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Abstract: Farmers started to adopt smart gadgets like automated pest
detection and kiosks for their work in light of the Al revolution in agriculture.
These kinds of technologies help farmers identify pest infestations early,
which allows the farmers to take action accordingly and prevent crop loss.
This results in improvement in both yield and sustainability. However,
running an advanced model such as YOLOv7 on low-power edge devices
remains a challenge, especially in real time. To address the problem, our
Institute of Science and research brings an innovative Advanced Edge-Based Vision System
Technology Tiruchirappalli, designed for detecting small insects and classification in agricultural
India environments. The model built utilizes the Jetson Nano platform, TensorRT
Email: optimization, and an enhanced YOLOvV8 model. To optimize the
balajiganeshrajagopal @gmail.com performance, the model uses compression techniques, such as INTS8
quantization, and is accelerated by TensorRT. The YOLOvV8 model is trained
on a specialised insect dataset, and this optimization technique results in a
tenfold reduction in memory usage, yet performs efficiently and also
improves the inference speed using Jetson Nano by achieving a processing
rate of 45 Frames Per Second (FPS). Despite these optimizations and
memory reduction, the model serves at its best where the F1-scores
exceeding 95% ensure accurate detection of the pest. This study
demonstrates the successful deployment of lightweight, high-performance
vision models on edge devices, enabling real-time, accurate pest detection.
The findings contribute to advancing precision agriculture by making
intelligent pest management more accessible and efficient.
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detection of insects. Our technology empowers farmers,
especially small-scale and subsistence farmers, to make
decisions that can reduce pesticide usage and crop loss, as
well as enhance their economic situation. Therefore,
implementing intelligent edge vision systems for insect
detection can alleviate many of the economic and social
challenges faced by farmers. Insect infestations can
significantly impact crop yields. Early detection is a
powerful tool that can help farmers manage these issues. By
reducing chemical pesticide usage, farmers can increase crop

Introduction

Farmers experience various challenges due to pest
infestations on their agricultural farms. The major problem is
the financial strain for the small-scale farmers. Insects can
lead to substantial crop losses, which raises questions about
food security and the livelihoods in urban areas. The high
expense of buying pesticides will be a financial burden for
the farmers, and also not advisable for using it because of its
toxicity, affecting the environment, soil, and water pollution,

which affects the ecosystem. Additionally, exposure to
pesticides poses health risks to farmers and their families.
Poor handling and application can lead to both immediate
and long-term health issues, affecting the well-being of
farmers and agricultural consumers. This gap will hinder
opportunity and lead to poverty. Developing this edge vision
system offers an effective alternative to pesticides for pest
control. Our design provides real-time monitoring and early
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yields, reduce production costs, and enhance overall farm
productivity. This technology also benefits consumers by
reducing pesticide residues and promoting a healthier
ecosystem. Precision agriculture is revolutionizing crop
health by analyzing pest behavior, thereby enhancing pest
management techniques. This technology benefits rural
communities by increasing crop yields and reducing
pesticide costs, while also promoting sustainable farming
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practices and product safety, thereby attracting policy
support and incentives. YOLOv8 was chosen due to its
lightweight architecture, speed, and high detection accuracy,
which makes it particularly suitable for real-time
applications on edge devices. Compared to earlier YOLO
variants, YOLOVS offers better bounding box regression and
classification, making it ideal for detecting small, fast-
moving insects in complex farm environments.

Our work makes several key contributions toward
deploying efficient pest detection systems in agricultural
edge environments. First, we optimize the YOLOVS
architecture specifically for enhanced pest detection and
classification under real-farm conditions. Second, we
systematically validate multiple image augmentation
techniques to improve model robustness and performance
on diverse, real-time field data. Third, we achieve a
notable increase in inference speed, measured in
improved frames per second, through model

recompilation and optimization. Finally, we integrate
these advancements into a complete, end-to-end pipeline that
is scalable, power-efficient, and readily deployable on
resource-constrained edge devices such as the Jetson Nano.

As shown in Fig. 1, the system architecture integrates
edge processing with deep learning inference.

Fig. 1: The assembled prototype

Related Work

Research on edge computing frameworks for pest
detection (Cardoso et al., 2022; Diya ef al., 2023; Rajak
et al., 2023) demonstrates how decentralizing computation
can enhance real-time identification, reduce latency, and
support timely pest management. Complementary studies
including deep learning methods for soybean insect pest
counting (Ademola et al., 2022) and smart monitoring using
optical fiber sensors (Domingues et al., 2022) further
validate the effectiveness of automated detection systems.
Collectively, this body of work establishes edge computing
as a viable approach for improving the speed and
responsiveness of precision agriculture applications.

