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Abstract: Recently, Intrusion Detection Systems (IDS) using Deep Learning 

(DL) models become useful in accomplishing network security. The selected 

features serve as input to the DL model, which is trained on labelled datasets to 

learn intrinsic patterns distinguishing malicious from normal network behaviour. 

DL techniques like Convolutional Neural Networks (CNN) are usually utilized. 

The seamless combination of Public Blockchain (BC) technology into the IDS 

working procedure safeguards a tamper-resistant and safe record of intrusion 

detection results, improving reliability and transparency in cybersecurity 

processes. BC is combined into the IDS to improve safety and data integrity. 

Every legalized intrusion event or classification result is recorded in a 

decentralized and immutable ledger. BC ensures the reliability of the recognition 

outcomes, averts tampering, and presents a clear and safe record of network 

actions. This study introduces a BC-enabled decisive red fox optimizer-based 

feature selection using the DL (BDRFFS-DL) technique to identify intrusions 

effectively. The BDRFFS-DL technique exploits the Feature Selection (FS) 

approach to pick a relevant subset of features, thereby improving classification 

accuracy and decreasing the computation complexity. Initially, Z-score 

standardization is used for normalizing the input traffic data into a consistent 

format. The BDRFFS-DL approach utilizes the DRF optimizer to select the finest 

feature subset to improve the classification performance and resolve the high 

dimensionality issue. Furthermore, the intrusion detection process is carried out 

by using the Convolutional Sparse Autoencoder (CSAE) model. Moreover, BC 

ensures the integrity of detection results and provides a secure record of network 

actions. An extensive study of the BDRFFS-DL approach using the ToN_IoT 

dataset illustrated its superior performance, achieving an accuracy of 98.91%, 

outperforming existing models. 

 

Keywords: Blockchain, Security, Intrusion Detection System, Feature Selection, 

Deep Learning, Decisive Red Fox Optimizer 

 

Introduction 

An IDS is applied to identify network or computer 

anomalies (Shobana et al., 2022). IDSs are considered in 

numerous methods, among them the most popular 

techniques such as anomaly- and misuse-assisted IDS. 

Misuse-based IDS is implemented proficiently to 

recognize known outbreaks such as snort (Oseni et al., 

2022). This type of IDS has decreased the false alarm rate 

(FAR). It cannot identify new attacks that do not 

distinguish some information in a dataset. An anomaly-

based IDS builds a model of consistent behaviour. Then, 

it splits all crucial abnormalities from this system and 

considers that abnormality an intrusion (Bahri et al., 

2023). This kind of IDS can identify unknown and known 

outbreaks; however, it meets a higher FAR. Numerous 

Machine Learning (ML) models are employed to reduce 

FAR. ML is employed to develop an automatic analytical 

system. This is a method of data analysis (Kumaran and 

Mohan, 2023). It is one of the subdivisions of Artificial 

Intelligence (AI) that performs under the notion that a 

system obtains training, takes decisions, and learns to 
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recognize the patterns with some involvements of humans 

(Ferrag et al., 2021). 

The development of cyberattacks requires new 

security actions (Saveetha and Maragatham 2022). This 

research discovers the combination of two cutting-edge 

technologies, BC and optimum DL, to make an effective 

defence against intrusions. BC's immutable and 

decentralized ledger safeguards the reliability and liability 

of data (Liu et al., 2022). Utilizing a distributed ledger 

increases the security of sensitive data, avoiding 

unauthorized modifications and safeguarding a tamper-

resistant record of actions. DL, fine-tuned through 

optimization techniques, provides exceptional precision 

to IDSs. Its capability to distinguish intricate patterns and 

anomalies in network traffic improves the active 

recognition of possible attacks (Vaiyapuri et al., 2024). 

The incorporation of BC and DL makes a synergistic 

security network. BC protects data integrity, and DL-

driven IDS secures the network against complex 

intrusions. BC's decentralized feature ensures that 

security actions must be allocated (Mbaya et al., 2023). 

Integrating BC with the DL will provide various possible 

advantages in improving the security of network systems. 

BC presents an immutable and decentralized ledger that 

could store logs and records connected to network actions 

and safety measures (Monirah and Ykhlef, 2023). By 

maintaining intrusion detection and prevention data under 

a BC, the data is tamper-proof and apparent, safeguarding 

the integrity of the records. 

