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Abstract: Forests play a vital role in maintaining ecological balance, 

regulating the climate, and conserving biodiversity. However, India’s forest 

landscape has witnessed significant changes between 1980 and 2024 due to 

deforestation, afforestation, and evolving conservation strategies. To address 

the challenges associated with forest monitoring, we proposed a model based 

on Sound Event Detection using a dataset comprising four classes: chainsaw 
sounds, handsaw sounds, axe-cutting sounds (synthetic), and negative 

environmental sounds (e.g., birds, animals, wind). The dataset was 

constructed from publicly available resources, except for the axe-cutting 

sound class, which was prepared synthetically. The model employed six 

feature extraction techniques Mel-Spectrogram, Mel-Frequency Cepstral 

Coefficients (MFCC), Chroma, Spectral Contrast, Tonnetz, and Spectral 

Bandwidth to capture critical audio characteristics. These features enabled 

the efficient representation of harmonic content, temporal patterns, and 

timbre, which were essential for distinguishing between classes. The 

proposed approach was executed using various deep learning models, 

including Customized 1D Convolutional Neural Networks (CNN), Bi-

directional Convolutional Recurrent Neural Networks (Bi-CRNN), Bi-
directional Gated Recurrent Unit-based CRNNs (Bi-GRU-CRNN), AlexNet, 

and ResNet. The Customized-CNN, implemented using Keras, demonstrated 

superior performance with an accuracy of 98%. The model’s effectiveness 

was further validated as accuracy increased progressively from 95 to 98% 

when transitioning from two to six feature extraction clusters. 

 

Keywords: Forest Monitoring, Sound Event Detection, CNN, Feature 

Extraction, Audio Classification, Deep Learning 

 

Introduction 

Forests play a crucial role in sustaining life on Earth 

by maintaining ecological balance, regulating the climate, 

conserving biodiversity, and providing resources for 

millions of people. The loss of forests due to deforestation 

has extreme consequences, including the exacerbation of 

climate change, loss of biodiversity, disruption of water 

cycles, and increased soil erosion (Mondal and 
Southworth, 2010). Deforestation also directly impacts 

the livelihoods of communities that depend on forests for 

their sustenance and cultural practices. However, forests 

in many parts of the world, particularly in India, face 

severe threats from deforestation driven by expanding 

agricultural activities, illegal logging, urbanization, and 

the growing demand for land and timber (Haq et al., 2022; 

Tewari et al., 2014). Technological advancement in the 

current generation, the forest authorities have 

implemented various monitoring systems. The Forest 

Survey of India (2023), under the Ministry of 
Environment, Forest, and Climate Change, conducted 

biennial assessments of forest cover using remote sensing 

technology, which is vital for informed decision making 

in forest conservation (Singha et al., 2024). On the other 

hand, by using drone technology implementation, 

governments focused on real-time localized monitoring, 



Sallauddin Mohmmad and Suresh Kumar Sanampudi  / Journal of Computer Science 2025, 21 (12): 2772.2801 

DOI: 10.3844/jcssp.2025.2772.2801 

 

2773 

assessing forest damage, and tracking wildlife, while IoT 

devices provide continuous data on forest conditions, 

assisting in the detection of illegal activities and 

environmental changes (Buchelt et al., 2024; Zhao et al., 

2019). Additional technologies such as forest fire alert 
systems, AI, and blockchain are used in forest 

management. The integration of research, like Machine 

Learning (ML) and neural networks, provides an 

innovative solution for forest conservation (Khan and 

Khan, 2022; Supriya and Gadekallu, 2023). Sound event 

detection with advanced feature extraction techniques are 

essential for proper sound classification. By analyzing 

audio data from forest environments leads to detect 

sounds of illegal activities such as tree cutting and logging 

vehicle movement. These feature extraction techniques 

enhance the precision of deforestation detection. 
Conducting the research based on this scenario requires a 

proper dataset and suitable feature extraction techniques 

(Luo et al., 2023; Purwins et al., 2019). Acoustic datasets 

related to forests, environments, and mountains provides 

resources for studying biodiversity, environmental health, 

and ecological dynamics. The datasets such as Rainforest 

Connection (RFCx) and Soundscapes to Landscapes 

(S2L) provide audio data captured from rainforests and 

various natural habitats (Latha et al., 2022; Quinn et al., 

2022). These datasets are primarily used to monitor 

wildlife, identify species based on sound, and study the 

impacts of climate change. The Australian Acoustic 
Observatory also contributes recordings from ecosystems 

such as forests and wetlands, aiding in conservation and 

ecological studies (Roe et al., 2021).  

Additionally, general acoustic datasets like DCASE 

and FreeSound contain various environmental sounds, 

including forests and outdoors, implemented with 

machine learning and sound classification practices 

(Serizel et al., 2020). The datasets like the AMMOD 

contain mountainous environmental sounds such as wind 

and water sounds in high-altitude regions (Wägele et al., 

2022). These datasets are well-suited for research in 

various fields, including forest and landscape ecology. 

They also play an important role in supporting ecological 

research and environmental monitoring. 

Sound event feature extraction is essential for 

converting the direct audio signals into a numerical 

representation that can be used for classification. One 

common approach involved time-domain features, which 

are directly derived from the raw waveform of the sound 

signal (Wang et al., 2024). Features like Zero-Crossing 

Rate (ZCR), Root Mean Square (RMS), and energy are 

widely used to capture basic characteristics such as 

intensity and periodicity (Ritts et al., 2024). However, 

many sound events have unique frequency components, 

which makes frequency-domain features particularly 

important. Using the STFT the audio signal is converted 

into its frequency representation, from which features like 

spectral centroid, spectral roll-off, and MFCCs can be 

derived. MFCCs, in particular, are extensively used in 

sound event and speech recognition due to their ability to 

represent the timbral aspects of sound (Folliot et al., 2022). 

Most of the recent research combining the time and 

frequency information through time-frequency 

representations like spectrograms and wavelet transforms. 

Spectrograms provide a visual representation of the 

signal's frequency over time, and their compressed 

versions, such as log-mel spectrograms, are often used to 

project the relevant features. The wavelet transform is 

another powerful method, as it decomposes the signal into 

multiple resolutions, capturing details across different 

frequency bands (Serrurier et al., 2024; Ayoub Shaikh et al., 

2022). In recent years, deep learning-based feature 

extraction methods have become popular. The CNNs and 

RNNs can automatically learn complex features from raw 

or pre-processed audio data spectrograms. Pre-trained 

models like VGG or OpenL3 are also used to generate 

robust audio features for sound event detections (Panwar 

et al., 2022; Thepade and Chaudhari, 2021). In particular, 

neural network models excel at recognizing complex 

sound patterns, making them ideal for forest sound 

analysis. For instance, the distinctive sound of chainsaws 

used in tree cutting or the engine noise of logging vehicles 

can be identified and classified by AI models trained on 

sound event datasets (Kentsch et al., 2020; Singh et al., 

2023). These systems rely on feature extraction 

techniques to isolate relevant acoustic features such as 

frequency, amplitude, and duration, which are then 

processed through neural networks to differentiate 

between natural and human-caused events in the forest. 

Machine learning algorithms continuously improve 

detection accuracy by learning from labeled and 

unlabeled data, enabling the system to adapt to new 

patterns of illegal activity. Sound Event Detection 

becomes an important element in the fight against 

deforestation, providing forest rangers and 

conservationists with real-time data on illegal logging 

activities. These detection models are for quicker response 

times and more effective enforcement of forest protection. 

This research explores the use of ML, and neural networks 

for preventing deforestation in the Indian landscape. 
By focusing on sound event detection, specifically 

tree-cutting sounds and logging vehicle detection, this 

study demonstrates how advanced techniques can be 

applied to monitor forest and human activities. Using real-

time audio analysis, detection of tree-cutting sounds 
becomes best solution to protect India's forests, preserve 

biodiversity, and ensure the long-term sustainability of 

these ecosystems. 

Motivation 

India’s forest landscape has undergone significant 

changes from 1980 to 2024, driven by deforestation, 
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afforestation efforts, and evolving conservation strategies. 

During the 1980s, forest cover in India was estimated at 

around 19% of the total geographical area, with minimal 

differentiation between dense, moderate, and open forest 

categories. This period was marked by large-scale 
deforestation, primarily due to agricultural expansion, 

infrastructure development, and industrial activities. As a 

result, dense forests were reduced, and open and degraded 

lands expanded. Scrublands, often representing degraded 

forests or sparsely vegetated areas, constituted a small 

portion of the forest landscape. In the 1990s and early 

2000s, India began focusing on forest conservation and 

afforestation initiatives. The India State of Forest Report 

(ISFR) 1997 provided more granular data, identifying 

approximately 10% of India’s land area as moderately 

dense forests, covering 337,600 sq. km. Very dense 
forests, though sparse, were recorded at about 1.7% of the 

geographical area. The increasing deforestation trends of 

the 1980s were countered by government programs such 

as Joint Forest Management (JFM), aimed at increasing 

tree cover in degraded areas. During this period, open 

forests covered 7-8% of India’s land, while non-forest 

land remained high at around 75-80% (Forest Survey of 

India, 2023). 

