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Abstract: Farmers started to adopt smart gadgets like automated pest 

detection and kiosks for their work in light of the AI revolution in agriculture. 

These kinds of technologies help farmers identify pest infestations early, 

which allows the farmers to take action accordingly and prevent crop loss. 

This results in improvement in both yield and sustainability. However, 

running an advanced model such as YOLOv7 on low-power edge devices 

remains a challenge, especially in real time. To address the problem, our 

research brings an innovative Advanced Edge-Based Vision System 

designed for detecting small insects and classification in agricultural 

environments. The model built utilizes the Jetson Nano platform, TensorRT 

optimization, and an enhanced YOLOv8 model. To optimize the 

performance, the model uses compression techniques, such as INT8 

quantization, and is accelerated by TensorRT. The YOLOv8 model is trained 

on a specialised insect dataset, and this optimization technique results in a 

tenfold reduction in memory usage, yet performs efficiently and also 

improves the inference speed using Jetson Nano by achieving a processing 

rate of 45 Frames Per Second (FPS). Despite these optimizations and 

memory reduction, the model serves at its best where the F1-scores 

exceeding 95% ensure accurate detection of the pest. This study 

demonstrates the successful deployment of lightweight, high-performance 

vision models on edge devices, enabling real-time, accurate pest detection. 

The findings contribute to advancing precision agriculture by making 

intelligent pest management more accessible and efficient. 

 

Keywords: Model Optimization, Jetson Nano, Inference Engine, 

Quantization, Precision Agriculture, TensorRT 

 

Introduction 

Farmers experience various challenges due to pest 

infestations on their agricultural farms. The major problem is 

the financial strain for the small-scale farmers. Insects can 

lead to substantial crop losses, which raises questions about 

food security and the livelihoods in urban areas. The high 

expense of buying pesticides will be a financial burden for 

the farmers, and also not advisable for using it because of its 

toxicity, affecting the environment, soil, and water pollution, 

which affects the ecosystem. Additionally, exposure to 

pesticides poses health risks to farmers and their families. 

Poor handling and application can lead to both immediate 

and long-term health issues, affecting the well-being of 

farmers and agricultural consumers. This gap will hinder 

opportunity and lead to poverty. Developing this edge vision 

system offers an effective alternative to pesticides for pest 

control. Our design provides real-time monitoring and early 

detection of insects. Our technology empowers farmers, 

especially small-scale and subsistence farmers, to make 

decisions that can reduce pesticide usage and crop loss, as 

well as enhance their economic situation. Therefore, 

implementing intelligent edge vision systems for insect 

detection can alleviate many of the economic and social 

challenges faced by farmers. Insect infestations can 

significantly impact crop yields. Early detection is a 

powerful tool that can help farmers manage these issues. By 

reducing chemical pesticide usage, farmers can increase crop 

yields, reduce production costs, and enhance overall farm 

productivity. This technology also benefits consumers by 

reducing pesticide residues and promoting a healthier 

ecosystem. Precision agriculture is revolutionizing crop 

health by analyzing pest behavior, thereby enhancing pest 

management techniques. This technology benefits rural 

communities by increasing crop yields and reducing 

pesticide costs, while also promoting sustainable farming 
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practices and product safety, thereby attracting policy 

support and incentives. YOLOv8 was chosen due to its 

lightweight architecture, speed, and high detection accuracy, 

which makes it particularly suitable for real-time 

applications on edge devices. Compared to earlier YOLO 

variants, YOLOv8 offers better bounding box regression and 

classification, making it ideal for detecting small, fast-

moving insects in complex farm environments. 

Our work makes several key contributions toward 

deploying efficient pest detection systems in agricultural 

edge environments. First, we optimize the YOLOv8 

architecture specifically for enhanced pest detection and 

classification under real‑farm conditions. Second, we 

systematically validate multiple image augmentation 

techniques to improve model robustness and performance 

on diverse, real‑time field data. Third, we achieve a 

notable increase in inference speed, measured in 

improved frames per second, through model 

recompilation and optimization. Finally, we integrate 

these advancements into a complete, end‑to‑end pipeline that 

is scalable, power‑efficient, and readily deployable on 

resource‑constrained edge devices such as the Jetson Nano. 
As shown in Fig. 1, the system architecture integrates 

edge processing with deep learning inference. 

 

 
 
Fig. 1: The assembled prototype 

 

Related Work 

Research on edge computing frameworks for pest 

detection (Cardoso et al., 2022; Diya et al., 2023; Rajak 

et al., 2023) demonstrates how decentralizing computation 

can enhance real-time identification, reduce latency, and 

support timely pest management. Complementary studies 

including deep learning methods for soybean insect pest 

counting (Ademola et al., 2022) and smart monitoring using 

optical fiber sensors (Domingues et al., 2022) further 

validate the effectiveness of automated detection systems. 

