interpretations is limited. Moreover, human eyes can
grow weary, so wrong interpretation and analysis of
CXR images tend to occur, which can result in false
diagnoses of lung diseases (Singh, 2024).

Researchers have been exploring how to utilize
computer technology to enhance the accuracy of lung
disease detection in medical images. Computer-aided
detection systems have become a significant research
focus due to the widespread use of CXRs and the
difficulty of interpreting them. In this context, Deep
Learning (DL) has emerged as a powerful approach,
playing a crucial role in the medical field, particularly in
improving the analysis of CXR images. By leveraging
advanced DL models, the accuracy and efficiency of
detecting chest diseases have significantly improved,

DL a key tool in modern medical diagnostics. (Sanida et
al., 2024; Wang et al., 2021).

A key factor in the success of DL-based medical
image analysis is the availability of large, well-annotated
datasets. The National Institutes of Health (NIH)
ChestX-Ray14 represents one of the most important and
common CXR datasets, diagnosing chest and lung
diseases (Wang et al., 2017). Many recent studies have
leveraged the rapid development of DL and the release of
the ChestX-Ray14 dataset to classify and diagnose
various chest diseases, such as cardiomegaly, pneumonia,
mass, nodule, atelectasis, and pleural effusion. These
advancements have contributed significantly to the
detection of pleural effusion. Table 1 presents recent
relevant studies that have contributed to the diagnosis of
pleural effusion on the ChestX-Ray14 dataset. It includes
the model used in each study for image classification,
along with the main advantages and disadvantages of
each model.

Table 1: Summary of Relevant Studies on Pleural Effusion Detection Using the ChestX-Ray14 Dataset

Ref Model/Method Merits Demerits
Li et al.
(2024)

MBRANet (Backbone Model: ResNet-
50)

- Enhance focuses on disease regions and filters
noise.
- Classify diseases directly from feature maps,
preserving spatial information. reduce the impact
of rare disease cases.

- High computational cost
- Requires careful tuning of attention parameters.
- More complex model structure, leading to longer
training time.
- Struggles to generalize on datasets with different
disease distributions.

Wang et al.,
(2024)

CXR×MLAGCPL - Improves multi-label classification by learning
relationships between diseases.
-Reduces bias toward frequent diseases.
- Graphs improve interpretability by modeling
co-occurrence dependencies.

- Requires more computation than Convolutional
Neural Network (CNN) based methods.
- Over-smoothing occurs when too many graph layers
are used.
- Long-tail label distribution can still affect results.
- Harder to fine-tune due to multiple hyperparameters.

Jiang et al.
(2024)

TransDD - Improve Feature-Label Relationship Modeling
- Make self-attention faster than standard
Transformers.
- Use attention mechanisms to improve
classification.

- Requires more tuning than CNN-based models.
Slower than CNN models.
- Affected by noisy labels in ChestXray14.
- More complex training process than standard CNN
models.

Kufel et al.
(2023)

EfficientNet-B1 - Lightweight and require less GPU memory.
- Improve feature extraction using pretrained
ImageNet weights.
- Improved Generalization with Transfer
Learning.

- Sensitive to Hyperparameter Choices: small changes
in hyperparameters can affect performance more than
in standard CNNs.
- Dataset label noise still affects model performance.

Liu et al.
(2023)

ML-LGL (Backbone Model:
DenseNet121)

- Uses label correlation to improve classification
accuracy.
- Works well for multi-label classification.
Mimics how radiologists learn diseases (from
common to rare).

- No explicit label noise handling.
- Computationally expensive (multiple training
phases).
- Relies on selection functions (correlation, similarity,
frequencybased).

Mezina &
Burget
(2024)

InceptionV3 & ViT for features
extraction (Fully Connected Layer for
Classification)

- Transformer-based local feature extraction.
- Combines local and global features effectively.
- Lung segmentation preprocessing step.

- Requires high memory & computation due to ViT.
- Extra preprocessing steps add complexity.
- No explicit noise-handling mechanism.

Wu et al.
(2023)

CTransCNN - Capture both local and global features. -
Combines Focal Loss and ASL, improving
classification for rare diseases.

- High computational cost due to dual-model
architecture.
- Complex loss function requires fine-tuning, making
training more difficult.

Zhu et al.
(2022)

PCAN (Backbone Model: DenseNet-
121)

- Pixel-wise classification improves detection of
subtle abnormalities.
- Adaptive weighting mechanism helps rare
disease detection.
- Attention mechanism helps focus on disease-
relevant areas.

- Pixel-wise classification adds complexity without
always improving global classification.
- Does not explicitly handle noisy labels, which are
common in ChestX-ray14.
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Table 1: Continued

Ref Model/Method Merits Demerits
Mao et al. (2022) V-GCN-PPS (Backbone Model:

VGGNet16BN)
- Uses GCN to model image relationships,
allowing the model to learn disease connections.
- Incorporates patient metadata, to improve
prediction accuracy.
- PPS helps detect rare diseases by linking similar
cases.

