
© 2025 Mohammed Subhi Al-Batah. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Research Article

Adaptive Data Transformation for Enhanced Clustering
Performance in Diagnostic Systems

Mohammed Subhi Al-Batah

Department of Computer Science, Jadara University, Jordan

Article history
Received: 08-07-2025
Revised: 12-07-2025
Accepted: 15-07-2025

Abstract: This paper presents an enhanced approach to the Balanced
Iterative Reducing and Clustering using Hierarchies (BIRCH) algorithm,
aimed at improving clustering accuracy in medical data, specifically for
breast cancer diagnosis. The proposed method introduces a modified data
transformation technique to optimize the original BIRCH algorithm. This
transformation refines the clustering process, resulting in significant
improvements in diagnostic accuracy. The modified BIRCH algorithm was
tested on a breast cancer dataset and achieved a clustering accuracy of
98.40%, a substantial improvement compared to 33.22% accuracy obtained
using the original algorithm. Experimental results demonstrate that the use
of transformed data not only enhances the performance of BIRCH but also
highlights its effectiveness in scenarios with two clusters and a threshold
value of two. These findings suggest that data transformation plays a critical
role in refining hierarchical clustering algorithms, offering better diagnostic
insights in medical applications.
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Introduction
Garg et al. (2006) introduced a parallel version of the

BIRCH algorithm called P-BIRCH, aimed at improving
scalability without compromising clustering quality. This
parallel algorithm operates on the Single Program
Multiple Data (SPMD) model, using message passing to
communicate between processors. The processors
construct local CF trees independently, and the clustering
process relies on a parallel k-means algorithm for
refining clusters. Experimental results demonstrated that
P-BIRCH scales linearly with an increasing number of
processors while maintaining the clustering quality
comparable to the original BIRCH algorithm. This
approach significantly improves BIRCH’s ability to
handle large-scale data sets efficiently (Al Eiadeh & Al
Batah, 2024).

Li and Jie (2013) addressed one of the key limitations
of the original BIRCH algorithm—its difficulty in
accurately clustering arbitrary-shaped clusters. They
proposed an Adaptive Split BIRCH (AS-BIRCH)
algorithm, which uses density-based clustering rather
than relying solely on Euclidean distances. AS-BIRCH
first selects the farthest two CFs and recalculates their
minimal node distances to refine cluster formation based
on density. This modification enhances clustering
accuracy, especially for irregularly shaped data clusters.

Simulation results show that AS-BIRCH outperforms the
original algorithm in terms of packet loss, delay, and
jitter, making it a robust choice for clustering complex
data patterns (Al Eiadeh & Al Batah, 2024).

Lei (2016) further enhanced the BIRCH algorithm by
modifying its third and fourth phases to improve its
performance on time series data. By using Dynamic
Time Warping Barycenter Averaging (DBA) in the
clustering process and omitting the optional fourth phase,
Lei significantly improved clustering accuracy.
Comparative experiments using 35-time series datasets
revealed that E-BIRCH, the enhanced version,
consistently outperforms BIRCH and its variants. The
DBA-based approach allowed E-BIRCH to handle large,
incremental datasets more effectively than traditional
methods such as k-means and its time series counterpart,
k-DBA (Al-Batah, 2019).

Lorbeer et al. (2017) developed the Automatic
BIRCH (A-BIRCH) algorithm, which eliminates the
need for preset thresholds or knowledge of the number of
clusters. By integrating the Gap Statistic, the authors
automatically estimated optimal thresholds based on a
small representative subset of data. The algorithm
parallelizes the Gap Statistic, allowing for scalable and
efficient clustering of large datasets. The study
demonstrated that A-BIRCH provides accurate clustering
results without requiring manual tuning of parameters,
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making it particularly suitable for dynamic and large-
scale data clustering (Al-Batah, 2014).