This study introduces a BC-enabled decisive red fox 

optimizer-based FS using the DL (BDRFFS-DL) 

technique to identify intrusions effectively. Initially, Z-

score standardization is used for normalizing the input 

traffic data into a consistent format. The DRF optimizer is 

employed to select the finest feature subset to improve the 

classification performance and resolve the high 

dimensionality issue. Furthermore, the intrusion detection 

process is carried out by using the Convolutional Sparse 

Autoencoder (CSAE) model. Moreover, BC ensures the 

integrity of the detection result and provides a secure 

record of network actions. The ToN_IoT dataset is used 

for extensive analysis. The key contribution is listed 

below: 
 
 Z-score standardization is used to normalize the input 

traffic data into a uniform scale, which improves 

consistency across features. This step supports better 

learning by the model and improves classification 

accuracy. It plays a major role in data preparation for 

intrusion detection 

 The DRF optimizer addresses the high dimensionality 

issue by choosing the most informative features from 

the input data. This significantly improves detection 

performance while minimizing computational 

overhead. Concentrating on significant features only 

strengthens the overall system efficiency 

 The CSAE model is implemented to perform intrusion 

detection by capturing deep spatial features and 

enforcing sparsity. This enhances the technique's 

capability to distinguish between normal and 

malicious traffic. It adds robustness to the detection 

framework through precise and efficient threat 

detection 

 BC is integrated to preserve the integrity of detection 

results and securely log all network activities in an 

immutable manner. This ensures transparency and 

prevents tampering, strengthening the reliability and 

accountability of the overall IDS 
 

Literature Review 

Alamro et al. (2023) introduced a BC-enabled IoT 

healthcare system employing an ant lion optimizer with a 

hybrid DL (BHS-ALOHDL) technique. This Neural 

Network (NN) method executes an ALO-FSS model for 

generating a sequence of feature vectors. This HDL 

method combines the LSTM model and CNN features for 

IDS. In conclusion, the Flower Pollination Approach 

(FPA) was utilized for optimization. Alkadi et al. (2021) 

developed a Deep BC architecture method. The IDS 

handled consecutive networking data using a BiLSTM-

based DL method. Ethereum is also utilized. (Mansour 

2022) proposed an innovative poor and rich optimizer 

with the DL and BC-based IDS in CPS, named the PRO-

DLBIDCPS method. Narayanan and Paul (2023) 

introduced an innovative model named BC-based 

federated learning for IDS (BlockFL-IDS). This model 

utilizes Auction game theory and employs the Base 

Criterion Method (BCM) technique to protect the channel 

selection. In Abdel-Basset et al. (2022), a FED-IDS 

technique was developed. A context-aware modifier 

model is also utilized. 

He et al. (2022) implemented a conditional GAN 

(CGAN)-assisted combined IDS with BC-assisted 

dispersed FL. Poorazad et al. (2023) developed an 

incorporated technique comprising two modules: a CNN-

based IDS executed as an SDN utilization and a BC-based 

model allowing network and application layers protection 

correspondingly. An essential benefit of the developed 

technique exists in mutually decreasing the effect of 

attacks like rule and command injection under SDN-

assisted IIoT architectural layers. Alamro et al. (2025) 

proposed the mathematical modelling-based BC with 

mountain gazelle optimizer and attention to DL for 

cybersecurity (MGOADL-CS) model to improve drone 

cybersecurity by integrating BC technology with an 

Attention Long Short-Term Memory NN (ALSTM-NN) 

optimized via MGO for accurate detection and 

classification of cyberattacks in real-time. Perumal et al. 

(2024) proposed an Enhanced Metaheuristics with a DL 

Method for BC-based Cybersecurity Solution (EMDLM-

BCCS) methodology by integrating BC technology with 
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Extreme Learning Machine (ELM) optimized by elite-

oppositional grasshopper optimizer approach (EGOA) 

model for effective DDoS attack detection. 

Al Mazroa et al. (2025) presented an Automated 

Cyberattack Detection Utilizing Binary Metaheuristics 

with DL (ACAD-BMDL) model using Binary Grey Wolf 

Optimization (BGWO) combined with the enhanced 

Elman Spike NN (EESNN) and Archimedes Optimizer 

Approach (AOA) for accurate and efficient threat 

identification. Dontu et al. (2024) presented a decisive red 

fox with a CNN (DRF-CNN) model to enhance 

cyberattack detection using DL-based FS and 

classification for accurate and efficient intrusion 

detection. Abdullah et al. (2025) proposed an ensemble 

learning model using extreme gradient boosting 

(XGBoost) to improve detection by accurately classifying 

network traffic and enhancing healthcare cybersecurity. 

(Salami et al., 2024) introduced hybrid method by 

utilizing Harris Hawks Optimization (HHO) in detecting 

attacks within IoT networks by selecting optimal 

features for classification. Alqahtany et al. (2025) 

proposed an enhanced grey wolf optimizer-based FS 

(EGWO-FS) model to improve IDS in Internet of Things 

(IoT) networks by selecting optimal features and using 

RF for accurate and efficient attack detection. Alabdali 

and Mashat (2024) proposed BC and federated learning-

based deep belief network (BC-FL-DBN) model by 

integrating LSTM, BC, and Alloy Language for secure 

and privacy-preserving predictive modelling in social 

media. 