- Higher computational cost due to graph-based
processing.
- Graph structures must be carefully tuned, making
training more complex.
- Requires additional metadata which may not always
be available.

Yang (2025) AFM-DVIT (Backbone Model:
DenseNet-ViT Hybrid Model)

- Hybrid feature extraction.
- Federated Learning allows hospitals to train the
model locally without sharing actual patient
images.
- AFM-DViT adapts to variations in X-ray images
from different hospitals, ensuring consistent
performance.

- High computational cost due to VITbased model.
- Slow Convergence: takes longer to train compared to
purely CNN models.
- Dependency on high quality data, limiting its
effectiveness in data-scarce environments.

Huangsuwan et
al. (2025)

FedDrip (Backbone Model:
DenseNet-121)

- Uses synthetic images to improve federated
learning in non-uniform data settings.
- Reduces Data Scarcity Issues, improving
classification when real data is limited.
- Maintains Data Privacy: Training occurs locally,
with only model weights shared.

- Dependence on Synthetic Data Quality.
- Diffusion models require more processing power,
increasing training time compared to standard CNN-
based FL models.
- Deviation in synthetic images can introduce bias,
affecting classification accuracy.

Guan et al.
(2023)

GMM-HM - Better handling of noisy labels using GMM.
- HM reduces bias from uncertain labels.
- GMM filters uncertain samples, reducing
overfitting to label noise and improving
classification reliability.

- More complex than standard CNN due to noise
detection steps.
- Requires fine-tuning of noise detection thresholds for
optimal performance.
- May not generalize well to datasets without significant
label noise.

From Table 1, we note that while deep learning
models have advanced pleural effusion diagnosis, they
face challenges such as high computational costs,
complex structures, and impractical fine-tuning.
Additionally, models trained on large-scale datasets like
ChestX-Ray14 struggle with classification noise, dataset
imbalance, and generalization issues. To address these
issues, this paper proposes an optimized pretrained mode
that systematically enhances hyperparameter selection,
providing a more efficient and robust alternative. By
leveraging hyperparameter optimization, the model
reduces computational costs and enables fine-tuning
without excessive manual adjustments. Unlike models
with complex architectures, ResNet18 offers a
lightweight yet effective solution, balancing performance
and efficiency. Additionally, training first on the Small
ChestX-ray14 helps mitigate dataset imbalance before
applying the optimized hyperparameters to the full
dataset, improving generalization and robustness while
minimizing the impact of classification noise.

The role of optimization in improving model
performance has been extensively recognized in recent
research. Given the growing need for more efficient
hyperparameter selection, various optimization
techniques have proven effective across multiple
research areas, including those in the medical field. For
instance, Machine Learning (ML) classifiers have been
applied to predict heart failure and its severity levels,
with methods such as the Synthetic Minority
Oversampling Technique (SMOTE) and Hyperband
(HB) optimizer being used to identify optimal
hyperparameters. This approach achieved its best results
with Extra Trees combined with SMOTE, demonstrating

the potential of optimization for improving model
accuracy (Abdellatif et al., 2022).

Similarly, feature extraction with ResNet18 has been
combined with meta-heuristic algorithms, such as
Particle Swarm Optimization (PSO), Atom Search
Optimization (ASO), and Equilibrium Optimizer (EO),
to identify the most relevant features for breast cancer
classification, with the EO and SVM combination
achieving the highest accuracy (Atban et al., 2023).

While these studies have focused on optimization for
traditional ML models, their findings underscore the
value of optimization in addressing computational
challenges and improving predictive accuracy. Extending
this concept to DL, optimization techniques have also
been applied in other domains, such as spectrum
recovery for compressive sensing, where the GWO
demonstrated superior performance in solving
minimization problems (Gamal et al., 2022).

These examples highlight the versatility of
optimization approaches and set the stage for their
application to pretrained DL models, as explored in this
paper. Building on these findings, we adopted GWO in
this paper to fine-tune the hyperparameters of our
pretrained ResNet18 model. GWO was chosen for its
ability to balance exploration and exploitation during the
optimization process, making it particularly effective in
navigating complex solution spaces, such as those
encountered in deep learning parameter tuning.
Furthermore, GWO's hierarchical structure and adaptive
mechanisms enable efficient convergence to optimal
solutions, which is crucial when working with large
datasets and computationally intensive tasks.
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The ResNet18 model was chosen for its lightweight
architecture, which offers reduced training time
compared to other deep learning models while still
achieving competitive performance in image
classification tasks. This combination of GWO and
ResNet18 provides a robust and efficient approach for
optimizing and applying pretrained models to large
medical datasets like ChestX-Ray14. However,
optimizing the entire ChestX-Ray14 dataset is
computationally intensive, requiring several months of
processing time. Additionally, the dataset's class
imbalance poses challenges. To address these issues, we
constrain our model to a subset of the dataset, referred to
as the Small ChestX-Ray14. The optimized
hyperparameters derived from this subset will later be
applied to the full ChestX-Ray14 dataset, thereby
avoiding the need for manual parameter tuning and
potentially yielding better results.