Collectively, this body of work establishes edge computing 

as a viable approach for improving the speed and 

responsiveness of precision agriculture applications. 

However, these studies often lack an in-depth examination of 

two critical deployment factors: the scalability and power 

efficiency of the proposed frameworks. Addressing these 

aspects represents a significant opportunity for further 

research and optimization. 

A comparative analysis of YOLO and Faster R‑CNN 

for insect detection in tomato crops (Diya et al., 2023; 

Kang et al., 2023) evaluates the relative merits of each 

model, concluding that YOLO offers superior real-time 

performance and accuracy. Parallel research into 

IoT‑enabled pest monitoring networks (Sadowski & 

Spachos, 2018) and comprehensive reviews of 

IoT‑based precision agriculture (Huang et al., 2018) 

further illustrate the growing role of automated detection 

systems. While these studies advance model selection 

and system integration, they often omit a critical 

dimension for field deployment: hardware optimization. 

This gap underscores the need for further investigation 

into efficient, edge‑optimized implementations of 

high‑performing models like YOLO. 

Review articles on machine learning for plant disease 

identification and categorization (Diya et al., 2023; 

Makkena et al., 2023) provide a foundation relevant to 

automated pest detection. Complementary research into 

smart agricultural sensors (Tetila et al., 2020) and novel 

deep learning models optimized for edge deployment 

(Tang & Zhang, 2023) further highlights the growing 

integration of IoT and edge computing in precision 

agriculture. Collectively, these works advance machine 

learning applications for early disease detection, production 

optimization, and loss minimization. Building on this 

trajectory, a promising future direction involves the deeper 

integration of real-time edge computing with advanced 

machine learning to create more robust and responsive 

systems for agricultural pest and disease monitoring. 

Research on low-power deep learning for edge devices 

(Shruthi et al., 2019; Albanese et al., 2022; Shi et al., 

2022) provides valuable strategies for minimizing energy 

consumption in resource-constrained AI systems. While 

these works offer important overviews of model 

optimization and efficient inference, they lack a dedicated 

focus on agricultural environments. This limits their 

applicability and prominence as tailored solutions for the 

diverse and demanding conditions of real-world agri‑tech 

applications. 

Recent research (Baghbanbashi et al., 2023; Droukas 

et al., 2023) introduced a novel attention mechanism for 

rice pest detection, designed to address challenges such as 

complex backgrounds and small pest sizes. By 

dynamically adjusting attention weights, the model 

focuses computational resources on a limited subset of 

relevant pests. Performance was further enhanced through 

a multi-scale feature fusion network and a knowledge-

condensed network optimized for edge deployment. This 

integrated architecture enabled rich feature extraction, 
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allowing the model to outperform advanced benchmarks, 

including YOLO, EfficientDet, RetinaDet, and 

MobileNet, in pest detection accuracy. 

Moradeyo et al. (2023) proposed an algorithm for 

detecting potato late blight disease using a neural 

network-based approach. Designed to operate in 

uncontrolled field environments with complex 

backgrounds, the system first applies image preprocessing 

techniques such as decorrelation stretching to enhance 

color differentiation in input leaf images. Fuzzy C-means 

clustering is then used to segment regions of interest. 

Finally, a trained neural network classifies the affected 

regions by distinguishing them from similarly colored and 

textured backgrounds. 

Yesuf and Assefa (2023) evaluated model 

compression techniques, including pruning, 16-bit 

quantization, and knowledge distillation, on a DenseNet 

architecture using the CIFAR dataset and Jetson Xavier 

hardware to optimize for embedded systems. Broader 

context for deployment strategies is provided by survey 

works, such as the analysis of robotic harvesting systems 

by Kargar et al. (2022) and comprehensive studies on 

neural network compression. However, these studies 

often omit a critical practical metric: inference speed. To 

address this gap, our analysis directly compares runtime 

efficiency alongside accuracy. Table 1 presents this 

performance comparison, benchmarking YOLOv8 

against alternative models on key deployment metrics. 
 

Table 1: Comparative review of various literature related to the proposed model 

Ref. No. Algorithms/ 

Learning Models 

Major Contribution Areas for Improvement 

Albanese et al. (2021) DNN Use of DL models to identify pest 

infestation from photos obtained 

from low-power embedded sensors.  

Energy harvesting integration 

ensures extended battery life. 