However, these studies often lack an in-depth examination of
two critical deployment factors: the scalability and power
efficiency of the proposed frameworks. Addressing these
aspects represents a significant opportunity for further
research and optimization.

A comparative analysis of YOLO and Faster R-CNN
for insect detection in tomato crops (Diya et al., 2023;
Kang et al., 2023) evaluates the relative merits of each
model, concluding that YOLO offers superior real-time
performance and accuracy. Parallel research into
IoT-enabled pest monitoring networks (Sadowski &
Spachos, 2018) and comprehensive reviews of
IoT-based precision agriculture (Huang et al., 2018)
further illustrate the growing role of automated detection
systems. While these studies advance model selection
and system integration, they often omit a critical
dimension for field deployment: hardware optimization.
This gap underscores the need for further investigation
into efficient, edge-optimized implementations of
high-performing models like YOLO.

Review articles on machine learning for plant disease
identification and categorization (Diya et al., 2023;
Makkena et al., 2023) provide a foundation relevant to
automated pest detection. Complementary research into
smart agricultural sensors (Tetila et al., 2020) and novel
deep learning models optimized for edge deployment
(Tang & Zhang, 2023) further highlights the growing
integration of IoT and edge computing in precision
agriculture. Collectively, these works advance machine
learning applications for early disease detection, production
optimization, and loss minimization. Building on this
trajectory, a promising future direction involves the deeper
integration of real-time edge computing with advanced
machine learning to create more robust and responsive
systems for agricultural pest and disease monitoring.

Research on low-power deep learning for edge devices
(Shruthi et al., 2019; Albanese et al., 2022; Shi et al.,
2022) provides valuable strategies for minimizing energy
consumption in resource-constrained Al systems. While
these works offer important overviews of model
optimization and efficient inference, they lack a dedicated
focus on agricultural environments. This limits their
applicability and prominence as tailored solutions for the
diverse and demanding conditions of real-world agri-tech
applications.

Recent research (Baghbanbashi ef al., 2023; Droukas
et al., 2023) introduced a novel attention mechanism for
rice pest detection, designed to address challenges such as
complex backgrounds and small pest sizes. By
dynamically adjusting attention weights, the model
focuses computational resources on a limited subset of
relevant pests. Performance was further enhanced through
a multi-scale feature fusion network and a knowledge-
condensed network optimized for edge deployment. This
integrated architecture enabled rich feature extraction,
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allowing the model to outperform advanced benchmarks,
including YOLO, EfficientDet, RetinaDet, and
MobileNet, in pest detection accuracy.

Moradeyo et al. (2023) proposed an algorithm for
detecting potato late blight disease using a neural
network-based approach. Designed to operate in
uncontrolled  field environments with complex
backgrounds, the system first applies image preprocessing
techniques such as decorrelation stretching to enhance
color differentiation in input leaf images. Fuzzy C-means
clustering is then used to segment regions of interest.
Finally, a trained neural network classifies the affected

Yesuf and Assefa (2023) evaluated model
compression techniques, including pruning, 16-bit
quantization, and knowledge distillation, on a DenseNet
architecture using the CIFAR dataset and Jetson Xavier
hardware to optimize for embedded systems. Broader
context for deployment strategies is provided by survey
works, such as the analysis of robotic harvesting systems
by Kargar ef al. (2022) and comprehensive studies on
neural network compression. However, these studies
often omit a critical practical metric: inference speed. To
address this gap, our analysis directly compares runtime
efficiency alongside accuracy. Table 1 presents this

regions by distinguishing them from similarly colored and

textured backgrounds.

performance

comparison,

benchmarking YOLOv8

against alternative models on key deployment metrics.