Materials and Methods
In this paper, we propose an optimized pretrained

model using GWO. The ResNet18 model was selected as
the base model. Its performance will be compared to that
of the optimized GWO-ResNet18 model. Figure 1
illustrates the layers of the ResNet18 model.

Fig. 1: Baseline ResNet-18 Architecture

GWO-ResNet18 model will be applied to a subset of
the ChestX-Ray14 dataset, termed Small ChestXRay14,
to improve computational efficiency and performance.
By focusing on this smaller dataset, we aim to address
issues related to dataset imbalance and lengthy
processing times. The optimized hyperparameters
derived from the GWO-ResNet18 model on the Small
ChestX-Ray14 dataset will be used to enhance the
performance of the model on the full ChestX-Ray14
dataset, eliminating the need for manual parameter
tuning. An illustration of the research methodology is
shown in Figure 2.

Dataset and Preprocessing

ChestX-Ray14 is one of the largest chest radiograph
datasets, available at the NIH Clinical Center, utilized for
diagnosing various thoracic diseases. It consists of
112,120 frontal-view X-ray images, including 51,708
that have been annotated with up to 14 pathologies:
Atelectasis, Cardiomegaly, Consolidation, Edema,
Effusion, Emphysema, Fibrosis, Hernia, Infiltration,
Mass, Nodule, Pneumonia, Pneumothorax, and Pleural
Thickening, while the remaining images have been
labeled as No Finding (X. Wang et al., 2017). The
dataset contains 13,317 images labeled with effusion and
98,803 without effusion.

ChestX-Ray14 is considered an imbalanced dataset,
which negatively impacts model performance during the
classification process. Therefore, we selected only a
subset to achieve dataset balance, leading to the creation
of the Small ChestX-Ray14 dataset. Another important
reason for this choice is that optimizing a pretrained
model on the full ChestX-Ray14 dataset is extremely
time-consuming given our computational capabilities,
requiring several months of processing time. The Small
ChestX-Ray14 dataset consists of 26,317 CXR images,
13,317 images with effusion and 13,000 images without
effusion. We resized the images from (1024×1024) to
(227×227) pixels. Table 2 provides a detailed breakdown
of the total number of CXR images in Small ChestX-
ray14, including the counts of images with and without
effusion, as well as the numbers used for training and
testing the model.

Fig. 2: Research Workflow, Highlighting Pretrained Model
Evaluation and Optimization Process

Table 2: Details of Small ChestX-ray14 Dataset Split

Total No. Effusion No Effusion Training Testing
26317 13317 13000 21054 5263

Pretrained Models

In this research, we utilized several pretrained models
to detect pleural effusion across our dataset. These
models, previously trained on large-scale image datasets,
were selected for their effectiveness in medical image
analysis and their ability to enhance detection accuracy.
Figure 3 illustrates the workflow for utilizing pretrained
models in the detection of pleural effusion from CXR
images. The pretrained models adopted in this paper are
as follows:

GoogleNet, also known as Inception v1, was
developed by Google in 2014 to reduce
computational complexity. It consists of 22 layers,
including three convolutional layers, nine inception
layers (each containing two convolutional layers),
and one fully connected layer (Alom et al., 2010;
Sze et al., 2017; Szegedy et al., 2015).
SqueezeNet is an 18-layer Convolutional Neural
Network (CNN) introduced in 2016, maintaining
AlexNet-level accuracy while requiring less
memory and processing time for classification
(Islam et al., 2020; Nguyen et al., 2018).
DarkNet19 is a deep CNN that serves as basis for
YOLOv2. It consists of 19 convolutional layers and

http://192.168.1.15/data/13234/fig1.png
http://192.168.1.15/data/13234/fig1.png
http://192.168.1.15/data/13234/fig2.png
http://192.168.1.15/data/13234/fig2.png
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five max pooling layers. The DarkNet19 model
typically employs 3×3 filters, doubling the number
of channels after each pooling step (Redmon &
Farhadi, 2017).
VGG16 (Visual Geometry Group) is a widely used
deep CNN architecture introduced in 2014 by
Simonyan and Zisserman. The term "deep" refers to
the number of layers, with VGG16 and VGG19
having 16 and 19 convolutional layers, respectively
(Ghosh et al., 2019). To reduce computational costs,
larger filters (e.g., 5×5) are constructed from
smaller ones (e.g., 3×3), minimizing the number of
weights (Simonyan & Zisserman, 2014).
ResNet-18, ResNet-50 (Residual Neural Network)
is a type of CNN introduced in 2015 that has
excelled in various computer vision tasks, including
image classification and object detection. Unlike
traditional CNNs, which require learning the entire
feature map and are thus computationally expensive
and slow, ResNets use skip connections. These
connections allow ResNets to be significantly
smaller than traditional CNNs while maintaining
high performance (Shafiq & Gu, 2022).