As India moved into the 2010s, forest conservation 

efforts began to show results. By 2011, moderately dense 

forests covered 307,000 sq. km, although this number saw 

a slight decline to 306,890 sq. km by 2021. Dense forest 

cover, however, showed a significant improvement, 

reaching 99,779 sq. km (about 3% of the land area). Open 

forests also saw an increase during this time, reaching 

9.34% of the total land by 2021, reflecting the success of 

afforestation campaigns and conservation measures. The 

scrubland ratio remained fairly constant throughout this 

period, hovering between 1.4-1.5%, indicating a 

consistent but relatively small portion of degraded lands. 

Non-forest areas stabilized at approximately 76-77% 

during the same time. By 2022 and 2023, the forest 

landscape in India reflected a steady trend. Moderately 

dense forests continued to cover 9.33% of the country’s 

geographical area, while very dense forests remained at 

3% of the total area. Open forests accounted for 9.34% of 

the land, showing minimal change from 2021. Scrublands 

persisted at around 1.42%, with non-forest areas still 

constituting about 76.87% of the total land area. The 

results are showing that while forest cover has seen 

modest improvements, particularly in dense and open 

forests, challenges such as deforestation in northeastern 

and tribal regions persist, leading to localized declines in 

forest cover. Figure 1 shows the VDF, MDF, OF, Scrub 

and Non-Forest area of coverage in various years in the 

India. Table 1 illustrates the Year-wise MDF, OF, Scrub, 

VDF and non-forest coverage percentage in India from 

2001 to 2021. Figure 2 presents the Very Dense Forest 

growth and reduction of Moderately Dense Forest 

reduction comparatively with Open Forest from 2001 to 

2021. Figure 3 illustrates the Comparison of Non-Forest 

land area with Forest Coverage land area in India from 

2001 to 2021. Table 1 presents the forest coverage in the 

India from 2001 to 2021 (Forest Survey of India, 2023). 
 

 
 
Fig. 1: VDF, MDF, OF, Scrub and Non-Forest area of coverage 

in various years in the India 

 

 
 

 
 

Fig. 2: (a) Very Dense Forest growth ratio from 2001 to 2021 
and (b) Reduction of Moderately Dense Forest reduction 
comparatively with Open Forest from 2001 to 2021 
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Table 1: Forest Coverage area from 2001 to 2021 in India 

Year 
Non-
Forest 

MDF OF Scrub VDF 

2001 79.45 12.68 7.87 - - 

2003 78.13 10.32 8.76 1.23 1.56 
2005 78.23 10.12 8.82 1.17 1.66 
2007 77.72 9.71 8.77 1.26 2.24 
2009 77.67 9.76 8.75 1.28 2.54 
2011 77.51 9.7 8.99 1.28 2.54 
2015 77.4 9.59 9.14 1.26 2.61 
2017 77.06 9.38 9.18 1.4 2.99 
2019 76.92 9.39 9.26 1.41 3.02 

2021 76.87 9.03 9.34 1.42 3.04 
 

 
 
Fig. 3: Comparison of Non-Forest land area with Forest 

Coverage land area in India from 2001 to 2021 
 

The Indian government has implemented several 

initiatives to protect and restore forest cover. Key among 

these is the Green India Mission (GIM), which focuses on 

afforestation and reforestation activities to enhance forest 
and tree cover across the country. Over the last five years, 

approximately 7,552.8 million has been allocated to 

support afforestation efforts under GIM. Additionally, the 

Compensatory Afforestation Fund (CAMPA) has been 

instrumental in financing compensatory afforestation 

projects, with 553,941.6 million released to state and 

union territory forest departments over the past five years. 

The government has also launched the Nagar Van Yojana, 

aiming to create 600 urban forests and 400 urban gardens 

by 2024-25 to improve green cover in urban areas. This 

initiative is funded by CAMPA and has seen the approval 

of 270 projects with a total cost of 2,386.4 million.  
From 2010 to 2015, the Ministry of Environment, Forest 

and Climate Change (MoEFCC) primarily focused on forest 

conservation through schemes such as the National 

Afforestation Programme (NAP), CAMPA, and the Green 

India Mission. In the fiscal year 2014-15, the MoEFCC 

allocated 20,430 million for forestry and wildlife, with an 

emphasis on afforestation, forest management, and wildlife 

conservation. From 2015 to 2020, the government continued 

to enhance forest management efforts, with the Green India 

Mission receiving 3,670 million in 2017–18. CAMPA funds 

were systematically utilized for compensatory afforestation, 

and by 2020, government allocations increased to address 

climate change and manage forests, aligning with 

international commitments such as the Paris Agreement. For 

2018–19, the MoEFCC budget stood at 26,750 million, 
supplemented by additional CAMPA funds. In the 2020–

2025 period, despite the pandemic, environmental protection 

remained a priority. For 2020-21, the MoEFCC received 

28,700 million, emphasizing afforestation and forest 

conservation. Projections for 2021–2025 show continued 

investment in forest management, with 25,200 million 

allocated in 2021–22, driven by commitments made at 

COP26 and the global push for sustainable development. 

Budget allocations for key schemes such as the National 

Afforestation and Eco-Development Board, and the 

Integrated Development of Wildlife Habitats, also saw 
incremental increases. Historically, the budget for forest 

development has grown significantly. From 2001 to 2010, 

allocations rose from 8,000 million in 2001 to 21,000 million 

by 2009–10. Between 2010 and 2020, funding increased 

steadily, except for a slight dip in 2014–15 due to budget 

restructuring. By 2019–20, the budget had reached 31,00 

million, driven by climate change priorities and the 

utilization of CAMPA funds. Looking ahead to 2020–2025, 

budget projections estimate a steady rise, reaching around 

27,000 million by 2024–25, in line with India’s international 

climate commitments. 

Key components influencing these budget allocations 
include the NAP, CAMPA, the Green India Mission, and 

international agreements like the Paris Agreement and 

COP26. Budget allocation for forest protection is spread 

across various schemes and initiatives, highlighting the 

government’s commitment to this cause. However, the 

implementation and effectiveness of these initiatives remain 

a challenge, especially in the face of ongoing deforestation 

due to developmental activities. Figure 4 illustrates the 

Union Budget allocation in India from 2001 to 2024 for 

conservation of forest trees.  

 

 
 
Fig. 4: Union Budget allocation in India from 2001 to 2024 for 

conservation of forest trees 
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Technological advancements are also being influenced 

to monitor and protect forests. The Forest, and Climate 

Change, conducts biennial assessments of forest cover 

using remote sensing technology, which is vital for 

informed decision-making in forest conservation 
(Chavhan et al., 2024). India and several other countries 

are interested in using technologies to enhance forest 

conservation and monitor deforestation effectively 

(Sethuraman et al., 2022). Key innovations include 

remote sensing and satellite imagery, which utilize 

satellites like Sentinel-2 and Landsat to provide high-

resolution images that track changes in forest cover. The 

Forest Survey of India (2023) uses these images for its 

biennial State of Forest Report, while geo-spatial 

technology integrates GIS with satellite data to map forest 

health and identify threats. On the other hand, Drones 
complemented these efforts by offering real-time, 

localized monitoring, assessing forest damage, and 

tracking wildlife, while IoT devices provide continuous 

data on forest conditions, aiding in the detection of illegal 

activities and environmental changes. Additional 

technologies such as forest fire alert systems, AI, and 

blockchain further boosting for forest management. AI 

algorithms predict fire-prone areas and analyze large 

datasets for deforestation patterns, while block-chain 

ensures transparent supply chains by certifying the legal 

origins of timber. Cloud-based platforms like Global Forest 

Watch enable the real-time tracking of deforestation and 
forest fires, supporting collaborative conservation efforts. 

Together, these technologies address challenges such as 

illegal logging, forest fires, and climate change, contributing 

to the long-term sustainability and resilience of forests. 

Contributions 

This research addresses the challenge by proposing a 

robust sound event detection model for forest monitoring. 

A comprehensive dataset was prepared, comprising four 

classes of sounds: chainsaw sounds, handsaw sounds, 
synthetic axe-cutting sounds, and negative environmental 

sounds. The dataset was analyzed using six advanced audio 

feature extraction techniques Mel-Spectrogram, MFCC, 

Chroma, Spectral Contrast, Tonnetz, and Spectral 

Bandwidth to capture crucial characteristics for sound 

classification. Multiple state-of-the-art deep learning models, 

including a Customized 1D CNN. This work demonstrates 

the potential of sound-based monitoring systems to detect 

deforestation activities effectively, providing a scalable 

solution to support forest conservation initiatives. Key 

contributions are: 

 

 Prepared a dataset with four distinct sound classes, 

including synthetic axe-cutting sounds recorded in 

Mulugu district, Telangana, India 

 Applied six audio feature extraction techniques (Mel-
Spectrogram, MFCC, Chroma, Spectral Contrast, 

Tonnetz, and Spectral Bandwidth) to capture key 

audio characteristics 

 Evaluated the dataset using various deep learning 

models using with six different feature combinations. 

Apart from that Custom-CNN model achieved the 
98% accuracy 

 

Literature Review 

Akbal (2020) classified environmental sounds using 
suitable feature extraction techniques in three stages that 

are feature generation, selection, and classification. One-

dimensional Local Binary Pattern (1DLBP), Ternary 

Pattern (1D-TP), and statistical methods were used for 

feature extraction, while Neighborhood Component 

Analysis (NCA) selects features. They implemented SVM 

and gained 90.25% accuracy on the ESC-10 dataset. 