Wireless Communication 

Energy Harvesting at different 

weather conditions 

Shin and Oh (2022) R-CNN, CRA-NET Design of Embedded Systems with 

DL Models 

Introduced the method of Novel 

model compression for low-power 

devices 

Very limited rice dataset 

Data imbalance of certain rice crop 

varieties  

Shruthi et al. (2019) K-means clustering Challenges like complex 

backgrounds and lighting are 

considered 

Employed color enhancement and 

clustering for segmentation 

Scalability and resilience of the 

FCM clustering 

Algorithms applicability of 

algorithms in practical scenarios 

Moradeyo et al. (2023) R-CNN, Fast R-CNN, 

RPN, YOLOv3, SSD 

Issues like Model adaptability and 

data labeling shortages are 

mitigated 

 

Pipeline for embedded device 

deployment  

Wang et al. (2023) CNN Utilized a Deep Convolutional 

Neural Network (CNN) with novel 

layer fusion and normalization 

functions 

Limited dataset with limited 

classes, Deployment on embedded 

systems 

Baghbanbashi et al. (2023) Faster R-CNN, 

YOLOv3, SSD, 

Cascade R-

CNN, Mask R-CNN 

integrates attention mechanisms 

and a multi-scale feature fusion 

network for improved accuracy, as 

well as a specialized knowledge 

distillation network for inference on 

edge devices. 

Efficacy of the YOLO-GBS in 

multi-class datasets. 

Shruthi et al. (2019) K-means clustering GLCM texture features 

Optimized for Sugarcane leaf 

diseases. 

Improved feature selection 

strategies 

Alternative classification 

algorithms for larger datasets. 

Huang et al. (2018) CNN, RCNN, faster 

RCNN, R-FCN, SSD, 

YOLOv3. 

Enhanced YOLO V3 algorithm 

with faster detection times and 

improved accuracy for agri robots. 

A large-scale dataset in different 

weather conditions.  

Ali et al. (2023) Faster-RCNN 

approach based on 

MobileNet 

Achieving an accuracy of 82.43% on 

the IP102 dataset while addressing 

challenges such as image distortions 

and enhancing the generalization 

ability of pest recognition in 

agricultural applications. 

It does not address the 

performance of the Faster-PestNet 

model on more diverse or larger 

datasets. 
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Table 1: Continued    

Chithambarathanu and 

Jeyakumar (2023) 

DCNN, CNN, 

LSTM, DBN 

Emphasizing the need for 

automated systems to enhance 

agricultural productivity and reduce 

human error in pest identification. 

There is a lack of standardized 

datasets, dependence on human 

expertise, and unclear evaluation. 

Dong et al. (2024) YOLOv5 Utilizing innovative methods like 

Multi-Level Spatial Pyramid 

Pooling and Content-Aware 

ReAssembly of Features to enhance 

accuracy while reducing parameters 

significantly. 

Lacks extensive validation on 

diverse and large datasets, which 

raises concerns about the 

generalizability of the PestLite 

model's performance. 

Yang et al. (2023) YOLOv7 Achieving 93.23% accuracy 

through advanced techniques like 

deformable convolution and 

dynamic attention mechanisms, 

significantly enhancing pest 

recognition and control efficiency. 

The reliance on a limited dataset of 

782 images, which may not fully 

represent the diversity of tea tree 

pests, could affect the model's 

generalization. 

Wang and Fu (2024) RTMDet, DCNN The model is fine-tuned with the 

YOLOv7 model, and some 

unwanted layers are pruned. 

The VoVGSCSP module 

improves inference speed and 

mAP, which could limit the overall 

performance enhancement due to 

increased network depth and 

resistance to dataflow. 

Anwar and Sarfaraz (2023) CNN Uses transfer Learning with pre-

trained CNNs like VGG16, 

VGG19, and ResNetv50. 

Reliance on a specific dataset, lack 

of detailed comparisons with state-

of-the-art models, absence of 

robustness testing, and potential 

overfitting issues. 

Venkatasaichandrakanthand, 

and Iyapparaja (2023) 

CNN, MFO, and 

EViTA 

This model effectively utilizes dual-

branch segment representations to 

enhance feature extraction from 

pest images, leading to superior 

performance compared to existing 

models. 

The datasets used for training and 

validation may not be sufficiently 

large or diverse to fully validate 

the model's effectiveness. 

Sushma et al. (2024) 

 

MFO,EviTA, CNN Improves pest detection and 

classification in peanut crops by 

integrating dual-branch transformer 

architectures and advanced feature 

extraction techniques, leading to 

superior accuracy compared to 

traditional CNN models and 

existing vision transformer 

architectures. 

Improves pest detection and 

classification in peanut crops by 

integrating dual-branch 

transformer architectures and 

advanced feature extraction 

techniques, leading to superior 

accuracy compared to traditional 

CNN models and existing vision 

transformer architectures. 