Li et al. (2015) introduced a hybrid clustering
algorithm combining BIRCH with the Density-Based
Spatial Clustering of Applications with Noise
(DBSCAN) algorithm to improve clustering performance
on spatial data. The hybrid model, called BIRCH-
DBSCAN, leverages BIRCH's speed for initial data
compression and DBSCAN's ability to handle noise and
irregular cluster shapes. The combination of these
algorithms resulted in improved clustering accuracy and
scalability for large datasets, showing particularly strong
performance in clustering noisy spatial data. The study
concluded that this hybrid approach balances the
strengths of both algorithms and reduces their individual
weaknesses, offering a versatile solution for various data
clustering challenges.

Nayak and Mahapatra (2017) presented an extension
of BIRCH for handling multidimensional data in
distributed environments. Their proposed
Multidimensional BIRCH (MD-BIRCH) algorithm
modifies the CF tree structure to better accommodate
high-dimensional data by adjusting the threshold
dynamically during the clustering process. The
researchers tested MD-BIRCH on several real-world
datasets, showing that it significantly reduces clustering
time and improves accuracy for multidimensional
datasets compared to traditional BIRCH. This makes
MD-BIRCH a powerful tool for applications such as
bioinformatics and market segmentation, where
multidimensional data are prevalent.

In another significant contribution, Zhang et al.
(2020) explored the integration of BIRCH with deep
learning techniques to improve clustering accuracy for
complex, high-dimensional datasets. Their work
proposed the Deep BIRCH algorithm, which combines
hierarchical clustering with autoencoders to reduce data
dimensionality before applying the BIRCH algorithm.
The study demonstrated that Deep BIRCH outperforms
traditional clustering methods, especially when dealing
with non-linear patterns in large datasets. By embedding
deep learning techniques, the algorithm effectively
captures the underlying structure of the data, leading to
more accurate and meaningful cluster formations.

Additionally, Luo and Li (2021) investigated the
impact of data preprocessing on the performance of the
BIRCH algorithm. Their study introduced a data
transformation pipeline that includes normalization,
feature selection, and dimensionality reduction
techniques prior to applying BIRCH. The experimental
results showed that preprocessing significantly enhances
the performance of BIRCH, leading to faster
convergence and improved clustering accuracy. Their
findings highlight the importance of preprocessing in
improving the efficacy of BIRCH when dealing with
high-dimensional and noisy data (Alkhasawneh et al.,
2015).

Recent advances in healthcare applications have also
leveraged the BIRCH algorithm. For instance,
Ramachandran and Govindan (2022) employed a
modified BIRCH algorithm for early detection of breast
cancer using mammogram images. The modified
algorithm integrated feature selection techniques with
BIRCH to improve the clustering of image data, which
enhanced the early detection accuracy of breast cancer.
The study reported a 20% improvement in diagnostic
accuracy compared to traditional clustering methods,
underscoring the algorithm's potential in medical
diagnosis.

Methodology
This study employs a research methodology designed

to enhance the accuracy of the BIRCH clustering
algorithm for medical data analysis, with a specific focus
on breast cancer diagnosis. The dataset utilized is the
Breast Cancer Wisconsin (Diagnostic) Data Set, which is
publicly available through Kaggle.

Data Transformation

In statistics and data mining, data transformation
refers to the application of a mathematical function to
each data point in a dataset. Specifically, each data point
zi is replaced by a new value; yi = f(zi), where f
represents a transformation function. Data transformation
is crucial in preparing datasets for statistical analysis or
machine learning algorithms, especially when features
vary widely in scale. Standardization, a common
transformation technique, ensures that the data conforms
to assumptions required for statistical inference
procedures, such as normality or linearity, which are
essential for accurate analysis and interpretation. It also
helps algorithms that rely on distance metrics, such as
clustering and classification, to perform optimally by
reducing the influence of features with larger numerical
ranges.

In this study, the sklearn.preprocessing
StandardScaler library was used to standardize the
dataset's features. The StandardScaler function ensures
that the mean of the data becomes zero and the variance
becomes one, thus bringing all features to the same scale.
This method is particularly important when employing
algorithms such as BIRCH (Balanced Iterative Reducing
and Clustering using Hierarchies), where the Euclidean
distance metric is sensitive to feature magnitude, and
large variations between features can disproportionately
affect clustering results.