(Permana et al., 2022) developed a bio-inspired early 

warning system for forest fires using bird sounds. Five 

hundred eighty bird samples were collected through 

microphones, sounds were preprocessed with STFT, and 
black-and-white spectrograms were used for faster 

classification. A CNN classified the sounds into normal 

and threatened conditions, securing 96.45% precision 

with data from Indonesian birds. 

 Khare et al. (2020) proposed a hybrid model using 

Optimum Allocation Sampling (OAS) to select samples, 

which are converted into spectrograms via STFT and fed 

into pre-trained AlexNet and VGG-16 networks. Deep 

features were extracted and classified using various 

techniques, including decision trees and support vector 

machines. Tested on the ESC-10 dataset, the model 

achieved accuracies between 87.9 and 95.8%, 
outperforming existing methods and offered a robust 

solution for automatic environmental sound classification. 

Jiang et al. (2023) high-resolution UAV imagery was 

employed to map six tree species, standing dead trees, and 

canopy gaps within a subtropical montane forest in 

eastern China. The researchers focused on a specific time 

when leaf color differences were prominent, utilizing four 

classification methods—KNN, CART, SVM, and RF to 

identify the tree species. The results revealed that UAV 

imagery captured during distinct leaf periods can 

effectively map tree species in complex mountainous 
terrains. In this research, KNN achieved the highest 

accuracy at 83%.  

Vinod et al. (2023) employed a convolutional neural 

network for TOF mapping in Bengaluru, India, using HRS 

images. A semi-automated process was developed for 

generating labeled training samples via Object-Based 

Image Analysis (OBIA), reducing data preparation time. 

A U-Net deep learning model was then used for TOF 

classification, achieving 89.65% accuracy and a 93.03% 

F1 score, outperforming OBIA (80.73% accuracy, 86.44% 

F1 score). This methodology for assessing TOF in urban 

areas can also be applied to agriculture-dominated regions. 
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Lohit (2021) focused on using drones for reforestation, 

developing a working prototype to address various 

challenges. Drone reforestation is 9 times faster than 

manual planting, covering larger areas efficiently by 

staying airborne. The future scope includes integrating 

deep learning techniques for drones to track deforested 

land and accurately sow seeds by hovering over specific 

locations or dropping seeds mid-air. Behera et al. (2023) 

presented LW-AerialSegNet, a lightweight CNN design 

for segmenting images by adding more layers to capture 

important features while using techniques to reduce the 

number of parameters, making it suitable for devices that 

operate on the Internet of Things (IoT). Tested on the 

NITRDrone and Urban Drone datasets, it achieved 82% 

and 71% intersection over union (IoU), outperforming 

other methods. LW-AerialSegNet can be used on drones 

to identify objects like plants and road lines, helping with 

mapping urban and agricultural areas.  

Rathod et al. (2023) presented a UAV designed for 

rescue and safety in forests, featuring a durable F450 

quadcopter frame, four 1000 KV brushless motors, and a 

KK2.1 Flight Control Board for 90 minutes of flight. They 

included a Raspberry Pi camera for real-time video, a 

GSM module for contactless communication, and a 

motorized lid for quick aid delivery from a first aid kit. 

The Neo-6 M GPS module provides accurate positioning 

(2.5 m accuracy) and collects temperature and humidity 

data with a DHT 11 sensor. Using deep learning models 

like ANN and GANs, the UAV predicts forest fires with 

90.7% accuracy. Kasyap et al. (2022) proposed cost-

effective deep learning techniques for predicting forest 

fires using a mixed approach that combines YOLOv4 tiny 

and LiDAR methods. Unmanned Aerial Vehicles (UAVs) 

are used to patrol forest areas. The model deployed on the 

UAV achieved a classification time of 1.24 seconds, with 

91% accuracy and an F1 score of 0.91.  

Das et al. (2022) presented an edge-enabled drone 

network integrated with mobile edge computing and 

machine learning models to predict bird species. 

Experiments conducted in two geographic regions 

achieved 98.2 and 96.9% accuracy using a random forest 
classifier, with log loss values of 0.07 and 0.4. The edge 

device utilized only 1.4% of CPU and 329.14 MB of 

buffer memory, with an execution time of 45 

milliseconds. Anees et al. (2024) investigated the 

relationship between Landsat-9 remote sensing data and 

topographical features for monitoring Above-Ground 

Biomass (AGB). It employed machine learning 

algorithms, including Random Forest (RF), XGBoost, and 

Support Vector Regression (SVR), to identify optimal 

predictor combinations. The RF model, using Landsat-9 

OLI and Shuttle Radar Topography Mission Digital 
Elevation Model (SRTM DEM) predictors, achieved a 

relative mean absolute error (RMAE) of 14.33%, relative 

Root Mean Square Error (RRMSE) of 22.23%, and an R² 

of 0.81, making it the most effective model.  

Singha et al. (2024) combined GIS, remote sensing, 

and machine learning to find and assess areas at risk of 

forest fires in the STR and their vulnerability to climate 

change. They used a dataset of 44 factors, such as 

topography and climate data, with ten machine learning 

models, including neural networks and Random Forest, 

along with optimization methods. The study found high 

fire risk in the northern and southern parts, with the neural 

net and RF-PSO models showing risk percentages of 

12.44 and 12.89%. Low-risk zones had scores around 

23.41 and 18.57%.  

Qadeer et al. (2024) looked at using machine learning 

to model Above-Ground Biomass (AGB) in Pakistan’s 

Diamir district using free Sentinel-1 and Sentinel-2 

satellite data, along with 171 field-measured points. 

Several algorithms, including Random Forest and 

XGBoost, were tested and improved. While Sentinel-2 

data performed better than Sentinel-1, combining both 

gave the best results (R² greater than 0.7, RMSE = 105.64 

Mg/ha, MAE = 85.34 Mg/ha). da Silva et al. (2023) used 

images from UAVs and machine learning algorithms to 

identify the invasive species Hovenia dulcis in a 

conservation area in southern Brazil. Field data were 

collected through a floristic survey, and UAVs captured 

RGB images, which were processed to create 

orthomosaics. The classification involved four categories: 

H. dulcis, similar species, shade, and other species, using 

Pixel-Based (PB) and Object-Based Image Analysis 

(OBIA) with Random Forest and SVM. The RF algorithm 

in the PB approach performed best, achieving a Kappa 

index of 0.87 and Overall Accuracy (OA) of 91.5% in 

training, with 90.91% success in validation. 

Ahmad and Singh (2022) proposed an approach that 

utilized MFCCs and Spectral Centroid for feature 

extraction for effective classification of environmental 

sounds. They used Machine learning techniques such as 

K-means clustering, GMM, and PCA to improve 

detection accuracy. Where PCA achieved 92% accuracy, 

and K-means clustering achieved 83% accuracy. Mporas 

et al. (2020) used chainsaw recordings and environmental 

noises from online repositories, down sampled to 8 kHz 

with 16-bit resolution. The MFCCs, harmonics-to-noise 

ratio, voicing probability and dominant frequency are 

used for extract the feature. On the other hand, the 

classification model, SVM with an RBF kernel improved 

accuracy by 2%, reaching 94.42% for an SNR of 20 dB. 

Qurthobi et al. (2025) examined the effectiveness of 

various pre-trained deep learning models, including 

MobileNet, GoogleNet, and ResNet, in classifying forest 

sound recordings from the FSC22 dataset, which 

comprises 2,025 audio samples across 27 categories. To 

enhance classification performance, a hybrid approach is 
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proposed by integrating a CNN with a Bidirectional Long 

Short-Term Memory (BiLSTM) layer. They used MFCC 

through the Pareto-Mordukhovich method to improve 

audio feature representation. The proposed BiLSTM layer 

into GoogleNet, along with data augmentation, reduced 

the loss to 0.7209 and increased the classification 

accuracy to 0.7852. 

Dataset 

In this research, the Dataset was prepared with four 

distinct classes. Apart from that, three classes were 

collected from Google Audio, and one class named axe 

cutting, synthetically prepared in a nearby forest of 

Mulugu district, Telangana state, India. All sound samples 

of axe cutting were recorded using a Samsung Galaxy F34 

smartphone, which features a built-in high-quality 

microphone. Recordings were saved in WAV format at a 

sampling rate of 44.1 kHz to ensure high-fidelity audio 

suitable for signal processing and analysis. The recordings 

were made by placing the mobile phone at distances 

ranging from 5 to 150 meters from the sound source. 

Recordings were conducted in a controlled outdoor forest 

environment with environmental condition, temperature 

ranged between 25 to 40°C. The axe-cutting sounds were 

recorded in a controlled manner and selected specific trees 

for recording, ensuring that no tree was felled. Each tree 

was struck for no more than 2 minutes, with the cut 

limited to 2-3 inches, and no plant was harmed and 

activity conducted under the observation of forest 

security. The chainsaw sound class, Handsaw sounds and 

negative class sound were collected from Google 

AudioSet. The audio samples collected for each class 

were around three hours long and were sampled down to 

10-second samples. Initially, 1200 samples were prepared 

for each class. These samples were augmented with 

sample down the frequency and increase the frequency for 

the existing samples, representing the near and far-off 

effect from microphones when being recorded. The 

augmentation process increased the number of samples to 

greater than 2400 number of samples per each class. The 

chainsaw class provides a comprehensive assortment of 

recordings featuring various chainsaw types, intensities, 

and environments. The axe-cutting class encompasses a 

wide spectrum of axe-cutting techniques, including 

chopping, splitting, and shaping wood. The handsaw class 

covers a range of saw types, from fine-toothed models for 

intricate cuts to coarse-toothed saws for rougher work. 