 

Numerous studies have sought to optimize the 

performance and scalability of deep learning models 

for object detection and classification across diverse 

agricultural applications. While much of this research 

focuses on improving standard accuracy metrics, 

significantly less attention has been paid to optimizing 

these models for practical deployment on resource-

constrained edge devices. This work addresses that gap 

by focusing on both the materials (datasets) and 

methods necessary to create an efficient, production-

level insect detection model for edge deployment. Our 

goal is to highlight the pathway toward a scalable, end-

to-end deep learning pipeline that can serve as a 

reliable inference engine within smart agricultural 

systems. 

Materials and Methods 

An Intelligent Edge Vision System for insect detection 

in agricultural settings is proposed in this work. The 

system leverages the power of the Jetson Nano edge 

device along with the TensorRT compiler over a 

customized YOLOv8 deep learning model. Data 

collection involves acquiring insect and non-insect 

images and augmenting the dataset. Model training 

comprises fine-tuning the YOLOv8 model on the custom 

dataset. The model is then optimized using TensorRT. 

Real-time insect detection is achieved by integrating the 

camera feed and deploying the model on the Jetson Nano, 

enabling precise and timely pest control in agriculture. 

The deployment of the Intelligent Edge Vision System for 
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insect detection in agriculture using Jetson Nano, 

TensorRT, and YOLOv8 showcased impressive outcomes 

in terms of model memory requirements, inference timing, 

and concurrency rate. NVIDIA's Jetson Nano is a small, low-

cost computer designed for edge AI applications.  

TensorRT is an optimization tool developed by NVIDIA 

for deep learning inference on GPUs. It is used to optimize 

trained deep learning models, making them faster and more 

efficient for real-time inference. In the edge vision systems 

presented, TensorRT has been employed to accelerate the 

inference of AI models for tasks like crop monitoring, 

disease detection, and pest control. YOLO (You Only Look 

Once) is a popular real-time single-shot object detection 

model used in a variety of computer vision tasks. However, 

many computer vision tasks lack the inclusion of the 

environmental setting and scalability for end-to-end 

production. YOLOv8 is an improved version with enhanced 

performance. This work has been utilized for tasks such as 

insect detection, crop disease identification, and weed 

detection, enabling precision agriculture practices. 

Dataset Curation 

The methodology describes the development of an 

Intelligent Edge Vision System for detecting agricultural 

pests using a dataset from the National Bureau of 

Agricultural Insect Resources (NBAIR), which includes 

40 pest types found in field crops. Image pre-processing 

begins by converting RGB images to grayscale for edge 

detection and noise reduction using Canny edge detection. 

Bounding boxes are created around the insects, defined by 

four coordinates (x, y, w, h). Only bounding rectangles 

larger than 100 pixels in width and height are used for 

extracting Regions of Interest (ROIs) from the original 

RGB images. The extracted insect images are resized to 

227×227 pixels for consistency. To increase model 

robustness, geometric transformations such as scaling, 

rotation, flipping, and transposing are applied, expanding 

the dataset. This augmentation strategy enhances dataset 

diversity while maintaining computational efficiency. 

Figure 2 shows pre-processed insect images, and Table 2 

provides details about the species in the NBAIR dataset. 

The dataset consists of over 5481 annotated images 

covering mainly five classes: Asian Lady Beetle, Lady 

Bug, Mealy Bug, Pyrilla Perpusilla, and Stink Bug. Images 

were collected under different lighting and background 

conditions to ensure diversity and generalization. 

Dataset Description: 
 
Table 2: NBAIR Insect samples 

Insect Name No. of Samples No. of Test Samples 

Asian Lady beetle 876 300 

Ladybug 503 300 

Mealy bug 802 300 

Pyrilla perpusilla 1,099 300 

Stink bug 701 300 

Total 3981 1500 

 
 
Fig. 2: Forty Insect classes in the NBAIR insect dataset 

(Cropped and Preprocessed) 
 

It is found that the number of samples for each of the 

five different classes of insects is not balanced. Imbalance 

occurs when certain classes have significantly fewer 

samples compared to others, leading to biased model 

training and poorer performance on the underrepresented 

classes. When there is an imbalance in the number of 

samples across different classes in the dataset, image 

augmentation is required to make the number of samples 

equal across the different classes of images. The various 

image augmentation techniques, such as gray scale 

conversion, color saturation, blurring, bounding box crop 

after zoom, and bounding box after rotation, are applied to 

the original dataset with 3981 samples across five different 

classes. On application of various augmentation techniques, 

1500 samples are generated for each class of images, and the 

number of images over each class becomes balanced. 

Grayscale conversion has been applied to a subset of 

15% of images in the dataset at random and helps the 

model focus more on texture and structure rather than 

color information. 