Table 1: Comparative review of various literature related to the proposed model

Ref. No. Algorithms/ Major Contribution Areas for Improvement
Learning Models
Albanese et al. (2021) DNN Use of DL models to identify pest Wireless Communication

Shin and Oh (2022)

Shruthi et al. (2019)

Moradeyo et al. (2023)

Wang et al. (2023)

Baghbanbashi et al. (2023)

Shruthi et al. (2019)

Huang et al. (2018)

Ali et al. (2023)

R-CNN, CRA-NET

K-means clustering

R-CNN, Fast R-CNN,
RPN, YOLOV3, SSD

CNN

Faster R-CNN,
YOLOV3, SSD,
Cascade R-

CNN, Mask R-CNN

K-means clustering

CNN, RCNN, faster
RCNN, R-FCN, SSD,
YOLOV3.
Faster-RCNN
approach based on
MobileNet

infestation from photos obtained
from low-power embedded sensors.
Energy  harvesting integration
ensures extended battery life.
Design of Embedded Systems with
DL Models

Introduced the method of Novel
model compression for low-power
devices

Challenges like
backgrounds and
considered
Employed color enhancement and
clustering for segmentation

Issues like Model adaptability and
data  labeling shortages are
mitigated

complex
lighting are

Utilized a Deep Convolutional
Neural Network (CNN) with novel

layer fusion and normalization
functions
integrates attention mechanisms

and a multi-scale feature fusion
network for improved accuracy, as
well as a specialized knowledge
distillation network for inference on
edge devices.

GLCM texture features

Optimized for Sugarcane leaf
diseases.

Enhanced YOLO V3 algorithm
with faster detection times and
improved accuracy for agri robots.
Achieving an accuracy of 82.43% on
the IP102 dataset while addressing
challenges such as image distortions
and enhancing the generalization
ability of pest recognition in
agricultural applications.

Energy Harvesting at different
weather conditions

Very limited rice dataset
Data imbalance of certain rice crop
varieties

Scalability and resilience of the
FCM clustering

Algorithms  applicability  of
algorithms in practical scenarios

Pipeline for embedded device
deployment

Limited dataset with limited
classes, Deployment on embedded
systems

Efficacy of the YOLO-GBS in
multi-class datasets.

Improved  feature  selection
strategies
Alternative classification

algorithms for larger datasets.
A large-scale dataset in different
weather conditions.

It does not address the
performance of the Faster-PestNet
model on more diverse or larger
datasets.
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Table 1: Continued

Chithambarathanu and
Jeyakumar (2023)

Dong et al. (2024)

Yang et al. (2023)

Wang and Fu (2024)

Anwar and Sarfaraz (2023)

Venkatasaichandrakanthand,
and lyapparaja (2023)

Sushma et al. (2024)

DCNN,
LSTM, DBN

CNN,

YOLOVS5

YOLOv7

RTMDet, DCNN

CNN

CNN, MFO, and
EViTA

MFO,EviTA, CNN

Emphasizing the need for
automated systems to enhance
agricultural productivity and reduce
human error in pest identification.
Utilizing innovative methods like
Multi-Level ~ Spatial ~ Pyramid
Pooling and Content-Aware
ReAssembly of Features to enhance
accuracy while reducing parameters
significantly.

Achieving  93.23% accuracy
through advanced techniques like

deformable  convolution  and
dynamic attention mechanisms,
significantly enhancing  pest

recognition and control efficiency.
The model is fine-tuned with the
YOLOv7 model, and some
unwanted layers are pruned.

Uses transfer Learning with pre-
trained CNNs like VGGI6,
VGG19, and ResNetv50.

This model effectively utilizes dual-
branch segment representations to
enhance feature extraction from
pest images, leading to superior
performance compared to existing
models.

Improves pest detection and
classification in peanut crops by
integrating dual-branch transformer
architectures and advanced feature
extraction techniques, leading to
superior accuracy compared to

traditional CNN models and
existing vision transformer
architectures.

There is a lack of standardized
datasets, dependence on human
expertise, and unclear evaluation.

Lacks extensive validation on
diverse and large datasets, which
raises concerns about the
generalizability of the PestLite
model's performance.

The reliance on a limited dataset of
782 images, which may not fully
represent the diversity of tea tree
pests, could affect the model's
generalization.

The VoVGSCSP module
improves inference speed and
mAP, which could limit the overall
performance enhancement due to
increased network depth and
resistance to dataflow.

Reliance on a specific dataset, lack
of detailed comparisons with state-
of-the-art models, absence of
robustness testing, and potential
overfitting issues.

The datasets used for training and
validation may not be sufficiently
large or diverse to fully validate
the model's effectiveness.

Improves pest detection and
classification in peanut crops by

integrating dual-branch
transformer  architectures and
advanced  feature  extraction

techniques, leading to superior
accuracy compared to traditional
CNN models and existing vision
transformer architectures.