Data Transformation Process

The data transformation process follows the data
cleaning phase, where raw data is processed to remove
inconsistencies or errors. Once cleaned, the
transformation phase consolidates the data into forms
suitable for mining by applying techniques such as
scaling, normalization, or log transformation. In this
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study, data transformation involved several key steps
(Ramachandran, & Govindan, 2022).

Data Loading and Exploration: Initial exploratory
data analysis (EDA) was performed to understand the
data distribution, identify outliers, and determine
whether further cleaning was required. Descriptive
statistics and visualizations helped identify potential data
anomalies.

Scaling and Standardization: After exploration, the
StandardScaler function from the sklearn library was
used to standardize the dataset. This step ensures that all
features are on the same scale, improving the
performance of distance-based algorithms.

Data Restructuring and Feature Engineering:
Depending on the dataset, feature engineering was
applied to create additional informative features or
restructure existing ones. This transformation process
ensures that the dataset is in a suitable format for
clustering and other machine learning tasks.

Data Aggregation: In cases where multiple records
need to be consolidated (e.g., temporal or hierarchical
data), aggregation operations were applied to summarize
the data at appropriate levels, preparing it for clustering.

Modified BIRCH Algorithm

Once the data transformation was complete, the
modified BIRCH algorithm was applied. BIRCH is a
hierarchical clustering algorithm that efficiently handles
large datasets by incrementally building a clustering
feature (CF) tree. To further enhance its performance in
this study, several modifications were introduced,
specifically by incorporating data transformation
techniques and adapting the algorithm's distance metric.
The clustering process began by determining the optimal
number of clusters using the Elbow method and then
applying the enhanced BIRCH algorithm (Kumar &
Shah, 2021).

The key enhancement introduced in this study
involved incorporating the Scale algorithm alongside a
modified version of the Euclidean distance metric. These
modifications aimed to improve the algorithm's
clustering accuracy, especially when working with high-
dimensional or non-standardized datasets. The following
steps outline the procedure for the modified BIRCH
algorithm:

Steps of the Modified BIRCH Algorithm

1. Data Preprocessing and Transformation: This step
involves reading the dataset and applying scaling
and transformation. The StandardScaler was used to
normalize the data, ensuring that all features
contribute equally to the clustering process.

2. CF Tree Construction: An initial clustering feature
(CF) tree is built in memory. This CF tree captures
summaries of the dataset by aggregating the data
points into compact, manageable representations,

known as CF triples, which store essential
information about the clusters.

3. Refinement of the CF Tree: A smaller CF tree is
created by pruning and condensing the original CF
tree. This step helps reduce memory consumption
and optimizes the clustering process by discarding
outliers or merging very similar clusters.

4. Global Clustering: In this step, global clustering is
performed on the leaf nodes of the CF tree. The
clustering algorithm refines the clusters further by
analyzing the relationships between CF triples. The
global clustering process ensures that clusters with
similar characteristics are merged.

5. Cluster Refinement: Finally, the clusters are refined
through additional passes over the data to improve
clustering results. This involves recalculating the
clusters’ centroids and adjusting the cluster
boundaries to improve the accuracy of the
clustering.

Algorithm 1: Modified BIRCH Algorithm

Input:
D = {t1, t2, ..., tn} // Set of elements
Data_clean(); // Clean the dataset
Data_scale(); // Apply scaling and transformation to
standardize the data

Output:
D2 = {NT1, NT2, ..., NTn} // The transformed and
scaled dataset
T // Threshold value for CF tree construction

Algorithm:
For each Nti in D2:

Determine the appropriate leaf node for Nti
insertion;
If threshold condition is not violated:

Add Nti to the cluster and update CF triples;
Else:

If there is room to insert Nti:
Insert Nti as a single cluster and update CF
triples;

Else:
Split the leaf node and redistribute CF
features;

This pseudocode outlines the procedure for applying
the modified BIRCH algorithm to the transformed data.
The algorithm dynamically updates CF triples as new
data points are inserted and splits clusters when
necessary to maintain balanced, accurate clustering.