Color Saturation (-25 to +25%) adjustment alters the 

intensity of colors in an image, which helps the model to 

learn and recognize objects under different lighting 

conditions and color saturations, improving its 

generalization ability. 

Image blurring (upto 2.5 px) reduced the sharpness of 

an image by averaging the pixel values within a small 

neighborhood (5x5), which introduced varying degrees of 

blurriness, forcing the model to focus on more abstract 

features rather than fine details. 

Bounding Box Crop after Zoom (0 to 20%) involved 

zooming into an image and then cropping it based on the 

bounding box of the object of interest, which helped the 

model to learn and focus on the relevant object despite 

changes in scale and perspective.  

Bounding Box Rotation (-15° to +15°) applied 

rotational transformations from -15 degrees to +15 

degrees to the samples, which helped the model to be 

invariant to object rotations, enabling it to recognize 

objects from different viewpoints. 
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These kinds of image augmentation help to prevent the 

learning model from being biased towards the majority 

class and enable it to learn discriminative features for all 

classes. Table 3 summarizes the different augmentation 

techniques applied to the dataset. 

Optimized Yolo v8 Architecture for Edge Vision 

Systems 

YOLOv8 has emerged as a cutting-edge object detection 

system, offering superior speed and accuracy compared to its 

predecessors, making it highly effective in domains like 

livestock monitoring, PCB inspection, underwater fish 

identification, and insect detection in agriculture. Its anchor-

free architecture significantly enhances real-time detection 

by eliminating the need for predefined anchor boxes, which 

improves both detection speed and reliability, especially for 

small or irregular objects. The multi-scale prediction 

capability of YOLOv8, powered by the C2f module and 

anchor-free detection head, ensures that the model can detect 

objects at various sizes and scales. In this proposed work, we 

focus on optimizing the detection layers P3, P4, and P5 since 

these layers handle different feature map resolutions crucial 

for detecting small objects like pests.  

To tailor the YOLOv8 for pest detection, we modify the 

architecture by replacing the P3, P4, and P5 layers with 

custom CNN layers. Due to this replacement, we removed 

the P1 and P2 layers, which are very ineffective for 

detecting smaller objects. By removing them, the model 

architecture only focuses on high-resolution images for 

feature mapping, which better captures pest details. We 

then set the stride for P3, P4, and P5 layers to 1 (Fig. 3). By 

doing this, we are enhancing the model’s sensitivity to 

smaller objects to improve detection accuracy, such as the 

pest size, colours, and textures. By doing this, there will be 

an increase in the model size, so we are applying post-

training INT8 quantization to compress the weight memory 

and, at the same time, maintain the performance. This 

ensures the model optimization and remains efficient for 

real-time pest detection on edge devices.  

Hyperparameter tuning was conducted to improve 

model accuracy, including learning rate adjustments, 

anchor box optimization, and input image resizing. To 

validate YOLOv8's suitability, we also experimented with 

Faster R-CNN and SSD models, which underperformed in 

speed and accuracy on edge hardware compared to 

YOLOv8. 
 
Table 3: Description of different augmentation techniques applied on each class of images 

Insect Name 
No. of 

Samples 
Augmentation Techniques 

Samples after 

Augmentation 

Asian Lady beetle 876 • Grayscale: 15% of images  

• Color Saturation: -25 to +25% 

• Blur: Up to 2.5px 

• BB Crop after Zoom: 0 to 20%  

• BB Rotation: -15° to +15° 

1500 

Ladybug 503 1500 

Mealy bug 802 1500 

Pyrilla perpusilla 1099 1500 

Stink bug 701 1500 
 

 
 

Fig. 3: Optimized Yolov V8 Architecture 



Deebalakshmi R. et al. / Journal of Computer Science 2025, 21 (11): 2745.2758 

DOI: 10.3844/jcssp.2025.2745.2758 

 

2751 

Model Compression for Edge Deployment 

Modified Backbone of YOLOv8 

While testing YOLOv8 for pest detection in low-

resolution images, we noticed a key limitation the 

backbone wasn’t capturing enough detail for small pests. 

To overcome this, we replace the standard backbone with 

more lightweight but also more efficient feature extractors 

like MobileNetV3 and EfficientNet (Fig. 4). By changing 

this, we bring the perfect balance between accuracy and 

computation efficiency, ensuring even low-resolution 

images could also extract features accurately. By 

improving how the backbone processes visual data, we 

strengthened the detection layers, allowing them to make 

more precise predictions. 

To define the model’s input, we used Df × Df × M, 

where M represents the number of input channels. But 

here’s where things get tricky traditional convolution 

operations require a significant amount of computation, 

following the formula (DP × DP × M) × (DK × DK × N). 