While existing models such as BHS-ALOHDL, PRO-

DLBIDCPS, BlockFL-IDS, and FED-IDS have shown 

robust intrusion detection capabilities, many rely on 

single-layer optimization or lack real-time adaptability in 

resource-constrained environments. Various methods like 

CGAN-integrated IDS and EMDLM-BCCS improve data 

diversity and attack detection but face difficulty with 

scalability and latency in distributed networks. Though 

BC integration strengthens data integrity, models like 

ACAD-BMDL and EGWO-FS often overlook adaptive 

trust mechanisms. Ensemble and hybrid FS methods such 

as DRF-CNN and HHO-based IDS improve detection but 

may incur high computational costs. The research gap is 

developing lightweight, adaptive, and real-time IDS 

frameworks that integrate BC, DL, and metaheuristics 

without compromising speed, accuracy, or resource 

efficiency across diverse domains like IoT, CPS, and IoMT. 

Methodology 

This research introduces an innovative BDRFFS-DL 

model to identify intrusions effectively. The BDRFFS-DL 

technique exploits the FS approach to choose relevant 

feature subset, thereby improving the accuracy and 

reducing the computational complexity. Figure 1 depicts 

the complete flow of the BDRFFS-DL technique. The 

pseudocode of the BDRFFS-DL technique is showcased 

in Algorithm 1. 

Z-Score Normalization 

Initially, the BDRFFS-DL model applies Z-score to 

compute input traffic in a uniform format. This approach 

standardizes traffic data to zero mean and unit variance, 

ensuring balanced feature contribution. This model 

handles extreme values more robustly by relying on 

statistical distribution. This technique improves the 

convergence speed and stability of learning algorithms, 

specifically those sensitive to feature scales, namely NNs 

and distance-based classifiers. It also enhances the 

interpretability of the data, making anomalies more 

distinguishable during detection. Compared to methods 

like log or decimal scaling, this model maintains the original 

distribution shape while mitigating the impact of skewed 

data. Its adaptability across diverse datasets and consistent 

performance in high-dimensional spaces make it an ideal 

option for preprocessing in intrusion detection systems. 
 

 
 
Fig. 1: Overall flow of BDRFFS-DL technique 
 

Algorithm 1: Pseudocode of BDRFFS_DL approach 

BDRFFS_DL_Intrusion_Detection(input_traffic_data)

: 

 Z_score_normalization(input_data): 

    # Implement Z-score normalization on the input data 

    normalized_traffic = 

Z_score_normalization(input_traffic_data) 

    # Return the normalized data 

DRF_Optimizer(data): 

    # Perform the DRF optimizer for FS 

    # Choose a feature subset using the optimizer 

    selected_features = 

DRF_Optimizer(normalized_traffic) 

# Return the selected features 

CSAE_Intrusion_Detection(features): 
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    # Execute the CSAE for intrusion detection 

    # Apply the features selected for the detection 

method 

   intrusion_results = 

CSAE_Intrusion_Detection(selected_features) 

 # Return the intrusion detection outcomes 

BC_integration(results): 

    # Incorporate BC for result integrity 

    # Create a secure record of network actions 

    # Ensure the security and integrity of the intrusion 

detection outcomes 
 

Z-score normalization plays a vital part in normalizing 

the input features of the method, safeguarding a reliable 

scale through different data sources (Cochran et al., 

2021). By altering the raw data into Z-scores, which 

signify the number of Standard Deviations (SD) a data 

point is from the mean, the IDS attains an even 

distribution of values. This normalization procedure is 

vital for upholding the reliability of anomaly recognition 

systems, as it permits the system to separate unusual designs 

or deviations from the model. The use of BC technology 

further strengthens the safety of the IDS by certifying a 

tamper-resistant and clear record of the regularized data, 

improving the reliability of the IDS mechanism. 

BC Integration 

Finally, BC is applied to ensure the detection result's 

integrity and provide a secure record of network actions. 

Decentralization is the foremost inspiration behind the BC 

model (Liang et al., 2020). The transparent and distributed 

features of the BC archive mean that the one-node flop 

will not concern the entire system. BC reformed the 

structure of the transaction system from a lead to a Point-

to-Point (P2P) layout. This altered structure permits dual 

parties to contract with one another directly with security 

and encryption depending upon code and system safety. 

The nodes in the transaction network depend on itself for 

establishing trust, thus eliminating the need to evaluate 

third-party validating in this setting. Hyperledger fabric 

and Ethereum, which share similar core technologies, are 

the two major platforms for BC. The significant 

dissimilarity among these platforms lies in the method 

they are intended for and in the objective users. Smart 

deals and community BCs are directed at uses that 

common users utilize. Hyperledger Fabric has a very 

flexible design that is highly suitable for corporate use. 

The main intention is to shorten effort and trade procedures 

utilizing the technology of BC, which helps resolve the inter-

firm credit issue. Figure 2 represents the BC framework. 