Fig. 3: Process Overview of Detecting Pleural Effusion Using
Pretrained Models

The 18-layer version of the ResNet architecture,
known as ResNet-18, consists of 17 convolutional layers
and one fully connected layer (Džakmić et al., 2020).
ResNet-18 is widely used for various computer vision
tasks, especially when computational resources are
limited, following the general ResNet principles with
residual connections to facilitate deep network training.

Similarly, ResNet-50, which has 50 layers with two or
three convolutional layers per block, is widely used in
image classification and object detection tasks, adhering
to the same principles as ResNet-18 (Maeda-Gutiérrez et
al., 2020; Sarwinda et al., 2021).

Proposed Method

In this paper, we introduce a novel model,
GWOResNet18, designed to enhance the detection of
pleural effusion in the Small ChestX-Ray14 dataset. Our
approach involves optimizing the pretrained ResNet18
model using GWO. The integration of GWO with
ResNet18 aims to fine-tune the model's hyperparameters
effectively, thereby improving its performance and
accuracy in identifying pleural effusion within ChestX-
Ray14 images. Due to the extensive time required to
apply this optimization directly to the full ChestX-Ray14
dataset, we first implemented it on the smaller subset,
Small ChestXRay14. Once the hyperparameters are
optimized on this subset, we will apply them to the full
ChestX-Ray14 dataset, aiming to improve its
performance without the need for direct optimization.
Figure 4 illustrates the flowchart of the GWO-ResNet18
model.

Fig. 4: Flowchart of our GWO-ResNet18 model

The Grey Wolf Optimizer (GWO) was introduced by
S. Mirjalili in 2014. It is a swarm intelligence algorithm
inspired by the social hierarchy and hunting behavior of
grey wolves. GWO adopts a four-level social hierarchy,
which includes α, β, δ, and ω wolves. The α (alpha)
wolves are the leaders responsible for decision-making.

http://192.168.1.15/data/13234/fig3.png
http://192.168.1.15/data/13234/fig3.png
http://192.168.1.15/data/13234/fig4.png
http://192.168.1.15/data/13234/fig4.png
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(7)
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(9)

(10)
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The β (beta) wolves are second in command and the best
candidates to become α; they provide feedback to the α
leader based on information gathered from other wolves.
The δ (delta) wolves obey the α and β wolves but have
authority over the ω wolves. Finally, the ω (omega)
wolves are the lowestranking members of the pack,
responsible for maintaining their safety. This hierarchical
structure allows GWO to simulate the cooperative
behavior of grey wolves during the optimization process.
(Kohli & Arora, 2018; Mirjalili et al., 2014).
Mathematically, α, β, δ, and ω in GWO represent:

Alpha (𝛼): the best (fittest) solution.
Beta (𝛽): Second-best solution.
Delta (𝛿): Third-best solution.
Omega (𝜔): Remaining possible solutions.

Initialization is the first stage of the GWO algorithm,
where the positions of wolves (Xᵢ) in the search agent are
generated. Each wolf's fitness is then evaluated using the
optimization problem's objective function. The positions
are updated in each iteration through three steps:
encircling behavior, hunting behavior, and exploration
behavior, inspired by the social behavior and hunting
techniques of grey wolves (Magdy et al., 2023; Sánchez
et al., 2017).

Encircling Behavior

The grey wolves encircle their prey (optimal
solution) mathematically as (Mirjalili et al., 2014):

Where:
: current iteration

: the position vector of the prey (optimal
solution) at iteration 

: the position vector of the wolf at iteration 
 and : coefficient vectors
: linear decreased from 2 to 0 over iterations

: random vectors in [0,1]

Hunting Behavior

To mathematically simulate hunting behavior, let the
first three best solutions (𝛼, 𝛽 and 𝛿) guide the
optimization, as follows (Mirjalili et al., 2014):

Where:

The new position is computed as:

Exploration Behavior

Exploration in GWO focuses on searching new areas
of the solution space to find promising regions and avoid
getting stuck in local optima. It is controlled by the
parameter 𝐶, which generates random values in [0, 2] to
encourage diverse searches. The parameter 𝐴, influenced
by 𝑎 (which decreases from 2 to 0), promotes exploration
when its value is high, allowing larger changes in the
wolves' positions. These factors enable GWO to
effectively explore the search space (Faris et al., 2018).