Numerous studies have sought to optimize the
performance and scalability of deep learning models
for object detection and classification across diverse
agricultural applications. While much of this research
focuses on improving standard accuracy metrics,
significantly less attention has been paid to optimizing
these models for practical deployment on resource-
constrained edge devices. This work addresses that gap
by focusing on both the materials (datasets) and
methods necessary to create an efficient, production-
level insect detection model for edge deployment. Our
goal is to highlight the pathway toward a scalable, end-
to-end deep learning pipeline that can serve as a
reliable inference engine within smart agricultural
systems.

Materials and Methods

An Intelligent Edge Vision System for insect detection
in agricultural settings is proposed in this work. The
system leverages the power of the Jetson Nano edge
device along with the TensorRT compiler over a
customized YOLOv8 deep learning model. Data
collection involves acquiring insect and non-insect
images and augmenting the dataset. Model training
comprises fine-tuning the YOLOvS8 model on the custom
dataset. The model is then optimized using TensorRT.
Real-time insect detection is achieved by integrating the
camera feed and deploying the model on the Jetson Nano,
enabling precise and timely pest control in agriculture.
The deployment of the Intelligent Edge Vision System for
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insect detection in agriculture using Jetson Nano,
TensorRT, and YOLOvV8 showcased impressive outcomes
in terms of model memory requirements, inference timing,
and concurrency rate. NVIDIA's Jetson Nano is a small, low-
cost computer designed for edge Al applications.

TensorRT is an optimization tool developed by NVIDIA
for deep learning inference on GPUs. It is used to optimize
trained deep learning models, making them faster and more
efficient for real-time inference. In the edge vision systems
presented, TensorRT has been employed to accelerate the
inference of Al models for tasks like crop monitoring,
disease detection, and pest control. YOLO (You Only Look
Once) is a popular real-time single-shot object detection
model used in a variety of computer vision tasks. However,
many computer vision tasks lack the inclusion of the
environmental setting and scalability for end-to-end
production. YOLOVS is an improved version with enhanced
performance. This work has been utilized for tasks such as
insect detection, crop disease identification, and weed
detection, enabling precision agriculture practices.

Dataset Curation

The methodology describes the development of an
Intelligent Edge Vision System for detecting agricultural
pests using a dataset from the National Bureau of
Agricultural Insect Resources (NBAIR), which includes
40 pest types found in field crops. Image pre-processing
begins by converting RGB images to grayscale for edge
detection and noise reduction using Canny edge detection.
Bounding boxes are created around the insects, defined by
four coordinates (X, y, w, h). Only bounding rectangles
larger than 100 pixels in width and height are used for
extracting Regions of Interest (ROIs) from the original
RGB images. The extracted insect images are resized to
227%227 pixels for consistency. To increase model
robustness, geometric transformations such as scaling,
rotation, flipping, and transposing are applied, expanding
the dataset. This augmentation strategy enhances dataset
diversity while maintaining computational efficiency.
Figure 2 shows pre-processed insect images, and Table 2
provides details about the species in the NBAIR dataset.
The dataset consists of over 5481 annotated images
covering mainly five classes: Asian Lady Beetle, Lady
Bug, Mealy Bug, Pyrilla Perpusilla, and Stink Bug. Images
were collected under different lighting and background
conditions to ensure diversity and generalization.

Dataset Description:

Table 2: NBAIR Insect samples

Insect Name No. of Samples  No. of Test Samples

Asian Lady beetle 876 300
Ladybug 503 300
Mealy bug 802 300
Pyrilla perpusilla 1,099 300
Stink bug 701 300
Total 3981 1500

Fig. 2: Forty Insect classes in the NBAIR insect dataset
(Cropped and Preprocessed)

It is found that the number of samples for each of the
five different classes of insects is not balanced. Imbalance
occurs when certain classes have significantly fewer
samples compared to others, leading to biased model
training and poorer performance on the underrepresented
classes. When there is an imbalance in the number of
samples across different classes in the dataset, image
augmentation is required to make the number of samples
equal across the different classes of images. The various
image augmentation techniques, such as gray scale
conversion, color saturation, blurring, bounding box crop
after zoom, and bounding box after rotation, are applied to
the original dataset with 3981 samples across five different
classes. On application of various augmentation techniques,
1500 samples are generated for each class of images, and the
number of images over each class becomes balanced.

Grayscale conversion has been applied to a subset of
15% of images in the dataset at random and helps the
model focus more on texture and structure rather than
color information.