The negative sound class presents an array of avian 

vocalizations as melodic birds, animals and other forest 

sounds. Figure 5 represents the number of audio files from 

each class after performing the above-described 

operations. According to Figure 5, the number of samples 

in the handsaw class is a bit higher than the rest of the 

classes because the frequency in this class not have a 

uniform distribution over the period of 10 seconds and 

also not reach the threshold set by the algorithm to 

augment the audio data. The audio waveform 

representation is the depiction of the audio format in terms 

of frequency and time domain. Figure 6 representing the 

patterns of sound waves marked when there is a 

significant spike which represents the unique trait of that 

class. For example, the chainsaw spikes are the longest 

when compared to the rest of the classes, and the axe-

cutting spikes are the shortest ones when compared to all 

others. This research implemented k-fold cross-validation 

used to evaluate how well the model generalizes to unseen 

data by splitting the dataset into k parts (folds) here k = 5, 

training on k-1 parts, and testing on the remaining part. 

This process is repeated k times, and the results are 

averaged to get a more reliable estimate of the proposed 

CNN model performance. The k-fold cross-validation (k 

= 5) was performed to assess the proposed Custom CNN 

model generalization ability, yielding an average 

accuracy of 99.27% with a low standard deviation of 

0.0012. 

 

 
 
Fig. 5: Number of samples in four classes of dataset 

 

Pre-Processing 

The recorded Audio file data O consists of four classes 

determined as 𝑂 = {𝑂1 , 𝑂2 , 𝑂3, 𝑂4}. This dataset is first 

pre-processed, and the audio files are presented in sorted 

order according to the classes so that the audio files 

belonging to the same class are together. By using the 

Librosa library, audio samples are scaled down, and the 

frequency domain of the samples is analyzed by using 

various parameters such as sampling rate, channels, and 

length of the file. The recorded audio files were split into 

10-second samples for each class. The split dataset 𝑀 =
{𝑀1, 𝑀2, 𝑀3, 𝑀4}.The steps of the procedure explained in 

Algorithm 1. 
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Fig. 6: Sample Sound wave of each dataset class 
 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏: Audio file Pre − Processing 

𝐢𝐧𝐩𝐮𝐭: 𝑂 = {𝑂1 , 𝑂2 , 𝑂3 , 𝑂4}, 𝑖 = 1, 𝑗 = 0, audio file 𝑓𝑗, 𝑡 =

0 

 𝒇𝒐𝒓 𝒊 = 1 𝑡𝑜 4 𝐝𝐨 

 𝒇𝒐𝒓 𝑗 = 0 𝑡𝑜 𝑛 𝐝𝐨 

 Obtain audio file 𝑓𝑗 from 𝑂𝑖   

 resample frequency: 𝑦 = 22050 

 t= 10 Seconds 

 𝑐ℎ𝑢𝑛𝑘𝑠 = Split(𝑓𝑗 , 𝑡)  

 𝐟𝐨𝐫 𝑘, 𝑐ℎ𝑢𝑛𝑘 in enumerate(𝑐ℎ𝑢𝑛𝑘𝑠) 𝐝𝐨 

𝑐ℎ𝑢𝑛𝑘_𝑁𝑎𝑚𝑒 = ′𝑓𝑗
′ + {𝑘}. 𝑤𝑎𝑣 

 𝑐ℎ𝑢𝑛𝑘. 𝑒𝑥𝑝𝑜𝑟𝑡() 

 𝐞𝐧𝐝 𝐟𝐨𝐫 

 𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐎𝐮𝐭𝐩𝐮𝐭: Final dataset 𝑂, renamed the 𝑂 to 𝑀 

 

Augmentation 

An amplitude-based data augmentation technique was 

applied to increase the diversity of the dataset. Each 

original audio file was processed to create two additional 

versions: one by reducing the volume (dividing the 

amplitude by two) and another by normalization (scaling 

based on the maximum amplitude if the scaling factor was 

less than or equal to 1.1). This method simulates 
variations in recording conditions such as lower volume 

and consistent loudness. It helps improve the model's 

robustness to real-world audio variations. The 

augmentation process was implemented using Librosa and 

Soundfile libraries. The output augmented dataset 

representing, 𝐴 = {𝐴1, 𝐴2, 𝐴3, 𝐴4}. Algorithm 2 illustrated 

the process of augmentation on the selected dataset. 

 
𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟐: Data Augmentation 

𝐈𝐧𝐩𝐮𝐭𝐬: 𝑀 = {𝑀1, 𝑀2 , 𝑀3 , 𝑀4} 

𝑀: Root Directory 

𝑀𝑖: Sub Directory 

𝐹𝑗 : Audio File within Sub Directoty 

𝐴: Augmented Directory 

𝑦 = Audio data 

𝑠𝑟: Sampling Rate 

𝑘 = index for naming augmented files 

𝐟𝐨𝐫 𝑖 = 1 to 4 𝐝𝐨 

 𝐢𝐟 𝐹𝑗 ∈ 𝑀𝑖  𝐭𝐡𝐞𝐧 

 Create directiry 𝐴𝑖/𝑀𝑖 

 𝐟𝐨𝐫 each 𝐹𝑗 in 𝑀𝑖  𝐝𝐨 

 𝑙𝑜𝑎𝑑(𝑦), 𝑠𝑟 = 22050 

 Export 𝑦 to 𝐴𝑖/𝑀𝑖/𝑀𝑖_𝑘. 𝑤𝑎𝑣 

 𝐟𝐨𝐫 𝑘 = 1 to 1200 𝐝𝐨 

 //Volume Reduction Augmentation 

 𝑦1 =
𝑦

2
 

 Export 𝑦1 to 𝐴𝑖/𝑀𝑖/𝑀𝑖_𝑘. 𝑤𝑎𝑣 

 𝑘 = 𝑘 + 1 

 //Normalization Augmentation 

 Scaling factor 𝑚 =
1

max (𝑦)
 

 𝐢𝐟 𝑚 ≤ 1.1 𝐭𝐡𝐞𝐧 

 𝑦2 = 𝑦 × 𝑚 

 Export 𝑦2 to 𝐴𝑖/𝑀𝑖/𝑀𝑖_𝑘. 𝑤𝑎𝑣 

 𝑘 = 𝑘 + 1 
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 𝐞𝐧𝐝 𝐢𝐟 

 𝐞𝐧𝐝 𝐟𝐨𝐫 

 𝐞𝐧𝐝 𝐟𝐨𝐫  

 𝐞𝐧𝐝 𝐢𝐟  

𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐎𝐮𝐭𝐩𝐮𝐭: Augmented Audio data 𝐴 

 

Methodology 

In this research, our main goal is to prevent 

deforestation. This research focused on finding tree-

cutting sounds in the forest area of the Indian 

environment. As the initial process, we prepared the 

dataset of four classes. According to the Sound Event 

Detection to classify the sounds using ML and NN 

algorithms, the feature extraction process is more 

important. In this model feature extraction with 

multiple feature clusters, the compiled dataset is 

forwarded to a feature extraction algorithm, which 
extracts multiple features simultaneously. These 

extracted features are provided in numerical data 

format. The extracted feature data is inputted into 

multiple deep-learning models to test the accuracy of 

each class in real time. Figure 7 shows the flow of the 

classification system required to analyze the compiled 

dataset. The accuracy of each class is tested using all 

classification metrics, and the best feature cluster will 

be decided based on these metrics. 

 

 
 

Fig. 7: Flow chart of the proposed model 

 
The proposed feature cluster was selected based on 

the popularity of the feature extraction techniques used 

for audio classification and the most suitable for our 

implementation. The prepared 6 feature extraction 

techniques are Mel-Spectrogram, MFCCs, Chroma, 

Spectral Contrast, Tonnetz and Spectral Bandwidth. 

The Mel spectrogram is used for visual representation 

of the spectrum of frequencies in an audio signal 

obtained by converting the linear frequency scale to a 

logarithmic scale using the Mel scale, which closely 

resembles human auditory perception. MFCCs are a 
widely used feature extraction method in audio signal 

processing. They capture the short-term power 

spectrum of a sound signal. This process involved 

computing the Mel spectrogram, taking the logarithm 

of the powers, applying a discrete cosine transform, and 

retaining a subset of the resulting coefficients. Chroma 

representation of the energy distribution of pitch 

classes in an audio signal is particularly useful for 

harmonic content tasks, like music genre classification, 

chord recognition, and melody analysis. Spectral 

contrast measures the difference in amplitude between 

peaks and valleys in the spectral envelope of an audio 

signal. It helps capture the perceptual attribute of 
timbre, which is crucial in tasks like instrument 

recognition and genre classification. Tonnetz features 
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a representation of the harmonic content of an audio 

signal. Tonnetz is derived from the tonal centroids and 

is related to the harmonic relationship between 

different frequencies. Spectral bandwidth measures the 

width of the frequency range over which most of the 
signal’s energy is concentrated. It provides information 

about the spread of frequencies in the spectrum, 

indicating whether a sound is narrow or broad in its 

frequency content. Figure 8 represents the clustering of 

features used to convert the audio data to numerical 

data. Figure 9 illustrates the flowchart of feature cluster 

selection followed by classification output. Figure 10 

shows the Various Feature Extraction Spectrograms of 

Axe Cutting Sound sample. Figure 11 presents the 

Various Feature Extraction Spectrograms of Chainsaw 
Sound sample. Figure 12 presents the various Feature 

Extraction Spectrograms of Handsaw Sound sample. 