This method applies a private chain to protect 

communication among agents. The technique combines 

the embedded and the BC node datasets in a similar agent, 

initial and ending at the equivalent period. Storing a 

dataset copy in entire agents will decrease the 

communicating agent by executing a local hunt of the 

recently upgraded data 

 

 
Fig. 2: BC architecture 

 

The recognition and analysis module of the 

communication agent is a great node for the BC unit. It 

includes the complete BC ledger and ensures all nodes in 

the system can obtain and attach the precise copy. Other 

agents in every module are permitted as light nodes, and 

the link to an agent is a parent node. The BC unit is 

utilized to validate and control the behaviours of agents 

and is also used to construct faith in systems in which 

several parties are involved. Furthermore, data from 

messages of communication is utilized for analyzing 

assaults and enhancing agents by using Reinforcement 

Learning (RL). 

DRF-Based FS 

The BDRFFS-DL technique applies the DRF 

optimizer to select an optimum feature subset. This model 

effectually handles high-dimensional data by utilizing the 

merits of decision forests to evaluate feature importance. 

Unlike conventional methods that may depend on simple 

statistical measures, DRF considers intrinsic interactions 

between features, improving the selection of the most 

relevant subset. This results in an improved performance 

and reduced overfitting. Compared to other optimizers, 

DRF presents faster convergence and scalability to 

massive datasets, thus facilitating real-time detection. 

Additionally, it balances exploration and exploitation 

effectively, ensuring a comprehensive search of the 

feature space. Overall, DRF optimizes accuracy and 

computational effectiveness, making it an ideal for FS in 

complex network settings. 

After attaining the balanced data from the prior stage, 

the DRF optimizer method was implemented to choose 

the optimum feature to increase the accuracy and training 

speed of IDS (Rabie et al., 2024). The classical IDS 

framework introduces Different metaheuristic 

optimization techniques to improve network safety. 

However, the main issues are related to factors such as 

over-fitting, complicated computation operations, slow 

processes, and reduced convergence rates. This approach 

is widely applied in safety applications to resolve complex 

optimizer problems. The DRF is the recent optimizer 
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method with several advantages over other techniques. It 

consists of reduced local optimum, lower computation 

complexity, avoiding stacking of algorithm under 

optimizer, and fast convergence. The study uses this 

algorithm to enhance the data features based on the 

optimum output. Furthermore, this technique assists in 

simplifying the classification process with an improved 

recognition rate. 

This technique can tune the parameters of a balanced 

IoT. In general, foxes are small and medium‐sized, 

omnivorous animals that belong to the Canidae genera. 

Furthermore, the foxes are distinguished from other 

members of giant dogs or their families. The hunting 

habits of RFs motivates this model. During hunting, the 

RF gets closer to the target, hides in bushes, and then 

attacks the prey. This method integrates exploration and 

exploitation abilities similar to other metaheuristics 

approaches. During this method, the parameter 

initialization is carried out depending on the group of 

arbitrary individuals as defined in Eqs. (1-2): 
 
𝑃 = [𝑝0, 𝑝1…𝑝𝑛−1] (1) 

 

(𝑃)𝑖 = [(𝑝0)
𝑖 , (𝑝1)

𝑖 …(𝑝𝑛−1)
𝑖] (2) 

 
On the other hand, 𝑖 implies the populations from the 

searching space. Afterwards, a better performance was 

obtained from the search space by utilizing the global 

optimum function. At this point, the Euclidean distance 

was executed to get a better result by employing the 

following method: 

 

𝐸(((𝑃)𝑖)𝑘 , (𝑃𝑏𝑒𝑠𝑡)
𝑘) = √((𝑃)𝑖)𝑘 − (𝑃𝑏𝑒𝑠𝑡)

𝑘)   (3) 

 

In this case, 𝑘 signifies the iteration counts, 𝑃𝑏𝑒𝑠𝑡  
refers to the best optimal, and 𝐸 stands for the Euclidean 

distance. Accordingly, better performance is employed to 

migrate every candidate, as expressed: 

 

((𝑃)𝑖)
𝑘
= ((𝑃)𝑖)𝑘 + 𝑟𝑠𝑖𝑔𝑛((𝑃𝑏𝑒𝑠𝑡)

𝑘 − (((𝑝)𝑖)
𝑘
) (4) 

 

Whereas 𝑟 implies the random number within an 

interval of [0-1], which is an arbitrarily elected scaling 

parameter that is fixed. After moving to the finest 

location, once the fitness value at their novel locations is 

developed, individuals remain there or can return to their 

new places. This demonstrates how the family members 

arrive home later on an expedition and explain to the 

others somewhere to search. Once there is a possibility of 

discovering food, it will stay to search; or else, it would 

arrive home with empty‐hand”. In every cycle of DRF, 

these processes stand in for presented global hunts. 