Color Saturation (-25 to +25%) adjustment alters the
intensity of colors in an image, which helps the model to
learn and recognize objects under different lighting
conditions and color saturations, improving its
generalization ability.

Image blurring (upto 2.5 px) reduced the sharpness of
an image by averaging the pixel values within a small
neighborhood (5x5), which introduced varying degrees of
blurriness, forcing the model to focus on more abstract
features rather than fine details.

Bounding Box Crop after Zoom (0 to 20%) involved
zooming into an image and then cropping it based on the
bounding box of the object of interest, which helped the
model to learn and focus on the relevant object despite
changes in scale and perspective.

Bounding Box Rotation (-15° to +15°) applied
rotational transformations from -15 degrees to +15
degrees to the samples, which helped the model to be
invariant to object rotations, enabling it to recognize
objects from different viewpoints.
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These kinds of image augmentation help to prevent the
learning model from being biased towards the majority
class and enable it to learn discriminative features for all
classes. Table 3 summarizes the different augmentation
techniques applied to the dataset.

Optimized Yolo v8 Architecture for Edge Vision
Systems

YOLOVS has emerged as a cutting-edge object detection
system, offering superior speed and accuracy compared to its
predecessors, making it highly effective in domains like
livestock monitoring, PCB inspection, underwater fish
identification, and insect detection in agriculture. Its anchor-
free architecture significantly enhances real-time detection
by eliminating the need for predefined anchor boxes, which
improves both detection speed and reliability, especially for
small or irregular objects. The multi-scale prediction
capability of YOLOVS, powered by the C2f module and
anchor-free detection head, ensures that the model can detect
objects at various sizes and scales. In this proposed work, we
focus on optimizing the detection layers P3, P4, and PS5 since
these layers handle different feature map resolutions crucial
for detecting small objects like pests.

To tailor the YOLOVS for pest detection, we modify the
architecture by replacing the P3, P4, and P5 layers with
custom CNN layers. Due to this replacement, we removed
the P1 and P2 layers, which are very ineffective for
detecting smaller objects. By removing them, the model
architecture only focuses on high-resolution images for
feature mapping, which better captures pest details. We
then set the stride for P3, P4, and P5 layers to 1 (Fig. 3). By
doing this, we are enhancing the model’s sensitivity to
smaller objects to improve detection accuracy, such as the
pest size, colours, and textures. By doing this, there will be
an increase in the model size, so we are applying post-
training INT8 quantization to compress the weight memory
and, at the same time, maintain the performance. This
ensures the model optimization and remains efficient for
real-time pest detection on edge devices.

Hyperparameter tuning was conducted to improve
model accuracy, including learning rate adjustments,
anchor box optimization, and input image resizing. To
validate YOLOVS's suitability, we also experimented with
Faster R-CNN and SSD models, which underperformed in
speed and accuracy on edge hardware compared to
YOLOVS.

Table 3: Description of different augmentation techniques applied on each class of images

Insect Name No. of Augmentation Techniques Samples af‘Fer
Samples Augmentation

Asian Lady beetle 876 . Grayscale: 15% of images 1500

Ladybug 503 . Color Saturation: -25 to +25% 1500

Mealy bug 802 . Blur: Up to 2.5px 1500

Pyrilla perpusilla 1099 . BB Crop after Zoom: 0 to 20% 1500

Stink bug 701 . BB Rotation: -15° to +15° 1500
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Fig. 3: Optimized Yolov V8 Architecture
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Model Compression for Edge Deployment
Modified Backbone of YOLOVS

While testing YOLOVS for pest detection in low-
resolution images, we noticed a key limitation the
backbone wasn’t capturing enough detail for small pests.
To overcome this, we replace the standard backbone with
more lightweight but also more efficient feature extractors
like MobileNetV3 and EfficientNet (Fig. 4). By changing
this, we bring the perfect balance between accuracy and
computation efficiency, ensuring even low-resolution
images could also extract features accurately. By
improving how the backbone processes visual data, we
strengthened the detection layers, allowing them to make
more precise predictions.