System Implementation

The pretrained models as well as the proposed
(GWO-Resnet18) model were implemented in the
(MATLAB R2021a) environment. The system employed
for training and testing these models, along with its
detailed specifications, is provided below:

Operating System: Windows 11 Pro
Processor: 12th Gen Intel(R) Core (TM) i9-12900F
2.40 GHz
RAM: 32.0 GB (31.8 GB usable).
System Type: 64-bit operating system, x64-based
processor.

Evaluation Metrics

In this subsection, we present the evaluation metrics
used to assess model performance. The primary metric
used is AUC, expressed as a percentage. AUC is a
reliable evaluation measure ranging from 0 to 1, with 1
indicating perfect performance. Given the dataset
imbalance, AUC is particularly valuable as it summarizes
model performance across all classification thresholds.
Expressing AUC as a percentage enables direct
comparison with previous studies. Table 3 presents five
additional evaluation metrics, which will be computed
for a more comprehensive assessment. TP (True Positive)
refers to the number of correctly identified pleural
effusion cases.

TN (True Negative) refers to the number of CXR
images correctly classified as not containing pleural
effusion. FP (False Positive) indicates the number of
CXR images incorrectly classified as containing pleural
effusion. FN (False Negative) refers to the number of
pleural effusion cases incorrectly classified as not
containing pleural effusion.
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Table 3: Formulas for the Utilized Evaluation Metrics

Metric Equation No.
Accuracy (1)

F1 score (2)

Precision (3)

Sensitivity (Recall) (4)

Specificity (5)

Experimental Settings

In this subsection, we outline the hyperparameter
settings for both the pretrained models and the optimized
GWO-ResNet18 model. Proper hyperparameter tuning,
including learning rate and batch size, is critical for
maximizing performance, ensuring accuracy, and
improving generalization across the dataset. To evaluate
pleural effusion detection, we first apply several
pretrained models to the Small ChestX-Ray14 dataset
and compare their performance against the optimized
model trained exclusively on this dataset. For the
ChestX-Ray14 dataset, we apply the baseline ResNet18
model, using hyperparameters adopted from (Rakshit et
al., 2019). We then assess its performance using the
optimized hyperparameters derived from Small ChestX-
Ray14.

For optimization, we utilized the GWO algorithm
with the ResNet-18 model to detect pleural effusion in
the Small ChestX-Ray14 dataset. Table 4 details the
number of search agents, maximum iterations, and the
lower and upper bounds (LB, UB) of the
hyperparameters used in optimizing the GWOResNet18
model.
Table 4: Hyperparameters Settings for GWO-ResNet18 Model

Parameter Parameter Setting
search agents 5
Maximum number of iterations 20

LB UB
freezeWeights Layers (1:5) (1:10)
pixelRange [-10 10] [-40 40]
scaleRange [0.95 1.05] [0.85 1.15]
MiniBatchSize 64 128
InitialLearnRate 0.01 0.00001
LearnRateDropFactor 0.0001 0.001

The hyperparameters used for training the pretrained
models, along with the optimized hyperparameters
derived through GWO-ResNet18 on the Small ChestX-
Ray14 dataset, will be presented in Table 6 once the
optimization process is completed.

Results
This section presents the results of applying both

pretrained and optimized models for pleural effusion
detection. First, we report the performance of several
pretrained models on the Small ChestX-Ray14 dataset.

Next, we evaluate the impact of optimization by
assessing the performance of the optimized
GWOResNet18 model on the same dataset, followed by
a comparative analysis to measure the improvement
achieved through optimization. Furthermore, we will
compare the performance of the baseline ResNet18
model on the full ChestX-Ray14 dataset using two
hyperparameter settings: unoptimized hyperparameters
adopted from (Rakshit et al., 2019) and those transferred
from the optimized model on Small ChestX-Ray14. This
evaluation highlights the impact of optimization on
model performance.

Performance of Pretrained Models on the Small
ChestX-Ray14 Dataset

In this subsection, we present the evaluation results
of pretrained models utilized on the Small ChestXRay14
dataset for pleural effusion detection. The models were
evaluated based on key metrics, such as AUC and
accuracy, to ensure a thorough comparison of their
classification performance. Table 5 summarizes the
performance of the six pretrained CNN models, offering
insights into their relative effectiveness in accurately
detecting pleural effusion cases. Next, we illustrate the
ROC curve and confusion matrix for the VGG16 model,
which achieved the highest AUC on the Small ChestX-
Ray14 dataset, in Figures 5 and 6, respectively.
Similarly, we present the ROC curve and confusion
matrix for the baseline ResNet18 model on the Small
ChestX-Ray14 dataset in Figures 7 and 8, respectively.