Performance Evaluation of the Modified BIRCH
Algorithm

The performance of the modified BIRCH algorithm
was evaluated using a breast cancer dataset. The Elbow
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method was used to determine the optimal number of
clusters, and the algorithm was tested with varying
threshold values.

Results and Discussion
This section presents the experimental results of both

the original and modified BIRCH algorithms applied to
the breast cancer dataset. Several cluster configurations
and threshold values were examined to evaluate the
clustering performance. The results demonstrate the
effectiveness of the modifications introduced in the
BIRCH algorithm.

1. The Original BIRCH Algorithm
2. The Case of Two Clusters and a Threshold of 3

In this scenario, the Elbow method indicated that two
clusters would be optimal. The original BIRCH
algorithm was applied with a threshold of 3, and the
confusion matrix is presented in Table 1.
Table 1: Confusion Matrix for the Original BIRCH Algorithm (2

Clusters, Threshold = 3)

Predicted B Predicted M
Actual B 0 357
Actual M 86 126

Table 2: Performance Metrics for the Original BIRCH Algorithm
(2 Clusters, Threshold = 3)

Diagnosis Precision Recall F1-Score Support
B 0.00 0.00 0.00 357
M 0.26 0.59 0.36 212

The accuracy for this case was 22.14%, a very low
value, suggesting that the algorithm struggled to
correctly cluster the data. This result highlights the need
for improvement or adjustment of experimental
conditions. The precision, recall, and F1-score metrics
further illustrate the poor performance, particularly in
predicting benign (B) cases (Table 2).

The Case of Three Clusters and a Threshold of 3

When increasing the number of clusters to three, the
results showed a slight improvement. The confusion
matrix for this scenario is shown in Table 3.
Table 3: Confusion Matrix for the Original BIRCH Algorithm (3

Clusters, Threshold = 3)

Predicted B Predicted M
Actual B 97 260
Actual M 120 92

Table 4: Performance Metrics for the Original BIRCH Algorithm
(3 Clusters, Threshold = 3)

Diagnosis Precision Recall F1-Score Support
B 0.45 0.27 0.34 357
M 0.26 0.43 0.33 212

The accuracy in this case was 33.22%, showing a
modest improvement but still insufficient for reliable

medical data clustering. The performance metrics
demonstrate a slight improvement in precision and recall,
but overall, the clustering performance remains
inadequate (Table 4).

The Case of Four Clusters and a Threshold of 3

With four clusters and a threshold of 3, the accuracy
dropped again to 24.08%. The confusion matrix for this
case is presented in Table 5.
Table 5: Confusion Matrix for the Original BIRCH Algorithm (4

Clusters, Threshold = 3)

Predicted B Predicted M
Actual B 0 357
Actual M 75 137

Table 6: Performance Metrics for the Original BIRCH Algorithm
(4 Clusters, Threshold = 3)

Diagnosis Precision Recall F1-Score Support
B 0.00 0.00 0.00 357
M 0.28 0.65 0.39 212

The poor precision and recall metrics, especially for
benign cases, indicate that the original BIRCH algorithm
struggles to effectively cluster medical data, even with
different cluster settings (Table 6).

The Modified BIRCH Algorithm With Data
Transformation

The modified BIRCH algorithm incorporated data
transformation techniques and a scaled Euclidean
distance measure to improve clustering performance. The
experimental results across different numbers of clusters
and threshold values demonstrated significant
improvement in clustering accuracy.