To define the model’s input, we used Df x Df x M,
where M represents the number of input channels. But
here’s where things get tricky traditional convolution
operations require a significant amount of computation,
following the formula (DP x DP x M) x (DK x DK x N).
In this equation, DP represents the input’s spatial
dimensions, DK is the kernel size, and N is the number of
output channels. The result? A high computational load
can be a major challenge when running real-time object
detection on resource-limited edge devices. By
optimizing the backbone and refining feature extraction,
we ensured that our model remained both efficient and
highly accurate, making it well-suited for real-time pest
detection in agricultural settings.

faudilied Cony Motule
Input Layer

Modified Convolution Module

During the research, we mainly focused on enhancing
the CNN modules in the detection layer of YOLOv8 (P3,
P4, P5) to increase the accuracy of detecting low-
resolution images. The key feature we modified in the
research is by replacing the standard CNN layer with a
custom-trained one, which focuses on the detection of
small objects (Fig. 5). Through testing, we found that P1
and P2 mainly focus on detecting larger objects and
contribute less to detecting small-sized pests. To improve
the model, we pruned these two layers using Depth
Separable Convolution (DSC), which reduces the
unnecessary computation while retaining detection
accuracy. Pruning these layers not only improves memory
efficiency but also makes the model computationally
lightweight yet more powerful. It also detects pests of
different sizes, shapes, and colors. Additionally, we fine-
tuned the stride configuration of P3, P4, and PS5, setting it
to 1 to boost sensitivity to small objects. This adjustment led
to more precise detections, even in lower-resolution images.
To optimize the model, we applied the INT8 quantization
technique, which significantly reduces the memory usage of
the model without affecting the accuracy of detection. These
enhancements made the model highly efficient on deploying
on edged devices, such as drones and agri monitoring
systems. By strategically combining DSC pruning and
quantizing, we developed a lightweight yet powerful model,
especially designed for real-time applications. The DSC ratio
can be computed using Eq. (1):

MXNXDy XDy

DSC ratio = ————— (1)
MXDy XDy +MXN

P5

Ipddied Comv Madule

wificd Comy Macule

Pruned P1 and P2
Layers

DixOfx M

Modifiec C2f

Hadified C2f

Maclified C2f

Fig. 4: Modified Backbone of YOLOvVS8

Depthwise Depthwise

Y

Batch
Normalizational

Convolutinal Convolutinal

v

SiLU Activation

Fig. 5: Modified Convolution Module
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Modified C2f Module

To improve the accuracy of pest detection, we
enhanced the C2f module, which is essential for
integrating  high-level features with  contextual
information. A key modification involved increasing the
number of bottleneck layers to five, enabling deeper
feature extraction and more effective multi-scale
information fusion (Fig. 6). In this structure, one segment
of the feature map wundergoes multiple bottleneck
transformations for thorough processing, while another

segment remains unchanged to retain crucial structural
details. This upgraded C2f module facilitates a more
comprehensive  understanding of the detection
environment, enhancing the model’s ability to accurately
identify insects and their bounding boxes. Additionally,
by optimizing the integration of high-level features with
contextual details, we ensure smoother gradient flow,
which is vital for efficient training. These improvements
significantly boost the model’s performance, particularly on
edge devices with limited computational resources, thereby
making real-time pest detection more efficient and reliable.

Modified Conv c_out
Module >

Split

Darknet
> Bottleneck

0.5%c_out

N0 %450

N0 2,5'0

x3

h 4

Darknet
Bottleneck

N0 2,50

N0 250

0.5*c_out

A 4

Concat

0.5(n+2)*c_out

Y

Modified Conv

\ 4

Module

i c_out

Fig. 6: Modified C2f Module

Results and Discussion

The application of intelligent edge vision systems,
deep learning techniques, and optimization with
TensorRT can yield significant benefits in pest detection
for agricultural farms. The results obtained from such a
system can have a substantial impact on agricultural
practices and crop management. The optimized model
proposed in this work is implemented in an NVIDIA
RTX3060 GPU workstation with 12GB of GPU RAM in
a Python programming environment with PyTorch and
TensorRT libraries. The model was trained for 100 epochs
and other hyperparameters as listed in Table 4. The full
training was completed using the annotated custom
curated dataset of 4.5 gigabytes for a total duration of 13.5
hours, and a PyTorch weights file of size 210 MB was
outputted. The PyTorch file was given as input to the

ONNX file to produce the TensorRT Inference Engine.
The multi-class cross-entropy function is used to arrive at
the training loss.