Fig. 5: The Roc Curve for the VGG-16 on Small ChestX-
Ray14 Dataset

Fig. 6: The Confusion Matrix for the VGG-16 Model on Small
ChestX-Ray14 Dataset
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Table 5: Pretrained Models Performance on Small ChestX-Ray14 (Best Results are Underlined)

Algorithm AUC (%) Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1_score (%) Elapsed time
SqueezeNet 92.5 85.10 86.40 83.74 86.50 83.74 00:16:40
GoogleNet 91.3 83.60 85.13 81.90 85.35 83.48 00:20:42
VGG16 94.7 88.75 88.77 89.03 88.46 88.90 00:45:37
DarkNet19 93 86.98 86.63 87.83 86.12 87.23 00:34:05
ResNet18 93.3 86.59 84.25 90.39 82.69 87.21 00:17:29
ResNet50 92.7 86.26 86.63 87.83 86.12 87.23 00:40:06

Fig. 7: The ROC Curve for ResNet18 Model on Small ChestX-
Ray14 Dataset

Fig. 8: The Confusion Matrix for the ResNet18 Model on
Small ChestX-Ray14 Dataset

Performance of Optimized GWO-ResNet18 and
Comparison with Pretrained Models on the Small
ChestX-Ray14 Dataset

In this subsection, we present the optimized
GWOResNet18 model results on the Small ChestX-
Ray14 dataset. Table 6 presents the optimal
hyperparameters derived through GWO-ResNet18 on the
Small ChestXRay14 dataset, along with a comparison
with those used with pretrained models.

Optimization led to improvements in key evaluation
metrics, such as AUC and accuracy, enhancing the

model’s ability to detect pleural effusion. The ROC curve
and confusion matrix for the GWO-ResNet18 model are
shown in Figures 9 and 10, respectively.

Fig. 9: ROC Curve of GWO-ResNet18 model on Small
ChestXRay14 dataset

Fig. 10: Confusion Matrix of GWO-ResNet18 model on Small
ChestX-Ray14 dataset

To demonstrate the impact of optimization, we
compare the performance of the GWO-ResNet18 model
with the baseline ResNet18 model, as presented in Table
7, and followed by a visual comparison in Figure 11. The
results indicate a notable improvement in performance
after optimization.
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Table 6: Comparison of Hyperparameters Configurations – Unoptimized vs. Optimized Hyperparameters on the Small ChestX-Ray14
Dataset

Hyperparameters Hyperparameters Settings for Baseline
(Pretrained Models)

Hyperparameters Settings for Optimized Model
(GWO-ResNet18)

Input Size in pixel 227 × 227 227 × 227
Frozen Weights First 10 layers First 6 layers
pixelRange [-30 30] [-18 18]
scaleRange [0.9 1.1] [0.86 1.14]
optimizer Sgdm Sgdm
MiniBatchSize 64 97
MaxEpochs 5 5
InitialLearnRate 0.001 1e-2
LearnRateDrop Factor Null 0.0004
LearnRateDrop Period Null Null

Table 7: Performance Comparison of GWO_ResNet18 vs. ResNet18 on Small ChestX-Ray14 (Best Results are Underlined)

Dataset AUC (%) Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1_score (%)
ResNet18 93.3 86.59 84.25 90.39 82.69 87.21
GWO_ResNet18 95.1 89.07 90.81 87.23 90.96 88.99

Comparison of ResNet18 Performance in Detecting
Pleural Effusion on the ChestX-Ray14 Dataset
Using Transferred Optimized and Unoptimized
Hyperparameters

In this subsection, we compare the performance of
the ResNet18 model on the ChestX-Ray14 dataset using
two different hyperparameter configurations. The first
configuration is adopted from Rakshit et al. (2019).
Whereas the second consists of hyperparameters
transferred from the optimization performed on the Small
Chest-XRay14 dataset. These configurations are detailed
in Table 8.

The comparison evaluates the effectiveness of
transferring optimized hyperparameters across datasets.
The results are presented in Table 9, along with a visual

comparison in Figure 12, which further illustrates the
impact of optimization. Finally, Table 10 provides a
performance comparison against state-ofthe-art
approaches, using the AUC metric to highlight the
competitive performance of our approach.