Additionally, the candidates’ novel place can present 

an appropriate choice, or the previous place will still 

occur. The RF method detects the target using a DRF 

model, which incorporates a random value 𝜔 between 0 

and 1: 

 

{
𝑀𝑜𝑣𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑖𝑓, 𝜔 > 3/4
𝑆𝑡𝑎𝑦 ℎ𝑖𝑑𝑑𝑒𝑛 𝑖𝑓, 𝜔 > 3/4

 (5) 

 

𝜔 = {
ℎ ×

sin(𝛿0)

𝛿0
  𝑖𝑓 𝛿0 ≠ 0

𝜏          𝑖𝑓 𝛿0 = 0
 (6) 

 

Where ℎ stands for an arbitrary number in 0 and 0.2, 
𝛿0 refers to the arbitrary number within an interval of 
[0,2𝜋] assumed as the Fox observation viewpoint, and 𝜏 
implies the arbitrary value from zero to one:  

 

{
  
 

  
 
𝑝0
𝑛𝑒𝑤 = ℎ × 𝜔 × cos(𝛿1) + 𝑝0

𝑎𝑐𝑡𝑢𝑎𝑙

𝑝1
𝑛𝑒𝑤 = ℎ × 𝜔 × sin(𝛿1) + ℎ × 𝜔 × cos(𝛿2) + 𝑝1

𝑎𝑐𝑡𝑢𝑎𝑙

𝑝1
𝑛𝑒𝑤 = ℎ × 𝜔 × sin(𝛿1) + ℎ × 𝜔 × sin(𝛿2) + ℎ × 𝜔 × cos(𝛿3) + 𝑝2

𝑎𝑐𝑡𝑢𝑎𝑙

⋮
𝑝𝑛−1
𝑛𝑒𝑤 = ℎ × 𝜔 × ∑ sin𝑛−2

𝑡=1 (𝛿1) + ℎ × 𝜔 × cos(𝛿𝑛−1) + 𝑝𝑛−2
𝑎𝑐𝑡𝑢𝑎𝑙

𝑝𝑛−1
𝑛𝑒𝑤 = ℎ × 𝜔 × sin(𝛿1) + ℎ × 𝜔 × sin(𝛿2) +⋯+ ℎ × 𝜔 × sin(𝛿𝑛−1) + 𝑝𝑛−𝑎

𝑎𝑐𝑡𝑢𝑎𝑙

        (7) 

 

The population's worst members are removed to 

continue a stable population size, and several new 

members are added. Afterwards, the two optimum 

members are recognized at iteration 𝑘, and their centre 

was evaluated as: 

 

𝐶𝑒
𝑘 =

1

2
(𝑃(1))

𝑘
− (𝑃(2))

𝑘
  (8) 

 

At this point, a parameter 𝜑 among (0 and 1) was 

employed for all the iterations that certain alternates from 

the iteration according to the following model: 

 

{
𝑛𝑒𝑤 𝑛𝑜𝑚𝑎𝑑𝑖𝑐 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑖𝑓, 𝜑 > 0.45
𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛            𝑖𝑓, 𝜑 ≤ 0.45

 (9) 

 

According to this process, the random places are 

upgraded from the search space, and the novel members 

are included by utilizing the subsequent method: 
 

(𝑃𝑟𝑝)𝑘 =
𝜑

2
(𝑃(1))

𝑘
− (𝑃(2))

𝑘
 (10) 

 
This function acquires the mimicked individual, and 

the finest 𝑃𝑏𝑒𝑠𝑡  is given back as the output. This work was 

employed to optimally select the features to train the 

optimizer's data instances.  

In the DRF method, the intentions are combined into a 

solitary intent data such that a present weight identifies 

every goal prominence (Mafarja et al., 2023). This study 

implements an FF that integrates both objectives of FS, as 

shown in Eq. (11): 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) = 𝛼 ⋅ 𝐸(𝑋) + 𝛽 ∗ (1 −
|𝑅|

|𝑁|
) (11) 

 
Here, 𝐸(𝑋) is the classifier error rate for the chosen 

features 𝑋, and Fitness(X) is its fitness value. |𝑅| and |𝑁| 
are the chosen numbers and original features. α\alphaα (in 

https://thescipub.com/as/report.php?state=0.0&journal=2633


C. Ananth et al. / Journal of Computer Science 2025, 21 (12): 2862.2873 

DOI: 10.3844/jcssp.2025.2862.2873 

 

2867 

[0,1] weights classification error, while 𝛽 = (1 − 𝛼) 
weights feature reduction. 

Classification using the CSAE model 

The intrusion detection process is carried out using the 

CSAE model for classification. This technique is selected 

for its ability to automatically learn deep hierarchical 

features while enforcing sparsity, which assists in 

capturing the most informative patterns in network traffic 

data. Compared to conventional classifiers, CSAE 

outperforms in handling high-dimensional and complex 

data by extracting robust spatial features without heavy 

manual feature engineering. Its sparse coding promotes 

model generalization and reduces overfitting, crucial for 

accurately detecting varied intrusion types. Unlike 

standard autoencoders, the convolutional architecture 

preserves spatial relationships, improving detection 

sensitivity. Additionally, CSAE is more resilient to noise 

and anomalies, improving overall classification reliability 

in dynamic network environments. This combination of 

deep feature extraction and sparsity makes CSAE a 

powerful model for intrusion detection tasks. Fig. 3 

represents the architecture of CSAE. 