Table 4: List of various Hyperparameters used during the

training
Hyperparameters Values Set
Batch Size 32
Initial Learning Rate (LR) 0.0001
Burn-in Steps (Warm-up) 4000
LR Decay Cosine
Input Image Size [227,227]
n (number of bottleneck layers) 3
IoU Threshold 0.5
Confidence Threshold 0.45
Optimization Function Adam
Epochs 250
Train, Test Split 80:20
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Object Localization Loss using Complete
Intersection Over Union (CloU): The bounding box
prediction accuracy was determined using Complete
Intersection Over Union (CloU) loss, which calculates
the difference in the coordinates of predicted bounding
boxes (b _pred) and the ground truth bounding boxes
(b_gt), which are acquired from the curated Insect
dataset. The area of intersection is given by A N B =
WO x HO, where WO and HO are the minimum values
of overlap between the predicted boxes and ground
truth boxes in terms of width and height, respectively.
Similarly, the Area of Union is given by A U B = Aa +
Ab - (A N B), where Aa and Ab are the areas of the
predicted box and ground truth box. The final
Intersection over Union (IoU) is calculated using the
ratio of the Area of Intersection to the Area of Union.
The loss function of the model is given in (2).

Confidence Loss: The confidence loss distinguishes
between objects present in the image (foreground) and
background regions. Confidence for Objects measures
the difference between the predicted confidence score
and Idle confidence score that contains the Insects:

For IoU > 0.5, which means overlapping is
satisfactory. Now, for more accurate results, we consider
this aspect ratio.

Classification Loss: Binary cross-entropy loss is used
to quantify the error between the model's predictions and
the true class labels. It is calculated as the Loss between
the predicted class probabilities and a one-hot encoded
vector of the true class of the matched insect class. This
loss function penalizes the model for inaccurate
classifications among the five classes of insects. The
different loss values obtained during the training and
validation phase of the model are presented in Figure 7.

The training and validation loss graphs in Figure 7
provide invaluable insights into the performance,
generalization, and convergence of the proposed
Intelligent edge vision system for insect detection in
agricultural farms. Sample training batches with
Insects at different scales, occlusion is presented in
Figure 8, and a sample test image set is available in
Figure 9. These graphs offer a visual representation of
the model's training progress, showcasing how various
components such as box score, objectness score, and
classification score evolve over 100 epochs during the

CloU Loss = 1 — loU + 2~ Qrreats) () training process. Similarly, the validation graphs
2 .
¢ rovide a means to evaluate the model's performance
p p
on unseen data, offering a glimpse into its
CloU Loss = DloU + av (3) generalization capabilities.
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Fig. 7: Training (Top row) and Validation loss (Bottom row) for the optimized YOLOv8 model with the augmented Insects

dataset
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Fig. 9: Results of test cases with Predicted labels (left) and True labels (right)

Performance Evaluation

The custom-trained model’s performance is quantified
using the Precision, Recall, Fl-score metrics, and the
Confusion matrix. The results of the various performance
metrics are depicted in Figure 10.

The F1 score graph demonstrates the harmonic mean
between precision and recall, offering a comprehensive
view of the model's overall performance in insect
detection within agricultural farms using Intelligent Edge
Vision Systems. Fl-score provides a balanced
assessment, taking into account both the ability of the
model to correctly identify insects (precision) and its
capability to capture all instances of insects (recall).

The comparative analysis of various models in the
literature with our proposed model is presented in Table 5.

The proposed models' F1-score made a striking balance
between the precision and recall metrics for all five
classes. It is also worth mentioning that the class stink bug
underperforms due to the model’s inability to separate the
background of the image from the foreground image of
the stink bug insect. This particular class of insect, the
‘stink bug‘, has pulled down the overall performance of
the model, whereas the rest of the insect classes are being
classified by the model well. This has also been evident
from the Precision-Recall Map and Confusion matrix as
shown in Figure 11. Similarly, from the precision curve,
it is found that the class of stink bug insect’s precision
values dropped suddenly for a few epochs, and the model
regained its learning parameters and uplifted the
confidence to reduce the number of false positives for the
stink bug insect class.
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Table 5: First 5 losses of CloU loss function

Epoch Asian Lady Beetle Ladybug Mealy Pyrilla Perpusilla Stink Bug
1 0.500 0.436 0.759 0.294 0.348
2 0.961 0.508 0.629 0.952 0.634
3 0.786 0.881 0.448 0.702 0.898
248 0.973 0.262 0.635 0.309 0.226
249 0.971 0.980 0.925 0.960 0.937
250 0.882 0.989 0.699 0.557 0.693

Spanning five distinct classes, including Asian Lady
Beetle, Ladybug, Mealy Bug, Pyrilla Perpusilla, Stink
Bug, and background (representing false positives), the
matrix meticulously dissects the model's performance
across these categories. Notably, the YOLOvVS model
exhibits remarkable accuracy in identifying Asian Lady
Beetle and Ladybug instances, boasting high true positive
rates of 0.97 and 0.94, respectively. Similarly, the model
demonstrates flawless recognition of Mealy Bug
instances, achieving a perfect true positive rate of 1.00.