In this equation, DP represents the input’s spatial 

dimensions, DK is the kernel size, and N is the number of 

output channels. The result? A high computational load 

can be a major challenge when running real-time object 

detection on resource-limited edge devices. By 

optimizing the backbone and refining feature extraction, 

we ensured that our model remained both efficient and 

highly accurate, making it well-suited for real-time pest 

detection in agricultural settings. 

Modified Convolution Module 

During the research, we mainly focused on enhancing 

the CNN modules in the detection layer of YOLOv8 (P3, 

P4, P5) to increase the accuracy of detecting low-

resolution images. The key feature we modified in the 

research is by replacing the standard CNN layer with a 

custom-trained one, which focuses on the detection of 

small objects (Fig. 5). Through testing, we found that P1 

and P2 mainly focus on detecting larger objects and 

contribute less to detecting small-sized pests. To improve 

the model, we pruned these two layers using Depth 

Separable Convolution (DSC), which reduces the 

unnecessary computation while retaining detection 

accuracy. Pruning these layers not only improves memory 

efficiency but also makes the model computationally 

lightweight yet more powerful. It also detects pests of 

different sizes, shapes, and colors. Additionally, we fine-

tuned the stride configuration of P3, P4, and P5, setting it 

to 1 to boost sensitivity to small objects. This adjustment led 

to more precise detections, even in lower-resolution images. 

To optimize the model, we applied the INT8 quantization 

technique, which significantly reduces the memory usage of 

the model without affecting the accuracy of detection. These 

enhancements made the model highly efficient on deploying 

on edged devices, such as drones and agri monitoring 

systems. By strategically combining DSC pruning and 

quantizing, we developed a lightweight yet powerful model, 

especially designed for real-time applications. The DSC ratio 

can be computed using Eq. (1): 
 

𝐷𝑆𝐶 𝑟𝑎𝑡𝑖𝑜 =
𝑀×𝑁×𝐷𝑘×𝐷𝑘 

𝑀×𝐷𝑘×𝐷𝑘 +𝑀×𝑁
  (1) 

 

 
 

Fig. 4: Modified Backbone of YOLOv8 

 

 
 

Fig. 5: Modified Convolution Module 
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Modified C2f Module 

To improve the accuracy of pest detection, we 

enhanced the C2f module, which is essential for 

integrating high-level features with contextual 

information. A key modification involved increasing the 

number of bottleneck layers to five, enabling deeper 

feature extraction and more effective multi-scale 

information fusion (Fig. 6). In this structure, one segment 

of the feature map undergoes multiple bottleneck 

transformations for thorough processing, while another 

segment remains unchanged to retain crucial structural 

details. This upgraded C2f module facilitates a more 

comprehensive understanding of the detection 

environment, enhancing the model’s ability to accurately 

identify insects and their bounding boxes. Additionally, 

by optimizing the integration of high-level features with 

contextual details, we ensure smoother gradient flow, 

which is vital for efficient training. These improvements 

significantly boost the model’s performance, particularly on 

edge devices with limited computational resources, thereby 

making real-time pest detection more efficient and reliable. 

 

 
 

Fig. 6: Modified C2f Module 
 

Results and Discussion  

The application of intelligent edge vision systems, 

deep learning techniques, and optimization with 

TensorRT can yield significant benefits in pest detection 

for agricultural farms. The results obtained from such a 

system can have a substantial impact on agricultural 

practices and crop management. The optimized model 

proposed in this work is implemented in an NVIDIA 

RTX3060 GPU workstation with 12GB of GPU RAM in 

a Python programming environment with PyTorch and 

TensorRT libraries. The model was trained for 100 epochs 

and other hyperparameters as listed in Table 4. The full 

training was completed using the annotated custom 

curated dataset of 4.5 gigabytes for a total duration of 13.5 

hours, and a PyTorch weights file of size 210 MB was 

outputted. The PyTorch file was given as input to the 

ONNX file to produce the TensorRT Inference Engine. 

The multi-class cross-entropy function is used to arrive at 

the training loss. 

 
Table 4: List of various Hyperparameters used during the 

training 

Hyperparameters Values Set 

Batch Size 32 

Initial Learning Rate (LR) 0.0001 

Burn-in Steps (Warm-up) 4000 

LR Decay Cosine 

Input Image Size [227,227] 

n (number of bottleneck layers) 3 

IoU Threshold 0.5 

Confidence Threshold 0.45 

Optimization Function Adam 

Epochs 250 

Train, Test Split 80:20 
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Object Localization Loss using Complete 

Intersection Over Union (CIoU): The bounding box 

prediction accuracy was determined using Complete 

Intersection Over Union (CIoU) loss, which calculates 

the difference in the coordinates of predicted bounding 

boxes (b_pred) and the ground truth bounding boxes 

(b_gt), which are acquired from the curated Insect 

dataset. The area of intersection is given by A ∩ B = 

WO x HO, where WO and HO are the minimum values 

of overlap between the predicted boxes and ground 

truth boxes in terms of width and height, respectively. 