Followed by Figure 13 which represents the various 

Feature Extraction Spectrograms of Forest other Sound 

sample. 

 

 

 

Fig. 8: Feature extraction clusters of the proposed model 

 

 

 

Fig. 9: Flow chart of sound classification based on the features clusters 
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Fig. 10: Various Feature Extraction Spectrograms of Axe Cutting Sound sample 
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Fig. 11: Various Feature Extraction Spectrograms of Chainsaw Sound sample 
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Fig. 12: Various Feature Extraction Spectrograms of Handsaw Sound sample 
 

 
 

Fig. 13: Various Feature Extraction Spectrograms of Forest other Sound sample 
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The augmented dataset is used to train the model and 

evaluate the accuracy of the classes using classification 

metrics. To train the model, the data needs to be in 

numerical format, which can be achieved using feature 

extraction. Algorithm 3 provided the procedure of feature 
extraction from augmented data samples. 

 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟑: Feature Extraction 

𝐈𝐧𝐩𝐮𝐭 ∶  𝐴 = {𝐴1 , 𝐴2 , 𝐴3 , 𝐴4} 

𝐫𝐞𝐩𝐞𝐚𝐭 

 𝐫𝐞𝐩𝐞𝐚𝐭 

 𝐫𝐞𝐩𝐞𝐚𝐭 

 Obtain audio file from 𝐴𝑖 

 Extract ± 𝐼𝑗  Features 

 Calculate Mean of ± 𝐼𝑗  Features 

 Store the mean Value of ± 𝐼𝑗  Features 

 𝐔𝐧𝐭𝐢𝐥: ± 𝐼𝑗  (> 2&& ≤ 6) 

 𝐔𝐧𝐭𝐢𝐥: All Files in 𝐴𝑖 

𝐔𝐧𝐭𝐢𝐥: All Classes 𝐴 = {𝐴1 , 𝐴2 , 𝐴3 , 𝐴4} 

𝐎𝐮𝐭𝐩𝐮𝐭: ~𝐴 = ±𝐼 Feature Clusters 

 (Where ± 𝐼 ≥ 2&& ≤ 6) 

 

The augmented dataset is used to train the model. 

Various sound features are extracted from the augmented 

data. The algorithm demonstrates the steps in feature 

extraction, and the process of these extracted features is 

further split into training and testing data for training the 

model. In the above algorithm, the augmented 𝐴 data is 

converted to numerical ~𝐴 data by performing the feature 

extraction operations. The ± 𝐼𝑗 Features means the 

number of features in a feature cluster. The 𝐼 represents 

the feature cluster number, and 𝑗 represents the number of 

feature cluster numbers. For instance, in the two Feature 

cluster, there are two features to be extracted 𝐼 represent 

the number ‘2’ whereas the 𝑗 represents the remaining 

number of features that are needed to be extracted for this 

feature cluster, like ‘1’ and ‘2’. The (> 2&& ≤ 6) 

represents the number of feature clusters from ‘2’ to ‘6’. 

The output of the above algorithm is the feature clusters, 

which are extracted from the audio files represented by 

~𝐴. 

Implementation 

In our research, we divided the dataset for training and 

testing with ratio of 70:30. The deep learning models used 

for the classification are Customized Convolutional 

Neural Network (CNN), Bi-directional Convolutional 

Recurrent Neural Network (BiCRNN), Bidirectional 

Gated Recurrent Unit Convolutional Recurrent Neural 

Network (Bi-GRU-CRNN), AlexNet and ResNet. 

The Customized 1D Convolutional Neural Network 

defined using Keras’ Sequential API. The model begins 

with a Conv1D layer that accepts input data with 194 

features (input shape of (194, 1)) and applies 64 filters 

with a kernel size of 3, using ReLU activation to 

introduce non-linearity. A second Conv1D layer 

follows, also with 64 filters and the same kernel size, 

again using ReLU activation to extract further patterns 

from the data. After these two convolutional layers, a 

MaxPooling1D layer with a pool size of 3 is introduced, 

reducing the spatial dimensions of the feature maps to 

simplify the representation while retaining important 

information. The output of the pooling layer is then 

flattened, converting the 3D tensor into a 1D vector so it 

can be passed through fully connected (dense) layers. 

The model included a sequence of four dense layers with 

100, 50, 25, and 10 neurons, progressively reducing the 

dimensionality. Finally, the output layer has 4 neurons, 

corresponding to 4 output classes, and used SoftMax 

activation for multi-class classification. In our proposed 

model, we implemented the RMSprop optimizer to 

enhance training stability and accelerate convergence. 

Since our research involved with multi-class 

classification using the categorical cross-entropy loss 

function, which is crucial to optimize weight updates 

effectively. RMSprop plays a key role in this process by 

adaptively adjusting learning rates for each parameter, 

preventing drastic weight changes, and ensuring stable 

training. RMSprop mitigates large fluctuations in weight 

updates, reducing oscillations and improving overall 

model performance. RMSprop offers better handling of 

vanishing gradients and ensures faster convergence, 

making the model to suitable for training on noisy 

datasets. The batch size of the model training is 5 to 

process the five samples at a time before update the 

weights. The learning rate to controls the weights during 

the training is 0.001 for ensuring stable training and high 

accuracy. The model run for 10 epochs for training and 

testing. Figure 14 shows the Architecture of Proposed 

Custom-CNN model and Algorithm 4 illustrates 

procedure of model training on featured data. 

The extracted features in both the training and testing 

data are provided to a model to be trained. Augmented 

feature extracted data are considered ~A′ for the training 

dataset and ~A′′ for the validation dataset. Then, the 

convolutional matrix will be considered W′and W′′ as the 

weights initially. Then, the updated weights of the model 

will be considered GW′ or GW′′for training and 

validation data, respectively. The algorithm for training 

the model using convolutional layers is given below. The 

weight matrices for the training and validation defined as 

below equations:  
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Fig. 14: Architecture of Proposed Custom-CNN model 

 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟒: Model Training 

Input: ~𝐴′ = {~𝐴′1, ~𝐴′2 , ~𝐴′3 , ~𝐴′4} or ~𝐴′′

= {~𝐴′′1 , ~𝐴′′2 , ~𝐴′′3 , ~𝐴′′4}  

A: Input Data, 𝑌𝑡𝑟𝑢𝑒 : True labels 

𝑟 = 10029 //number of rows from the extracted feature 

𝐟𝐨𝐫 each 𝑖 in 𝑟 𝐝𝐨 

 Initialize the convolutional kernal matrices 

 𝑊1 with random values 

 𝐻1 = 𝑓𝑅𝑒𝐿𝑈(Conv1D(𝐴, 𝑊1 , 𝑘1)) 

 𝐻2 = 𝑓𝑅𝑒𝐿𝑈(Conv1D(𝐻1, 𝑊2 , 𝑘1)) 

 𝑃 = MaxPooling(𝐻2, 𝑝) 

 𝐴𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 = Flatten(𝐴) 

 Compute loss: 𝑙𝑜𝑠𝑠 = ℒ( 𝐴𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 , 𝑌𝑡𝑟𝑢𝑒)  

 Initializing the weight matrices randomly for 

 the dense layers 

 Set up initial weights 𝑊𝑖and biases 𝑏𝑖  for dense layers . 

 B=𝑊𝑖 , 𝑏𝑖 ← RandomInitialization() 

 𝐷1 ← 𝜎( 𝑋𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑, 𝑊1 , 𝑏1) 

 𝐟𝐨𝐫 𝑖 = 1 downto 4 𝐝𝐨  

 𝐷𝑖+1 ← 𝜎(𝐷𝑖 , 𝐵) 

 𝐞𝐧𝐝 𝐟𝐨𝐫 

 ℒ = 𝑙𝑜𝑠𝑠 (𝐷𝑖 , 𝑌𝑡𝑟𝑢𝑒) 

 𝐟𝐨𝐫 𝑖 = 4 downto 1 𝐝𝐨 

 //Backward pass to calculate gradients: 

 ∆𝑊𝑖 ← Backprop(𝐷𝑖 , 𝑌𝑡𝑟𝑢𝑒) 

 ∆𝑏𝑖 ← Backprop(𝐷𝑖 , 𝑌𝑡𝑟𝑢𝑒) 

  𝑊𝑖 ← Update_Weight(𝑊𝑖 − η∆𝑊𝑖 , ) 

 𝑏𝑖 ← Update_Biase(𝑏𝑖 − η∆𝑏𝑖) 

 𝐵 ← 𝐵 − 𝜂
𝜕ℒ

𝜕𝐵
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 // 
𝜕ℒ

𝜕𝐵
represents the collection of all gradients for weights and 

biases. 

 𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐮𝐧𝐭𝐢𝐥:  𝑙𝑜𝑠𝑠𝑡 ≈ 𝑙𝑜𝑠𝑠𝑡−1and 𝑡 ≥ 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠=10 

𝐄𝐧𝐬𝐮𝐫𝐞: Trained Model 𝑅 and Updated weight 𝐵 

𝐑𝐞𝐩𝐞𝐚𝐭:  

Obtain a single row from the extracted feature of  

~𝐴′ or ~𝐴′′ 

Apply convolutional operation (𝑓 ′, 𝑘 ′), (𝑓 ′′, 𝑘 ′′) 

 

Apply Max pooling operation(𝑝) Update the 𝑊 ′and 𝑊 ′′matrix with the updated weight  

𝐔𝐧𝐭𝐢𝐥: All rows in ~𝐴′ or ~𝐴′′ 

 

𝐺𝑊 ′[𝑚, 𝑛] = (~𝐴′ × 𝑘 ′)[𝑚, 𝑛] = ∑ ∑ 𝑘 ′[𝑗, 𝑘]~𝐴′[𝑚 − 𝑗, 𝑛 − 𝑘]
𝑘𝑗

 

 

𝐺𝑊′′[𝑚, 𝑛] = (~𝐴′′ × 𝑘 ′′)[𝑚, 𝑛] = ∑ ∑ 𝑘 ′′[𝑗, 𝑘]~𝐴′′[𝑚 − 𝑗, 𝑛 − 𝑘]
𝑘𝑗

 

 

In the above equations, GW′ determines the weight 

matrices of the training data whereas GW′′ determines 

the weight matrices of validation data that is provided 

to the dense network for classification. The other 

parameters such as [m, n] determine the numerical 

range in a feature cluster to which the convolutional 

and pooling operations are applied to get the feature 

map matrices where, ~A′, ~A′′ are the feature rows and 

the k′, k′′ are the initial kernel matrices. After 

obtaining the weight matrices by applying the 

convolutional and pooling operations on each row and 

column the matrices are fed to the dense layer which 

performs the classification of cancer for lungs. In the 

next step, the extracted features are fed to the dense 

neural network which comprises of neurons which help 

in classifying the audio data according to the classes 

specified. Let us consider the initial input to the dense 

layers as the transformed version ~GW′ flattened 

values from the matrix which are considered as the 

input neurons of the dense layer, the dense layer 

consists of weights which are randomly initialized and 

updated accordingly by forward and backward 

propagation in numerous iterations, let us consider this 

randomly initialized weights as B′. These weights are 

forwarded to next dense layer and updated. Finally, the 

weights determine the probability of each class from 

where the maximum probability of class is chosen to 

classify that image. Algorithm 5 illustrates the 

procedure of Classification with Dense Layers. 

Algorithm 5: Classification with dense layers 

𝑰𝒏𝒑𝒖𝒕: Pre − trained weights 𝐺𝑊′or 𝐺𝑊′′,Input Matrix ∶

𝑋, 𝑌𝑡𝑟𝑢𝑒 

𝑋𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 = Flatten(𝑋) 

/ weights 𝑊𝑖and biases 𝑏𝑖  for dense layers 

B={𝑊𝑖 , 𝑏𝑖} ← RandomInitialization() 

𝒓𝒆𝒑𝒆𝒂𝒕 

 𝐟𝐨𝐫 𝑖 = 1 𝑡𝑜 4 𝐝𝐨 

 𝐻𝑖 ← Densei(𝑋, 𝑊𝑖 , 𝑏𝑖) 

 𝐞𝐧𝐝 𝐟𝐨𝐫 

 𝐟𝐨𝐫 𝑖 = 4 downto 1 𝐝𝐨 

 //Backward pass to calculate gradients: 

 ∆𝑊𝑖 , ∆𝑏𝑖 ← Backprop(𝐻𝑖 , 𝑌𝑡𝑟𝑢𝑒) 

  𝑊𝑖 ← Update_Weight(𝑊𝑖 − η∆𝑊𝑖 , ) 

 𝑏𝑖 ← Update_Biase(𝑏𝑖 − η∆𝑏𝑖) 

 𝐵′ ← Update(𝐵) 

 𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐮𝐧𝐭𝐢𝐥:  𝑙𝑜𝑠𝑠𝑡 ≈ 𝑙𝑜𝑠𝑠𝑡−1 and 𝑡 ≥ 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠=10 

𝐎𝐮𝐭𝐩𝐮𝐭: Trained Model R and Updated weight B′  
 

Algorithm 5 works for training data which gets 

transformed into input layer for the dense layers and the 
training process occurs accordingly, the validation set of 

values is used to validate the training of the model by 

classifying the values in that iteration. The output of the 

above algorithm will give the completely trained model R 

and the final updated weights B’. These weights 

determine the probability of each class when an input 

Audio is given which is forwarded to the model after 

feature extraction. 

Results and Analysis 

The results of the trained models are being 

discussed in this section for each feature cluster group. 

And this section also provides detailed explanation of 

how models are performing for 10 epochs in each of the 

feature cluster. 

Two Features Cluster 

In 2-Features cluster, the models while training 
have a significant rise in the accuracy from 2nd 

iteration. The model providing the best accuracy is the 

Bi-GRU-CRNN Custom model, the ResNet pre-

defined model provided less accurate classification 

when compared to all the other models. Similarly, the 

ResNet whose accuracy and loss keeps fluctuating over 

the period of 10 iterations. The ROC curve and 

Precision vs Recall curve depicts the area created by all 
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the models and shows the minute difference between 

them all. The 2-Feature cluster provided a valuable 

insight on how models work and train if these features 

are chosen for classifying the audio data. Table 2 

presents the performance metric results for two features 
cluster. Figure 15 illustrates the Two Feature Cluster 

result analysis. 

Three features Cluster 

In 3-Features cluster, the models while training have a 

significant rise in the accuracy from 2nd iteration. The 

model providing the best accuracy for Custom model, the 

ResNet pre-defined model provided less accurate 

classification when compared to all the other models. 

Similarly, the validation accuracy and loss curves depict 

that the most unstable for ResNet and AlexNet whose 

accuracy and loss keeps fluctuating over the period of 10 
iterations. The ROC curve and Precision vs Recall curve 

depicted the area created by all the models and shows the 

major difference between them all, the ResNet curve’s 

area collapses in-terms of specificity and precision for 

classifying the data. Table 3 presents the performance 

metric results for three features cluster. Figure 16 presents 

the Three Features Cluster result analysis. 
 
Table 2: Performance Metric results for two features cluster 

Model Precision Recall F1-Score Accuracy Loss 

Training 
AlexNet 0.91 0.91 0.87 0.90 0.27 
Bi-CRNN 0.93 0.92 0.93 0.93 0.12 

BiGRU-CRNN 0.95 0.93 0.94 0.93 0.10 
Custom CNN 0.95 0.94 0.94 0.95 0.09 
ResNet 0.71 0.73 0.69 0.70 0.13 
Validation 
AlexNet 0.89 0.90 0.90 0.90 0.75 
Bi-CRNN 0.93 0.92 0.94 0.94 0.10 
BiGRU-CRNN 0.92 0.91 0.96 0.96 0.09 
Custom CNN 0.94 0.93 0.95 0.97 0.04 

ResNet 0.72 0.72 0.69 0.70 0.16 
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Fig. 15: Two Features Cluster result analysis 
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Fig. 16: Three Features Cluster result analysis 

 
Table 3: Model Performance Metrics for Three Features Cluster 

Model Precision  Recall F1-Score Accuracy Loss 

Training 

AlexNet 0.89 0.89 0.91 0.90 0.12 
Bi-CRNN 0.92 0.93 0.93 0.93 0.09 
BiGRU-CRNN 0.93 0.95 0.95 0.95 0.07 
Custom CNN 0.94 0.96 0.96 0.96 0.04 
ResNet 0.74 0.76 0.68 0.75 1.39 
Validation 
AlexNet 0.90 0.89 0.89 0.90 0.58 
Bi-CRNN 0.91 0.92 0.93 0.92 0.19 

BiGRU-CRNN 0.94 0.95 0.95 0.95 0.09 
Custom CNN 0.95 0.95 0.96 0.96 0.15 
ResNet 0.78 0.75 0.74 0.73 1.64 

 
Table 4: Model Performance Metrics for Four Features Cluster 

Model Precision Recall F1-Score Accuracy Loss 

Training 
AlexNet 0.91 0.91 0.91 0.89 0.12 
Bi-CRNN 0.92 0.92 0.93 0.93 0.15 
BiGRU-CRNN 0.96 0.95 0.95 0.96 0.09 
Custom CNN 0.95 0.97 0.96 0.96 0.05 
ResNet 0.81 0.82 0.80 0.82 3.09 
Validation 
AlexNet 0.98 0.94 0.95 0.91 0.41 

Bi-CRNN 0.92 0.90 0.95 0.95 0.17 
BiGRU-CRNN 0.96 0.96 0.97 0.97 0.14 
Custom CNN 0.93 0.99 0.96 0.97 0.11 
ResNet 0.87 0.82 0.80 0.82 2.92 