Fig. 11: GWO-ResNet18 vs. ResNet18 Performance on Small
ChestX-Ray14

Table 8: Comparison of Hyperparameters Configurations – Baseline (Rakshit et al., 2019) vs. Optimized (Transferred from Small ChestX-
Ray14)

Hyperparameters Baseline (Rakshit et al., 2019) Optimized Transferred from Small ChestX-Ray14
Input Size in pixel 224 × 224 227 × 227
Frozen Weights First 10 layers First 6 layers
pixelRange [-30 30] [-18 18]
scaleRange - [0.86 1.14]
optimizer adam Sgdm
MiniBatchSize 16 97
MaxEpochs 5 5
InitialLearnRate 1e-4 1e-2
LearnRateDrop Factor 0.5 0.0004
LearnRateDrop Period 5 Null

Table 9: Comparison of ResNet18 Performance on the ChestX-Ray14 Dataset Using Transferred Optimized Hyperparameters and
Unoptimized Hyperparameters (Best Results are Underlined)

Configuration AUC (%) Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1_score (%)
Unoptimized Hyperparameters 87.36 88.72 55.34 26.06 97.17 26.06
Optimized Hyperparameters 88.48 88.97 57.42 27.6 97.42 37.28

http://192.168.1.15/data/13234/fig11.png
http://192.168.1.15/data/13234/fig11.png


Rehab Fathi Ibrahim et al. / Journal of Computer Science 2025, 21 (8): 1970.1982
DOI: 10.3844/jcssp.2025.1970.1982

1979

Fig. 12: Comparison of ResNet18 Performance on the ChestX-
Ray14 Dataset using Transferred Optimized
Hyperparameters and Unoptimized Hyperparameters

Table 10: Comparative Evaluation of ResNet18 performance
Using Optimized Hyperparameters vs. State-of-the-Art
Based on AUC Metric (Best Results are Underlined)

Ref AUC (%)
Li et al. (2024) 88.1
Wang et al. (2024) 87.7
Jiang et al. (2024) 84.2
Kufel et al. (2023) 87.9
Liu et al. (2023) 84.7
Mezina & Burget (2024) 81.3
Wu et al. (2023) 83.7
Zhu et al. (2022) 84.1
Mao et al. (2022) 87.4
Yang (2025) 87.0
Huangsuwan et al. (2025) 77.8
Guan et al. (2023) 82.4
Ours 88.48

Discussion
In this paper, we explored the application of

pretrained models for detecting pleural effusion in chest
X-rays, with a particular focus on the impact of
optimization in enhancing model performance. Several
pretrained models, including SqueezeNet, GoogleNet,
VGG16, DarkNet19, ResNet18, and ResNet50, were
evaluated on the Small ChestX-Ray14 dataset, a
balanced subset of the ChestX-Ray14 dataset. The
creation of this smaller dataset addressed the class
imbalance present in the original dataset and reduced the
computational load typically associated with model
optimization. The dataset was divided into 80% for
training and 20% for testing, and model performance was
assessed using AUC, accuracy, precision, sensitivity
(recall), specificity, and F1 score metrics.

The integration of the GWO with the ResNet18
model demonstrated significant performance
improvements, achieving an AUC of 95.1% on the Small
Chest-XRay14 dataset, compared to an AUC of 93.3%
with the baseline ResNet18 model. The GWOResNet18
model demonstrated overall performance improvements
across multiple metrics, including AUC, accuracy,
precision, specificity, and F1-score, compared to the
baseline ResNet18. These improvements can be
attributed to key hyperparameter optimizations. The

increased mini-batch size (64 → 97) likely contributed to
better generalization by stabilizing weight updates. The
adjusted pixel and scale ranges may have enhanced data
augmentation, improving robustness to variations in the
dataset. Additionally, increasing the initial learning rate
(0.001 → 0.01) allowed the model to learn faster in the
early stages, while the learning rate drop factor (0.0004)
helped fine-tune the training by gradually reducing the
learning rate. This adjustment likely sped up
convergence and prevented the model from getting stuck
in suboptimal solutions (local minima).

However, a trade-off was observed in sensitivity,
which slightly declined. This is reflected in the confusion
matrices, where the optimized model reduced false
positives (450 → 235), enhancing specificity, but showed
an increase in false negatives (256 → 340), leading to
lower sensitivity. This suggests that while the
optimization improved the model’s confidence in
correctly identifying healthy cases, it became slightly
more conservative in detecting sick cases. Nonetheless,
the overall gains in performance metrics indicate the
effectiveness of the optimization in enhancing model
reliability.

This result confirms our hypothesis from the
Introduction, where we anticipated that optimization
would enhance the model's performance. The GWO's
strength lies in its balance between exploration and
exploitation, allowing it to efficiently search the solution
space. The hierarchical structure and adaptive search
mechanism of GWO contributed to robust
hyperparameter tuning, ultimately improving the
detection accuracy for pleural effusion, a crucial task in
medical image analysis.