Similarly, the Area of Union is given by A ∪ B = Aa + 

Ab - (A ∩ B), where Aa and Ab are the areas of the 

predicted box and ground truth box. The final 

Intersection over Union (IoU) is calculated using the 

ratio of the Area of Intersection to the Area of Union. 

The loss function of the model is given in (2). 

Confidence Loss: The confidence loss distinguishes 

between objects present in the image (foreground) and 

background regions. Confidence for Objects measures 

the difference between the predicted confidence score 

and Idle confidence score that contains the Insects: 

 

𝐶𝐼𝑜𝑈 𝐿𝑜𝑠𝑠 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏𝑝𝑟𝑒𝑑,𝑏𝑔𝑡)

𝑐2  + 𝛼𝜐 (2) 

 

𝐶𝐼𝑜𝑈 𝐿𝑜𝑠𝑠 = 𝐷𝐼𝑜𝑈 + 𝛼𝜐 (3) 

For IoU ≥ 0.5, which means overlapping is 

satisfactory. Now, for more accurate results, we consider 

this aspect ratio. 

Classification Loss: Binary cross-entropy loss is used 

to quantify the error between the model's predictions and 

the true class labels. It is calculated as the Loss between 

the predicted class probabilities and a one-hot encoded 

vector of the true class of the matched insect class. This 

loss function penalizes the model for inaccurate 

classifications among the five classes of insects. The 

different loss values obtained during the training and 

validation phase of the model are presented in Figure 7. 

The training and validation loss graphs in Figure 7 

provide invaluable insights into the performance, 

generalization, and convergence of the proposed 

Intelligent edge vision system for insect detection in 

agricultural farms. Sample training batches with 

Insects at different scales, occlusion is presented in 

Figure 8, and a sample test image set is available in 

Figure 9. These graphs offer a visual representation of 

the model's training progress, showcasing how various 

components such as box score, objectness score, and 

classification score evolve over 100 epochs during the 

training process. Similarly, the validation graphs 

provide a means to evaluate the model's performance 

on unseen data, offering a glimpse into its 

generalization capabilities. 

 

 

 

Fig. 7: Training (Top row) and Validation loss (Bottom row) for the optimized YOLOv8 model with the augmented Insects 

dataset 
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Fig. 8: Training samples of Insects at different scales, with occlusion and multiple insects within the same Image sample 

 

 
 

Fig. 9: Results of test cases with Predicted labels (left) and True labels (right) 

 

Performance Evaluation 

The custom-trained model’s performance is quantified 

using the Precision, Recall, F1-score metrics, and the 

Confusion matrix. The results of the various performance 

metrics are depicted in Figure 10. 

The F1 score graph demonstrates the harmonic mean 

between precision and recall, offering a comprehensive 

view of the model's overall performance in insect 

detection within agricultural farms using Intelligent Edge 

Vision Systems. F1-score provides a balanced 

assessment, taking into account both the ability of the 

model to correctly identify insects (precision) and its 

capability to capture all instances of insects (recall). 

The comparative analysis of various models in the 

literature with our proposed model is presented in Table 5. 

The proposed models' F1-score made a striking balance 

between the precision and recall metrics for all five 

classes. It is also worth mentioning that the class stink bug 

underperforms due to the model’s inability to separate the 

background of the image from the foreground image of 

the stink bug insect. This particular class of insect, the 

‘stink bug‘, has pulled down the overall performance of 

the model, whereas the rest of the insect classes are being 

classified by the model well. This has also been evident 

from the Precision-Recall Map and Confusion matrix as 

shown in Figure 11. Similarly, from the precision curve, 

it is found that the class of stink bug insect’s precision 

values dropped suddenly for a few epochs, and the model 

regained its learning parameters and uplifted the 

confidence to reduce the number of false positives for the 

stink bug insect class. 
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Fig. 10: Precision (Left), F1-Score (Middle) and Recall (Right) metrics of the model 

 

 

Fig. 11: Precision-Recall Curve (Left) and Confusion Matrix (Right) for the proposed model 
 
Table 5: First 5 losses of CIoU loss function  

Epoch Asian Lady Beetle Ladybug Mealy Pyrilla Perpusilla Stink Bug 

1 0.500 0.436 0.759 0.294 0.348 

2 0.961 0.508 0.629 0.952 0.634 

3 0.786 0.881 0.448 0.702 0.898 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

248 0.973 0.262 0.635 0.309 0.226 

249 0.971 0.980 0.925 0.960 0.937 

250 0.882 0.989 0.699 0.557 0.693 

 
Spanning five distinct classes, including Asian Lady 

Beetle, Ladybug, Mealy Bug, Pyrilla Perpusilla, Stink 

Bug, and background (representing false positives), the 

matrix meticulously dissects the model's performance 

across these categories. Notably, the YOLOv8 model 

exhibits remarkable accuracy in identifying Asian Lady 

Beetle and Ladybug instances, boasting high true positive 

rates of 0.97 and 0.94, respectively. Similarly, the model 

demonstrates flawless recognition of Mealy Bug 

instances, achieving a perfect true positive rate of 1.00. 