The Case of Two Clusters and a Threshold of 3

After applying the modified BIRCH algorithm with
data transformation, the confusion matrix for two
clusters and a threshold of 3 is shown in Table 7.
Table 7: Confusion Matrix for the Modified BIRCH Algorithm (2

Clusters, Threshold = 3)

Predicted B Predicted M
Actual B 340 17
Actual M 23 189

The accuracy for this configuration reached 92.97%,
a significant improvement over the original algorithm.
Table 8: Performance Metrics for the Modified BIRCH Algorithm

(2 Clusters, Threshold = 3)

Diagnosis Precision Recall F1-Score Support
B 0.94 0.95 0.94 357
M 0.92 0.88 0.90 212

The precision, recall, and F1-score indicate strong
performance in both benign (B) and malignant (M) cases,
confirming that data transformation improves clustering
quality (Table 8).
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The Case of Three Clusters and a Threshold of 3

For the three-cluster case, the confusion matrix
remains the same, and the accuracy stays at 92.97%,
suggesting that the transformation method generalizes
well across different numbers of clusters (Table 9).
Table 9: Confusion Matrix for the Modified BIRCH Algorithm (3

Clusters, Threshold = 3)

Predicted B Predicted M
Actual B 340 17
Actual M 23 189

The performance metrics in Table 10 are also
consistent with the two-cluster case.
Table 10: Performance Metrics for the Modified BIRCH

Algorithm (3 Clusters, Threshold = 3)

Diagnosis Precision Recall F1-Score Support
B 0.94 0.95 0.94 357
M 0.92 0.89 0.90 212

The Case of Four Clusters and a Threshold of 3

Even with four clusters, the modified BIRCH
algorithm maintained its strong performance, achieving
an accuracy of 92.97% (Table 11).
Table 11: Confusion Matrix for the Modified BIRCH Algorithm (4

Clusters, Threshold = 3)

Predicted B Predicted M
Actual B 340 17
Actual M 23 189

The corresponding performance metrics are shown in
Table 12.
Table 12: Performance Metrics for the Modified BIRCH

Algorithm (4 Clusters, Threshold = 3)

Diagnosis Precision Recall F1-Score Support
B 0.94 0.95 0.94 357
M 0.92 0.89 0.90 212

The Case of Two Clusters and a Threshold of 2

In this experiment, reducing the threshold value to 2
led to a notable improvement. Table 13 presents the
confusion matrix for the modified BIRCH algorithm
with two clusters and a threshold of 2.
Table 13: Confusion Matrix for the Modified BIRCH Algorithm (2

Clusters, Threshold = 2)

Predicted B Predicted M
Actual B 353 4
Actual M 5 207

The accuracy for this configuration reached an
excellent 98.40%, underscoring the positive impact of
the transformation process and parameter adjustments.

This final configuration demonstrates the highest
level of accuracy, suggesting that the modified BIRCH
algorithm is best suited for a two-cluster configuration

with a threshold of 2. The experimental results highlight
the significant improvement in clustering performance
achieved by the modified BIRCH algorithm with data
transformation.

Comparison between the Original and Modified
BIRCH Algorithms with Transformed Data
Table 14: Performance Metrics for the Modified BIRCH

Algorithm (2 Clusters, Threshold = 2)

Diagnosis Precision Recall F1-Score Support
B 0.99 0.99 0.99 357
M 0.98 0.98 0.98 212

In this section, the researcher conducts a comparative
analysis between the original and modified BIRCH
algorithms based on their clustering accuracy using
transformed data. The results are summarized in Table
15.

Clustering Accuracy Comparison

The original BIRCH algorithm demonstrated a
clustering accuracy of 33.22% when applied to the breast
cancer dataset. In stark contrast, the modified BIRCH
algorithm, which utilized data transformation, achieved
an impressive accuracy of 98.40%. This significant
improvement of over 65% in clustering accuracy
underscores the efficacy of data transformation in
enhancing the algorithm's performance.
Table 15: Comparison between the Original and Modified BIRCH

Algorithms

Selected Algorithm Clustering Accuracy
Original BIRCH 33.22%
Modified BIRCH 98.40%

Visual Representation of Clustering Outcomes

Fig. 1 illustrates the clustering results for tumor
cases, where benign tumors are represented in blue and
malignant tumors in red. It is evident that the dataset
contains a higher number of benign cases compared to
malignant ones.