A supervised model is a data‐driven Feature Learning 

(FL) approach that updates the weight connection through 

forward and backward training (Mohana and Subashini, 

2023). Compared to the supervised method, unsupervised 

learning openly obtains an unlabelled input dataset and 

learns applicable features. This technique considerably 

decreases the workload for a labelling dataset.  

Unsupervised AE (UAE), consisting of an encoder, a 

hidden (latent) space, and a decoder, efficiently detects 

intrusions. AEs are primarily used for feature extraction 

and dimensionality reduction. They reconstruct an output 

that closely resembles the original input data, capturing 

crucial patterns to facilitate accurate detection. The 

encoder converts the input dataset into code of the HL by 

𝑐𝑜𝑑𝑒(𝑐) = 𝑓(𝑤. 𝑥 + 𝑏), where 𝑓 depicts an activation 

function, 𝑤 shows the weight, 𝑥 refers to the input value, 

and 𝑏 indicates a bias. The decoder recreates the output 

from the code of HL by 𝑥′ = 𝑓′(𝑤′. 𝑐 + 𝑏′) and evaluates 

the mean squared value between reconstructed output and 

input through the cost 𝑐𝑜𝑠𝑡 = min∑ |𝑛
𝑖=1 𝑥′ − 𝑥|2. 

A Convolutional AE (CAE) is a variation of the CNN 

designed to preserve the spatial relationships within the 

input data. This architecture automatically extracts 

relevant features and discovers underlying patterns 

without manual intervention. The encoder compresses the 

input feature map through convolutional layers, while the 

decoder reconstructs the output using transposed 

convolution (deconvolution) layers, enabling effective 

data representation and reconstruction. Furthermore, the 

reconstructed fault of the convolution encoder and 

decoder is evaluated like the typical AE. The significant 

components of CSAE are the convolution layer, pooling 

layer, neuron size, sparsity, filter size, and ReLU function. 

This model comprises three deconvolution blocks of a 

decoder and four convolution blocks of an encoder, each 

with batch normalization and convolution layer and filter 

size (3×3), which is used for generalizing the network's 

learning process. Then, the max pooling (2×2 kernel size) 

layer with sparsity is applied for down-sampling the 

feature maps of the convolution encoder. Now, the 

sparsity highlights the pertinent feature for learning. The 

convolution layer and activation are added to the batch 

normalization, the convolution decoder. After the two 

convolution blocks, an up-sampling layer (2×2 kernel 

size) is used.

 

 
 

Fig. 3: Architecture of CSAE 
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Firstly, the inputs are encoded with a pixel patch 

𝑥𝑖 , 𝑖 = 1,2… 𝑥𝑛 and multiplied with neuron 𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑤𝑗, 

where 𝑗 is applied to compute the convolution layer. 

Lastly, the output layer 0𝑖𝑗 is evaluated as 𝑜𝑖𝑗 =

𝑓(𝑤𝑗 . 𝑥𝑖 + 𝑏). Next, the output from the convolution 

decoder is described by 𝑥𝑖
′ = 𝑓′(𝑤𝑗

′. 0𝑖𝑗 + 𝑏). Lastly, 

reconstruction error is computed by 𝐶𝑆𝐴 =
1

𝑃
∑ ‖
𝑝
𝑖=1 𝑥𝑖 − 𝑥𝑖

′‖, where 𝑝 refers to a reconstructed 

operation of convolution kernel size with 𝑑𝑥𝑑, where 

𝑑 ≤ 𝑝𝑖𝑥𝑒𝑙𝑠. 

Results Analysis 

The BDRFFS-DL technique in examined in this 

section. The method runs on Python 3.6.5 with an i5-

8600k CPU, 4GB GPU, 16GB RAM, 250GB SSD, and 

1TB HDD, using a 0.01 learning rate, ReLU, 50 epochs, 

0.5 dropout, and batch size 5. In Table 1 and Fig. 4, the 

Execution Time (ET) of the BDRFFS-DL technique is 

examined under varying numbers of transactions (Tx) and 

nodes. The results show that the BDRFFS-DL technique 

acquires effectual EXET values. With 100 Txs, the 

BDRFFS-DL technique presents minimal EXET of 17s, 

30s, 143s, and 289s under 20-80 nodes, respectively. 

Additionally, with 200 Txs, the BDRFFS-DL model 

delivers the least EXET of 26s, 52s, 420s, and 617s below 

20-80 nodes, correspondingly. Meanwhile, with 300 Txs, 

the BDRFFS-DL method presents the least EXET of 56s, 

102s, 627s, and 962s under 20-80 nodes, respectively. 

Table 2 and Fig. 5 signify the Transaction Mining 

Time (TMT) comparison outputs of the BDRFFS-DL 

technique illustrating the enhanced outcomes with the least 

TMT values. The BDRFFS-DL technique consistently 

outperforms other models, achieving the lowest TMT 

values of 0.00058 seconds at 5 Txs, 0.00084 seconds at 15 

Txs, and 0.00088 seconds at 25 Txs, compared to higher 

values from Pow, ePow, and BHS-ALOHDL. 