However, the challenge emerges with the Pyrilla
Perpusilla and Stink Bug classes. While the model
achieves a commendable true positive rate of 0.81 for
Pyrilla Perpusilla, it falters in the detection of Stink Bug
instances, failing to register any true positives and instead
producing a high proportion (0.91) of false positives,
indicating misclassification as other classes or
background noise. This misclassification is because of the
model’s inability to differentiate between the insect class
stink bug with the image’s background. These findings
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underscore the need for further refinement and optimization
of the YOLOv8 model, particularly in improving its ability
to accurately identify and classify Stink Bug instances.
While the model achieves high accuracy, steps were taken
to reduce overfitting, including image augmentation,
dropout regularization, and cross-validation. The potential
for bias due to dataset imbalance was mitigated by ensuring
class representation during training.

Edge Deployment and Inferencing Results

The proposed model is recompiled for deployment at
a Jetson Nano 2 GB device with 128 NVIDIA Maxwell
GPU cores, which is one of the very optimal and cost-
effective edge platforms for optimal inferencing of the
proposed vision model in Agricultural farms. TensorRT
compiler provided recompilation of the existing PyTorch
model with post-training Quantization, Tensor-Layer
Fusion to optimize the proposed model for the Jetson
Nano  architecture, resulting in  performance

improvements in terms of concurrency rate, increased
frames per second, improved latency time with reduction
in the memory footprints required for model deployment
as stated in Table 6. The model has been recompiled for
three different quantization levels, viz FP32, FP16, and
INTS, to compare the inference metrics such as Frames
per second, Latency time, and reduced memory
requirements. The TensorRT library produced two files
with respect to the proposed model, viz. Weights file
(-wts) and Engine file (.engine). The .wts file stores the
INT 8 quantized weights of the model. The .engine file is
the optimized, executable model used for inference on the
Jetson Nano with TensorRT. The engine incorporates the
information from the .wts file along with additional
optimizations such as Layer-Tensor fusion and kernel
selection. In the proposed work, five consecutive layers of
the convolution function to c2f module are fused to reduce
the number of tensor operations, thereby the memory
footprints are reduced.

Table 7: Comparative Analysis of various parameters after deployment and Inferencing at Jetson Nano

Inferencing Rate

Model Type Quantization Model File Size Latency (FPS) Libraries
Pytorch (.pth) FP32 85.1 MB 42.8 ms 28 fps CUDA 12
Weights (.wts) FP16 46.8 MB 18.5 ms 40 fps TensorRT 8
Engine file (.engine) INT. 8 + Layer-Tensor 21.5MB 9.2 ms 65 fps TensorRT 8
Fusion
Conclusion include integration with drone-based imaging and model

In the proposed work, an Intelligent Edge vision
system for insect detection in agricultural farms using
YOLOv8 models, TensorRT compiler, and Nvidia Jetson
Nano is presented. The work substantiates the optimized
YOLOvV8 model for deployment at the Jetson Nano device
using INT8 quantization and LT fusion, which has been
proven to be significant for the NBAIR Insect dataset. It
has been inferred that serious Image Augmentation
techniques improved the performance of the model in
terms of Precision and Recall parameters. The post-
training recompilation has significantly reduced the
model size through INT8 quantization and Layer-Tensor
Fusion. These two model optimization techniques yielded
better results in terms of reduced Model size, Latency
time, and improved FPS rate. The work also observed that
the c2f module in the YOLOv8 models and their Tensor’s
fusion using TensorRT compiler has made the model
compression become a practical solution for deployment
at Jetson Nano. However, the model failed to learn the
distinguishing features of the stink bug, primarily due to
low intensity contrast between the insect and its
background, which hindered effective feature extraction.
The work can be further directed towards preparing an
optimized object classification model for fusing multi-
modal image data at night and under different lightning
conditions at the Agricultural farms. Future work may

refinement using domain adaptation techniques for varied
crop types.
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