However, the challenge emerges with the Pyrilla 

Perpusilla and Stink Bug classes. While the model 

achieves a commendable true positive rate of 0.81 for 

Pyrilla Perpusilla, it falters in the detection of Stink Bug 

instances, failing to register any true positives and instead 

producing a high proportion (0.91) of false positives, 

indicating misclassification as other classes or 

background noise. This misclassification is because of the 

model’s inability to differentiate between the insect class 

stink bug with the image’s background. These findings 
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underscore the need for further refinement and optimization 

of the YOLOv8 model, particularly in improving its ability 

to accurately identify and classify Stink Bug instances. 

While the model achieves high accuracy, steps were taken 

to reduce overfitting, including image augmentation, 

dropout regularization, and cross-validation. The potential 

for bias due to dataset imbalance was mitigated by ensuring 

class representation during training. 

Edge Deployment and Inferencing Results 

The proposed model is recompiled for deployment at 

a Jetson Nano 2 GB device with 128 NVIDIA Maxwell 

GPU cores, which is one of the very optimal and cost-

effective edge platforms for optimal inferencing of the 

proposed vision model in Agricultural farms. TensorRT 

compiler provided recompilation of the existing PyTorch 

model with post-training Quantization, Tensor-Layer 

Fusion to optimize the proposed model for the Jetson 

Nano architecture, resulting in performance 

improvements in terms of concurrency rate, increased 

frames per second, improved latency time with reduction 

in the memory footprints required for model deployment 

as stated in Table 6. The model has been recompiled for 

three different quantization levels, viz FP32, FP16, and 

INT8, to compare the inference metrics such as Frames 

per second, Latency time, and reduced memory 

requirements. The TensorRT library produced two files 

with respect to the proposed model, viz. Weights file 

(.wts) and Engine file (.engine). The .wts file stores the 

INT 8 quantized weights of the model. The .engine file is 

the optimized, executable model used for inference on the 

Jetson Nano with TensorRT. The engine incorporates the 

information from the .wts file along with additional 

optimizations such as Layer-Tensor fusion and kernel 

selection. In the proposed work, five consecutive layers of 

the convolution function to c2f module are fused to reduce 

the number of tensor operations, thereby the memory 

footprints are reduced. 

 
Table 7: Comparative Analysis of various parameters after deployment and Inferencing at Jetson Nano 

Model Type Quantization Model File Size Latency 
Inferencing Rate 

(FPS) 
Libraries 

Pytorch (.pth) FP32 85.1 MB 42.8 ms 28 fps CUDA 12 

Weights (.wts) FP16 46.8 MB 18.5 ms 40 fps TensorRT 8 

Engine file (.engine) 
INT 8 + Layer-Tensor 

Fusion 
21.5 MB 9.2 ms 65 fps TensorRT 8 

Conclusion 

In the proposed work, an Intelligent Edge vision 

system for insect detection in agricultural farms using 

YOLOv8 models, TensorRT compiler, and Nvidia Jetson 

Nano is presented. The work substantiates the optimized 

YOLOv8 model for deployment at the Jetson Nano device 

using INT8 quantization and LT fusion, which has been 

proven to be significant for the NBAIR Insect dataset. It 

has been inferred that serious Image Augmentation 

techniques improved the performance of the model in 

terms of Precision and Recall parameters. The post-

training recompilation has significantly reduced the 

model size through INT8 quantization and Layer-Tensor 

Fusion. These two model optimization techniques yielded 

better results in terms of reduced Model size, Latency 

time, and improved FPS rate. The work also observed that 

the c2f module in the YOLOv8 models and their Tensor’s 

fusion using TensorRT compiler has made the model 

compression become a practical solution for deployment 

at Jetson Nano. However, the model failed to learn the 

distinguishing features of the stink bug, primarily due to 

low intensity contrast between the insect and its 

background, which hindered effective feature extraction. 

The work can be further directed towards preparing an 

optimized object classification model for fusing multi-

modal image data at night and under different lightning 

conditions at the Agricultural farms. Future work may 

include integration with drone-based imaging and model 

refinement using domain adaptation techniques for varied 

crop types. 
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