(1) The detection results of the BDRFFS-DL model 

are verified by employing the ToN_IoT dataset. It holds 

50000 instances with dual classes, as demonstrated in 

Table 3. The BDRFFS-DL approach has selected 28 

features from the 44 features. 

 

Table 1: ET analysis of BDRFFS-DL technique under various 

transactions and nodes 

ET (Sec) 

Tx 
20 40 60 80 

Nodes 

100 17 30 143 289 

150 24 36 302 439 

200 26 52 420 617 

250 54 78 516 910 

300 56 102 627 962 

 

 

Fig. 4: ET analysis of BDRFFS-DL technique under various 

nodes 

 

Table 2: TMT analysis of BDRFFS-DL technique under 

various transactions 

TMT (Sec) 

No. of 

Transactions 

(Tx) 

Pow ePoW  
BHS- 

ALOHDL 

BDRFFS-

DL 

5 0.00222 0.00146 0.00108 0.00058 

10 0.00280 0.00161 0.00099 0.00050 

15 0.00266 0.00201 0.00094 0.00084 

20 0.00254 0.00174 0.00099 0.00047 

25 0.00276 0.00181 0.00091 0.00088 

 

Figure 6 presents the classifier outputs of the 

BDRFFS-DL approach under all two classes using test 

dataset. Figs. 6a-6b depicts the confusion matrix at 70:30 

of TRAP/TESP. Likewise, Fig. 6c-d validates the PR and 

ROC study of the BDRFFS-DL model. The figure 

illustrates greater results with the most excellent ROC 

values. 

The detection results of the BDRFFS-DL approach are 

inspected with 70:30 of TRAP/TESP in Table 4 and Fig. 

7. With 70:30 of TRAP/TESP, the BDRFFS-DL 

approach attains an average 𝑎𝑐𝑐𝑢𝑦 of 98.80% and 

98.91%, 𝑝𝑟𝑒𝑐𝑛 of 98.80% and 98.91%, 𝑟𝑒𝑐𝑎𝑙 of 

98.80% and 98.91%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.80% and 98.91%, 

𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 98.80% and 98.91%, and Kuppa of 98.87% 

and 98.95. 

The 𝑎𝑐𝑐𝑢𝑦 curves for TRA and validation (VL) 

illustrated in Fig. 8. Both TRA/TES 𝑎𝑐𝑐𝑢𝑦 steadily 

improve with growing epochs, showing the ability of 

the model in learning patterns and generalize well to 

unseen data. 
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Table 4: Detection output of BDRFFS-DL technique with 70:30 of TRAP/TESP 
Classes 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑆𝑐𝑜𝑟𝑒 𝐴𝑈𝐶𝑆𝑐𝑜𝑟𝑒 Kuppa 

TRAP (70%)  

Normal 99.04 98.58 99.04 98.81 98.80 98.88 

Attack 98.57 99.03 98.57 98.80 98.80 98.86 

Average 98.80 98.80 98.80 98.80 98.80 98.87 

TESP (30%)  

Normal 99.16 98.67 99.16 98.91 98.91 98.92 

Attack 98.67 99.16 98.67 98.92 98.91 98.97 

Average 98.91 98.91 98.91 98.91 98.91 98.95 

 

 
 
Fig. 5: TMT analysis of BDRFFS-DL technique under various 

transactions 
 
Table 3: Dataset description 

Classes Instance Numbers 

Normal 25000 

Attack 25000 

Overall Instances 50000 
 

 
 
Fig. 6: Classifier result of (a-b) confusion matrices and (c-d) PR 

and ROC curves 

 
 
Fig. 7: Average of BDRFFS-DL technique with 70:30 of 

TRAP/TESP 
 

 
 
Fig. 8: 𝐴𝑐𝑐𝑢𝑦 the curve of the BDRFFS-DL method 

 

Figure 9 outlines the TRA/TES loss for the BDRFFS-

DL technique across diverse epochs. The TRA loss 

steadily lessens as the weight is refined, illustrating 

effective learning. The BDRFFS-DL model consistently 

improves parameters to minimize the gap between actual 

and predicted TRA labels. 

Table 5 and Fig. 10 depict the comparison assessment 

of the BDRFFS-DL model (Alamro et al., 2023). Based 

on 𝑎𝑐𝑐𝑢𝑦, the BDRFFS-DL model reaches an improved 

𝑎𝑐𝑐𝑢𝑦 of 98.91% while the IDS, DT, RF, NB, and 

BiLSTM techniques obtain decreased 𝑎𝑐𝑐𝑢𝑦 of 98.43%, 

96.49%, 97.86%, 96.84%, and 96.36%.  

Meanwhile, based on 𝑝𝑟𝑒𝑐𝑛, the BDRFFS-DL 

approach ranges enhanced 𝑝𝑟𝑒𝑐𝑛 of 98.91% while the 

IDS, DT, RF, NB, and BiLSTM techniques get reduced 
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𝑝𝑟𝑒𝑐𝑛 of 98.08%, 98.28%, 98.39%, 96.74%, and 97.71%. 