Furthermore, the GWO-optimized ResNet18 model
achieved a more balanced performance compared to the
baseline ResNet18 model. While the baseline model
exhibited a higher sensitivity (recall) of 90.38%, it
suffered from lower specificity (82.67%), reflecting a
tendency to favor positive cases at the expense of false
positives. The optimization process shifted this balance,
resulting in a sensitivity (recall) of 87.22% and an
improved specificity of 90.96%. This demonstrates that
the GWO optimization adjusted the model’s decision
boundary to reduce false positives, achieving a
significant gain in specificity (+8.29%) while incurring a
moderate reduction in sensitivity (recall) (-3.16%). This
balance highlights the impact of optimization metrics,
such as AUC, which consider both true positive and true
negative rates. While the overall improvement
underscores the potential of optimization techniques like
GWO in enhancing pretrained models, the observed
trade-off emphasizes the need for future optimization
strategies to explicitly prioritize sensitivity (recall)
alongside other metrics. This would ensure a more
balanced improvement across all performance measures,
addressing the critical requirements of medical
diagnostic applications.
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To further explore the effect of optimization, we
transferred the optimized hyperparameters obtained from
the GWO-ResNet18 model on the Small ChestXRay14
dataset to the full ChestX-Ray14 dataset. We focused
only on the ResNet18 model here, as the goal was to
evaluate the effect of transferring the optimized
hyperparameters. The results showed that transferring
optimized hyperparameters we get from GWO-
ResNet18 on the small dataset, improved model
performance on the larger dataset, with the best AUC
reaching 88.48%. This outperformed both the
performance of ResNet18 with unoptimized
hyperparameters, and state-of-the-art results. These
findings suggest that hyperparameters optimized on a
smaller, balanced dataset can effectively enhance
performance on a larger, imbalanced dataset, though with
some limitations.

Compared to state-of-the-art, our approach offers
some advancements. While most prior research focused
solely on AUC as the primary evaluation metric, we
provided a more comprehensive evaluation using a
broader set of metrics, including accuracy, precision,
sensitivity (recall), specificity, and F1 score.
Furthermore, previous studies did not apply optimization
techniques nor address the problem of dataset imbalance.
By introducing GWO-based optimization and tackling
the dataset imbalance, our paper presents a novel
approach to improving pleural effusion detection
performance in medical image classification.

Despite these promising results, several limitations
should be acknowledged. Transferring the optimized
hyperparameters had a limited positive effect when
applied to the entire ChestX-Ray14 dataset, possibly due
to the complexity and size of the dataset. This was
compounded by the time constraints that restricted us
from applying optimization directly to the full dataset.
Additionally, increasing the number of search agents or
the maximum number of iterations in the optimization
process might yield better results, but this would require
a substantial computational investment. These
constraints highlight the need for further exploration of
optimization techniques in future research.

Future work should focus on applying optimization
directly to larger datasets, such as the full ChestXRay14
dataset. Exploring other evolutionary algorithms may
also provide further enhancements in model
performance, potentially surpassing the improvements
observed with GWO. Overcoming computational
challenges and addressing the optimization demands in
large datasets remains a critical avenue for future
research.

Conclusion
Accurate and efficient detection of pleural effusion in

chest X-rays is critical for improving diagnostic
outcomes in medical imaging. In this paper, we
demonstrated the effectiveness of utilizing an optimized

pretrained model for detecting pleural effusion, with a
focus on the novel application of GWO to optimize the
ResNet18 model. While standard pretrained models,
such as VGG16 and ResNet18, performed well on the
Small ChestX-Ray14 dataset, achieving AUCs of 94.7%
and 93.3%, respectively, the optimized GWO-ResNet18
model achieved superior results with an AUC of 95.1%.
This highlights the significant impact of optimization in
enhancing pretrained model performance. Furthermore, a
key contribution of this paper was the transfer of
hyperparameters optimized on the Small ChestXRay14
dataset to the full ChestX-Ray14 dataset. This approach
not only addressed computational constraints but also
improved the performance of the ResNet18 model on the
larger dataset, achieving an AUC of 88.48%, compared
to 87.36% with unoptimized hyperparameters. These
results underscore GWO as an effective optimization
strategy for improving pretrained models in medical
image analysis, particularly under resource constraints.
The ability to fine-tune pretrained models efficiently
offers practical benefits, such as reducing computational
costs and training time—crucial factors in resource-
limited medical environments. This work emphasizes the
importance of integrating optimization algorithms like
GWO into model development to enhance diagnostic
performance. Future research could explore applying the
optimization process directly to larger datasets, such as
the full ChestX-Ray14 or CheXpert datasets, as
computational resources become more available.
Additionally, investigating other evolutionary
optimization algorithms may yield further improvements
and expand the applicability of this approach to broader
tasks in medical image classification. Furthermore,
integrating optimized models into real-time diagnostic
systems could enhance their practical use in hospitals
and clinical settings. Finally, future studies could expand
this approach to other medical imaging tasks, such as
detecting lung nodules or pneumonia, to assess its
generalizability.
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