When the original BIRCH algorithm was applied
without any modifications, it became apparent that
numerous tumor cases were misclassified. Specifically,
several instances diagnosed as benign tumors were
incorrectly clustered as malignant tumors, and vice versa.
This misclassification is visually represented in Fig. 2.

Performance Metrics and Clustering Efficiency

Following the enhancements made to the BIRCH
algorithm, the clustering performance markedly
improved. A total of 121 nearest neighbors were
computed, and all 569 samples were indexed in just
0.001 seconds. Neighbors for the entire dataset were
calculated in 0.021 seconds, and conditional probabilities
for all sample data points (n = 569) were also computed.
The mean sigma value recorded was 33.68. The
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Kullback-Leibler (KL) divergence was observed after
250 iterations with an early exaggeration of 49.38, and
after 4,000 iterations, it showed an exaggeration of
0.210.

Fig. 1: Clustering of the Tumor Cases in the Study Data

Fig. 2: Tumor Clusters Generated by the Original BIRCH
Algorithm

The clustering outcomes of the data records are
further illustrated in Fig. 3. The left side of this figure
displays the results after transforming the data and
applying the modified BIRCH algorithm, while the right

side shows the clustering results before the modifications
were made. This comparison highlights the superior
clustering performance achieved with the modified
BIRCH algorithm.

In this analysis, a total of 121 nearest neighbors were
calculated again, and all sample records (n = 569) were
indexed in 0.003 seconds. Furthermore, neighbors were
computed for the entire sample in 0.040 seconds, with
conditional probabilities also derived. The mean sigma
value was significantly lower at 1.55. The KL divergence
occurred after 250 iterations with an early exaggeration
of 64.63, and after 1,400 iterations, the exaggeration was
0.811.

The comparative analysis reveals that the modified
BIRCH algorithm significantly outperforms the original
version, especially after data transformation. The
substantial increase in clustering accuracy demonstrates
the importance of algorithmic enhancements in achieving
reliable results in medical data classification.

Fig. 3: Clustering Results Before and After Use of the
Modified BIRCH Algorithm with Transformed Data

Conclusion
This study presents a transformation-driven

clustering framework designed to enhance the
classification accuracy of medical datasets, with a
specific focus on breast cancer diagnosis. By integrating
advanced data preprocessing techniques, including
feature scaling and standardization, the proposed model
successfully improves the clustering process and overall
diagnostic performance. The experimental results
demonstrate a dramatic improvement in accuracy—from
33.22% using a conventional approach to 98.40% with
the enhanced methodology—highlighting the critical role
of intelligent data transformation in unsupervised
learning tasks.

The proposed approach proves particularly effective
in hierarchical clustering scenarios where traditional
algorithms often struggle with unbalanced feature scales
and noisy inputs. Moreover, the robustness of the
framework across multiple cluster configurations affirms
its adaptability and practical viability in real-world
medical data analysis. Beyond high clustering accuracy,
the system exhibits computational efficiency, making it
suitable for deployment in large-scale healthcare
analytics and diagnostic support systems.

http://192.168.1.15/data/13398/fig1.png
http://192.168.1.15/data/13398/fig1.png
http://192.168.1.15/data/13398/fig2.png
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http://192.168.1.15/data/13398/fig3.png
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Mohammed Subhi Al-Batah / Journal of Computer Science 2025, 21 (9): 2074.2080
DOI: 10.3844/jcssp.2025.2074.2080

2080

This work contributes to the growing body of
research at the intersection of intelligent engineering and
medical informatics, offering a scalable, interpretable,
and high-performance solution for clinical data
clustering. Future research can extend this framework by
incorporating hybrid clustering-classification pipelines,
integrating domain knowledge through semi-supervised
learning, or applying the model to other critical areas
such as genomic profiling or radiological imaging.
Ultimately, this research lays the groundwork for more
intelligent, responsive, and precise decision-support
systems in healthcare environments.
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