Furthermore, based on 𝐹𝑠𝑐𝑜𝑟𝑒, the BDRFFS-DL technique 

attains an enhanced 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.91%, where the IDS, DT, 

RF, NB, and BiLSTM techniques gain diminished 𝐹𝑠𝑐𝑜𝑟𝑒 

of 98.71%, 96.24%, 98.67%, 97.15%, and 97.99%. These 

outcomes displayed the better performance of the 

BDRFFS-DL method. 

Table 6 and Fig. 11 specify the Computational Time 

(CT) evaluation of the BDRFFS-DL approach with 

existing models. The BDRFFS-DL approach 

demonstrates the fastest CT with 4.01 seconds, indicating 

superior efficiency. In contrast, the IDS model records the 

highest CT at 12.56 seconds, illustrating it is the most 

time-consuming. Decision Tree (DT) and Random Forest 

(RF) follow with CT values of 7.62 and 6.78 seconds, 

respectively, giving a moderate performance. Naïve 

Bayes (NB) exhibits a CT of 11.47 seconds while Bi-

LSTM takes 8.91 seconds, requiring more time than RF 

but less than the IDS model. 

Table 7 and Fig. 12 demonstrate the ablation study of 

the BDRFFS-DL methodology with existing models. The 

BDRFFS-DL methodology demonstrated superior 

performance, achieving an 𝑎𝑐𝑐𝑢𝑦 of 98.91%, 𝑝𝑟𝑒𝑐𝑛 of 

98.91%, 𝑟𝑒𝑐𝑎𝑙 of 98.91%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.91%, 

indicating highly balanced and consistent results across 

all metrics. In comparison, the CSAE and DRF models 

attained lesser values. These results highlight the 

reliability and robustness of the BDRFFS-DL model in 

handling classification tasks. 

 

 
 

Fig. 9: Loss curve of the BDRFFS-DL method 

 

Table 5: Comparison evaluation of BDRFFS-DL approach 

with existing models 

Techniques 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙  𝐹𝑆𝑐𝑜𝑟𝑒 

BDRFFS-DL 98.91 98.91 98.91 98.91 

IDS 98.43 98.08 98.67 98.71 

DT 96.49 98.28 97.47 96.24 

RF 97.86 98.39 96.50 98.67 

NB 96.84 96.74 98.54 97.15 

BiLSTM 96.36 97.71 98.22 97.99 

Table 6: CT analysis of BDRFFS-DL approach with existing 

methods 

Methods CT (sec) 

BDRFFS-DL 4.01 

IDS Model 12.56 

DT 7.62 

RF 6.78 

NB 11.47 

Bi-LSTM 8.91 

 
Table 7: Result evaluation of the ablation study of BDRFFS-

DL model 

Techniques 𝐴𝑐𝑐𝑢𝑦  𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑆𝑐𝑜𝑟𝑒 

BDRFFS-DL 98.91 98.91 98.91 98.91 

CSAE 98.30 98.33 98.20 98.20 

DRF 97.61 97.82 97.67 97.55 

 

 

 
Fig. 10: Comparison evaluation of BDRFFS-DL approach with 

existing models 

 

 

 
Fig. 11: CT analysis of BDRFFS-DL approach with existing 

methods 
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Fig. 12: Result analysis of the ablation study of BDRFFS-DL 

approach 

 

Conclusion 

This research presents a novel BDRFFS-DL model for 

the effective identification of intrusions. The BDRFFS-

DL technique exploits the FS approach to pick a relevant 

subset of features, thereby improving classification 

accuracy and decreasing the computation complexity. 

Initially, Z-score standardization is applied. To improve 

the classification performance and resolve the high 

dimensionality problem, the BDRFFS-DL technique 

applies a DRF optimizer to choose the finest feature 

subset. Lastly, the intrusion detection process is carried 

out using the CSAE model. Furthermore, BC is applied to 

ensure the detection result's integrity and provide a secure 

record of network actions. An extensive study of the 

BDRFFS-DL approach using the ToN_IoT dataset 

illustrated its superior performance, achieving an 

accuracy of 98.91%, outperforming existing models. The 

limitations of the BDRFFS-DL technique comprise 

limited evaluation under real-time network conditions and 

restricted scalability across heterogeneous environments. 

The use of static datasets may not fully capture evolving 

attack patterns, leading to potential performance 

degradation in dynamic scenarios. Furthermore, the 

reliance on complex models can result in high 

computational overhead, making deployment challenging 

for resource-constrained devices. There is also 

insufficient focus on interpretability, which affects trust 

and adoption in critical sectors. Integration with privacy-

preserving mechanisms remains minimal, raising 

concerns in sensitive applications. Future works may 

explore lightweight model architectures, adaptive 

learning mechanisms, real-time benchmarking, enhanced 

interpretability, and secure collaborative detection 

frameworks across distributed environments. 
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