 

Four Features Cluster  

In 4-Features cluster, the models while training have a 

significant rise in the accuracy from 3rd iteration. The 

model providing the best accuracy for Custom-CNN 

model and Bi-GRU-CRNN, the ResNet predefined model 

provides less accurate classification when compared to all 

the other models. Similarly, the validation accuracy and 

loss curves depict that the most unstable model is ResNet 

and AlexNet whose accuracy and loss keeps fluctuating 

over the period of 10 iterations. The ROC curve and 

Precision vs Recall curve depicts the area created by all 

the models and shows a great difference between them all, 

the ResNet curve’s area collapses in-terms of specificity 

and precision for classifying the data and the area between 

the curves of all other models is quite observable which 

suggests that the specificity of this feature cluster is not 

stable. Table 4 shows the performance metric results for 
four features cluster. Figure 17 illustrates the four Feature 

Cluster result analysis. 
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Fig. 17: Four Features Cluster result analysis 

 
Five Features Cluster  

In 5-Features cluster, the models while training have a 
significant rise in the accuracy from 2nd iteration. The 

model providing the best accuracy for Custom model and 

Bi-GRU-CRNN, the ResNet pre-defined model provided 

less accurate classification when compared to all the other 

models. The ResNet and AlexNet whose accuracy and 

loss keeps fluctuating over the period of 10 iterations. The 

ROC curve and Precision vs Recall curve depicts the area 

created by all the models and shows a really minor 

difference between them all, there is hardly any instability 

in terms of precision and recall in these models. Table 5 

shows the performance metric results for five features 

cluster. Figure 18 illustrates the five Feature Cluster result 

analysis. 
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Table 5: Model Performance Metrics for Five Features Cluster 

Model precision Recall F1-Score Accuracy Loss 

Training 

AlexNet 0.90 0.91 0.87 0.92 0.19 

Bi-CRNN 0.95 0.95 0.94 0.96 0.08 

BiGRU-CRNN 0.96 0.95 0.94 0.97 0.06 

Custom CNN 0.95 0.97 0.97 0.98 0.05 

ResNet 0.88 0.86 0.87 0.92 0.63 

Validation 

AlexNet 0.92 0.93 0.92 0.94 0.43 

Bi-CRNN 0.98 0.93 0.94 0.95 0.06 

BiGRU-CRNN 0.95 0.98 0.97 0.97 0.04 

Custom CNN 0.93 0.98 0.98 0.97 0.02 

ResNet 0.89 0.85 0.87 0.91 1.03 
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Fig. 18: Five Features Cluster result analysis 

 
Table 6: Model Performance Metrics for six features cluster 

Model Precision Recall F1-Score Accuracy Loss 

Training 
AlexNet 0.96 0.96 0.94 0.95 0.13 
Bi-CRNN 0.94 0.94 0.98 0.96 0.06 
BiGRU-CRNN 0.96 0.96 0.98 0.97 0.04 
Custom CNN 0.98 0.98 0.98 0.99 0.02 
ResNet 0.94  0.89  0.92 0.92 0.14 
Validation 
AlexNet 0.94 0.96 0.92 0.94 0.22 

Bi-CRNN 0.96 0.96 0.97 0.96 0.07 
BiGRU-CRNN 0.98 0.96 0.97 0.97 0.05 
Custom CNN 0.97 0.98 0.97 0.98 0.04 
ResNet 0.92 0.92 0.92 0.92 0.26 

 

Six Features Cluster  

The 6-Feature Cluster models have a significant rise in 

the accuracy from 2nd iteration while training. The model 

providing the best accuracy is Custom-CNN model, the 

ResNet pre-defined model provides less accurate 

classification when compared to all the other models. 

Similarly, the validation accuracy and loss curves depict 

that the most unstable model is ResNet and AlexNet 

whose accuracy and loss keeps fluctuating over the period 

of 10 iterations. The best model is Custom-CNN when 

compared to all other models in all aspects. The ROC 

curve and Precision vs Recall curve depicts the area 

created by all the models and shows a really no difference 

between them all, there is hardly any instability in terms of 
precision and recall in these models. Table 6 shows the 

performance metric results for six features cluster. Figure 19 

illustrates the six Feature Cluster result analysis. 
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Fig. 19: Six Features Cluster result analysis 

 

By comparing all the above metrics of different 

feature clusters that are for 2-Feature, 3-Feature, 4-
Feature, 5-Feature, and 6-Feature concluded that the 

audio data when converted to numerical data can be 

classified effectively with multiple features such that it 

becomes more effective while classifying the audio files 

in real-time. While investigating the above result 

analysis, our research concluded that the most dependent 

feature clusters are the 5-Feature clusters and 6-Feature 

clusters since, they have good stability in most of the 

models when compared to rest of the feature clusters. 

The pre-defined models AlexNet and ResNet do not 

provide a stable and accurate classification measure to 

classify the data in any feature cluster this may be due 
the fact that they were trained on images to extract 

features from them and classify them accordingly. The 

custom-built models provide an accurate and stable 

measure to classify the audio data accordingly to their 

classes. The most accurate model in majority of the 

feature clusters are Custom-CNN and BiGRU-CNN. 

The Custom-CNN model provided 98.2% of accuracy 

and BiGRU-CNN provided the 97.9% of accuracy.  

Potential Limitations 

The confusion matrix provides a clear understanding 

of the classification model’s performance in identifying 

different sound classes: axe-cutting (Class 0), chainsaw 

(Class 1), handsaw (Class 2), and negative sounds such 

as birds, animals, rain, and vehicles (Class 3). A high 

number of correct classifications, including true 

positives and true negatives, indicate that the model 

effectively distinguishes between deforestation-related 

and irrelevant sounds. Accurate identification of tree-

cutting sounds ensures the model’s reliability in 
detecting deforestation activities. 

However, Figure 20 shows that the misclassification 

rates for false positives where non-deforestation sounds 

are incorrectly classified as tree-cutting sounds and false 

negatives where tree-cutting sounds are misclassified as 

non-deforestation sounds are significantly lower than the 

true positive and true negative values. This analysis 

suggests that our proposed model performs well in 

minimizing misclassifications. However, handling 

misclassification remains a challenge in research. 
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Fig. 20: Confusion matrices for the training, validation, and testing phases of the proposed model 

 
Table 7: Comparison of the Proposed Method with State-of-the-Art Models 

Reference  Dataset Features Classification 
models  

Result Environment 

Ahmad and Singh, 
2022 

www.sounddog.com and 
www.freesound.org. 

Spectral 
Centroid, MFCC 

K Means 
Clustering 

92% Tree cutting sound 
classification  

Mporas et al., 
2020 

Synthetic data MFCC SVM 94.42% Chainsaw sound 
classification in the 
forest 

Qurthobi et al., 
2025 

FSC22 MFCC Custom CNN 94.4% Forest sound 
classification 

Andreadis et al., 
2021 

ESC-50 Mel-Spectrogram, 
MFCC 

Custom-CNN 85% Tree Cutting 

Bandara et al., 
2023 

FSC22 MFCC, Mel-
Spectrogram 

Custom-CNN 92.59% Forest Sound 
Classification 

Paranayapa et al., 
2024 

FSC22 MFCC, Mel-
Spectrogram, 

Chroma features 

MobileNetv3 87.95% Forest Sound 
Classification 

Proposed Audioset and Synthetic 
data 

Mel-Spectrogram, 
MFCC, Chroma, 
Spectral Contrast, 
Tonnetz and 
Spectral Bandwidth 

Custom-CNN  98.2% Tree cutting sound 
classification BiGRU-CNN 97.9% 

 

Several factors contribute to misclassification, 

including sound similarity, where environmental noises 

such as breaking branches, strong winds, or animal calls 

share frequency patterns with tree-cutting sounds, making 

differentiation difficult. Feature overlap is another 

challenge, as extracted sound features like MFCC and 

Mel Spectrogram may not be entirely distinct across 

classes. Additionally, dataset imbalance can affect 

classification accuracy, especially if certain classes have 
fewer training samples, limiting the model’s ability to 

learn diverse variations. Table 7 presents a comparative 

analysis of the proposed model against existing research 

models related to forest environment studies. 

Performance of Proposed Customized CNN 

In this research, the adopted Customized CNN model 

yielded better results than all the other baseline models 

that were used in the research. To effectively support the 

evaluation and subsequent validation of this improved 
performance, however, a systematic method of data 

analysis was used. This also involved the use of an 

ANOVA test to analyze the mean performance of the 

CNN model to other existing baseline methods and to 

determine whether there are indeed statistically 

significant differences in the results. Moreover, a 

calibration test was carried out to check various aspects of 

the model to show that the probability estimated by the 

model was accurate to the output confidence of the 

system. Lastly, we applied radar chart plotting analysis to 

represent the performance comparison of multiple features 
in order to identify the superiority and inferiority of the 

proposed Customized CNN model. This multiple strategy 

has made it possible to give strong support to the model’s 

general performance and ability to manage large data. 

ANOVA Test 

The Analysis of Variance (ANOVA) test helps in 

assessing whether the observed variances among group 

means are due to chance or if there are actual differences 

among them. This test provided the two concluded results 
that are F-statistics and P-value. In our research the F-

value of 3.7 suggests that the variance among the group 
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means significantly larger than the variance within the 

groups. This indicates that there is a reasonable amount of 

difference among the groups being compared. The P-

value of 0.0204 is less than the conventional significance 

level of 0.05. This means that the proposed model can 
reject the null hypothesis, suggesting that there are 

statistically significant differences among the group 

means. Figure 21 demonstrates the ANOVA test analysis 

of proposed model performance. 
 

 
 
Fig. 21: ANOVA Test result of proposed and pre-trained 

models 
 

Calibration Curve Analysis 

Calibration curve for a multi-class classification 

model, showing calibration results for each class. 

Calibration curves are used to measure the accuracy of a 

model’s predicted probabilities by comparing them to the 

actual outcomes. According to the diagram each class has 

two lines: One for the CNN model and one for the 

Baseline models. The classes are labeled as Class 0, Class 

1, Class 2, and Class 3. Mean Predicted Probability on X-

axis represents the model’s predicted probability for each 

class, averaged over multiple samples. This value ranges 
from 0 (low confidence) to 1 (high confidence). Fraction 

of Positives on Y-axis shows the fraction of actual 

positives for each predicted probability bin. A value of 1 

means all samples with a particular predicted probability 

belong to the positive class, while 0 means none of them 

do. Perfect Calibration Line (Black Dashed Line) 

represents perfect calibration. If the model’s predictions 

are perfectly calibrated, the model’s predicted 

probabilities will match the observed fraction of positives, 

and the lines for each class will align with this dashed line. 

When a model’s line follows the perfect calibration line 
closely, it indicates that the model is well-calibrated for 

that class. Deviations from this line suggest that the model 

is either overconfident (above the line) or under confident 

(below the line) in its predictions for that class. In our 

resultant Figure 22 shows that each class has lines for both 

the CNN and Baseline models, allowing us to compare the 

calibration of these two models. The proposed customized 

CNN model’s lines for each class are close to the diagonal 

line, the model is well-calibrated. This means that the 

model’s predicted probabilities match the observed 

fraction of positives, indicating reliable probability 

estimates. The CNN model’s calibration curve for Class 0 
shows some deviation, especially at lower probability 

levels, but it aligns better with the diagonal line at higher 

probabilities. The CNN line for Class 1 appears relatively 

close to the perfect calibration line, suggesting reasonably 

good calibration for this class. Small deviations are 

common, but overall alignment is favorable. 

Classes 2 and 3 show more fluctuations, indicating 

potential issues with calibration. These deviations suggest 

that the CNN model may not be as well-calibrated for 

these classes. 
 

 
 
Fig. 22:  Calibration Curve of each dataset class for Proposed 

CNN and Baseline models 
 
Radar Chart Analysis 

A radar chart is a graphical method used to display 

multivariate data in a way that compares different variables 

across various categories. Here’s a breakdown of how to 

interpret this radar chart: Each axis represents a variable or 

feature being compared. In this chart, it looks like five 

different models are being compared: CNN, Bi-CRNN, 

BiGRU-CRNN, AlexNet, and ResNet. The circular grid 

represents scales of measurement, allowing a visual 

assessment of how each model performs relative to the 

others. Each line plotted on the radar chart represents one 

model, color-coded for easy identification as shown in the 

legend. Each axis on the radar chart represents a different 

performance metric (e.g., precision, recall, accuracy). The 

customized CNN model and baseline models are plotted on 

the same chart, with each model forming a polygon. A larger 

polygon area indicates better performance across those 

metrics. The closer the plotted line is to the outer edge of the 

chart, the better the performance of the model in terms of 

precision. Figure 22 illustrates the performance analysis of 

Custom-CNN model using Radar Chart. 
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Fig. 22: Performance Analysis of Custom-CNN model using Radar Chart 
 
Bland-Altman Test 

The Bland-Altman test also known as the Bland-Altman 

plot is useful in detecting any systematic bias (consistent 
differences) and in determining the range within which 

most of the differences between the models fall. The 

resultant plotted figure of Bland-Altman test has x-axis that 

represents the mean of the two predispositions. The y-axis 

represents the difference between the predictions of 

Custom CNN and the comparison model. Mean Difference 

(Red Line) represents the difference between Custom CNN 

and the comparison model. If the mean difference is close 

to zero, it indicates that both models are predicting 

similarly. Upper and Lower Limits (Green Lines) lines 

represent the 95% confidence interval (±1.96 standard 

deviations from the mean). They indicate the range within 
which 95% of the differences between the models are 

expected to lie. If the mean difference line (red) is 

significantly above or below zero, it indicates a consistent 

bias, where one model overestimates or underestimates 

relative to the other. According to the results the mean 

difference between Custom CNN and AlexNet is close to 

zero or slightly positive, it means that Custom CNN is 

performing slightly better or similarly to AlexNet. 

Custom CNN has a slightly positive mean difference 

compared to BiCRNN, this suggests that Custom CNN is 

performing slightly better on average. The mean difference 

between BiGRU CRNN and Custom CNN is close to zero 

and slightly positive. In this case the Custom CNN 

performed comparably better than BiGRU CRNN. ResNet 

shows more significant differences, especially when 

compared with the Custom CNN model. The mean 

difference higher and this conclude that Custom CNN 

consistently performed better than ResNet. Thus, based on 

the Bland-Altman test, Custom CNN better than ResNet, and 

performs similarly or slightly better than the other models 

AlexNet, BiCRNN, BiGRU CRNN. Figure 23 presents the 

Bland-Altman test based performance analysis of the 

proposed CNN model with implemented baseline models. 
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Fig. 23: Bland-Altman Test result of Custom-CNN model with baseline models 

 
Challenges  

Sound classification is a solution for Illegal logging 

in forests, but faces challenges such as hardware 

limitations, environmental noise, and misclassification 

risks. This section discussed the key challenges and 

mitigation strategies, especially for urban-adjacent 

forests where false positives are a significant 
consideration. 

Environmental Noise and Misclassification Risks 

Natural sound overlap challenges distinguishing tree-

cutting sounds from other environmental noises, such as 

wind, rain, and animal calls, which may share similar 

frequency patterns. Human activity interference further 

challenge for detection, as sounds from construction, 

farming, and road maintenance near forests can be miss 

classified as illegal logging. Echo and reverberation in 

dense forests can effect on sound waves, that leads to 

reduce the accuracy of classification models and 

increasing the risk of misidentification. 

Data and Model Challenges 

Dataset imbalance can result in biased predictions, as 

insufficient samples for certain sound classes prevent the 

model from learning adequate variations. Feature 

extractions impact classification performance. The 

methods such as MFCC and Mel Spectrogram may not 

capture differences between similar sounds. The 

performance issues arise when models trained in one 

forest environment fail to perform well in others due to 

variations in acoustic conditions. 

False Positives in Urban-Adjacent Forests 

Urban-adjacent forest environments are become 

challenge due to human-created sounds that lead to false 

positives in illegal logging. Construction activities, 

agricultural machinery, road maintenance, and industrial 

operations may produce sounds similar to tree-cutting, 

causing misclassification. These false alerts reduce system 

reliability and divert attention from illegal logging.  

Hardware Challenges 

Microphones and computing units used in forest 

monitoring systems maintain durability to harsh weather 

conditions such as humidity, heavy rainfall, dust, and 

temperature fluctuations. Ensuring a continuous power 

supply is another challenge, as remote forest areas often 

lack access to electricity. Solar-powered systems need 

long-lasting battery capacity. Microphone sensitivity 

plays an important role in capturing tree-cutting sounds. 

Proper placement and the use of directional microphones 

can minimize background noise and improve detection 

efficiency. 

Conclusion 

In this research, we proposed a robust sound event 

detection model for forest monitoring by implementing 

deep learning techniques to classify and analyze forest-
related sounds. By constructing a comprehensive dataset 

with various sound classes and applying advanced feature 

extraction methods, we effectively captured key audio 

features crucial for distinguishing between different 



Sallauddin Mohmmad and Suresh Kumar Sanampudi  / Journal of Computer Science 2025, 21 (12): 2772.2801 

DOI: 10.3844/jcssp.2025.2772.2801 

 

2799 

environmental sounds. The evaluation was trained with 

multiple deep learning models, including a Customized 

1D Convolutional Neural Network, Bi-directional 

Convolutional Recurrent Neural Networks, and pre-

trained models like AlexNet and ResNet. Apart from that 
the Customized CNN achieved 98% accuracy. The results 

concluded that sound-based monitoring systems are a 

scalable and efficient solution for detecting deforestation, 

which can significantly contribute to forest conservation 

systems.  

Future work should focus on enhancing hardware 

durability with weather-resistant materials and 

optimizing solar-powered solutions for sustained 

operation. Advanced noise filtering techniques, such as 

deep learning-based denoising and adaptive filtering, 

can improve classification accuracy. Expanding datasets 
with real-world recordings and utilizing transfer learning 

will enhance model generalization across different 

environments. To reduce false positives in urban-

adjacent forests, integrating geospatial data, motion 

detection, and confidence-based alerts can improve 

detection precision. Additionally, incorporating 

human-in-the-loop verification will refine system 

reliability. These improvements will strengthen the 

effectiveness of sound-based illegal logging detection 

systems, ensuring more accurate and scalable forest 

monitoring solutions. 
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