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Abstract: Recently, Intrusion Detection Systems (IDS) using Deep Learning
(DL) models become useful in accomplishing network security. The selected
features serve as input to the DL model, which is trained on labelled datasets to
learn intrinsic patterns distinguishing malicious from normal network behaviour.
DL techniques like Convolutional Neural Networks (CNN) are usually utilized.
The seamless combination of Public Blockchain (BC) technology into the IDS
working procedure safeguards a tamper-resistant and safe record of intrusion
detection results, improving reliability and transparency in cybersecurity
processes. BC is combined into the IDS to improve safety and data integrity.
Every legalized intrusion event or classification result is recorded in a
decentralized and immutable ledger. BC ensures the reliability of the recognition
outcomes, averts tampering, and presents a clear and safe record of network
actions. This study introduces a BC-enabled decisive red fox optimizer-based
feature selection using the DL (BDRFFS-DL) technique to identify intrusions
effectively. The BDRFFS-DL technique exploits the Feature Selection (FS)
approach to pick a relevant subset of features, thereby improving classification
accuracy and decreasing the computation complexity. Initially, Z-score
standardization is used for normalizing the input traffic data into a consistent
format. The BDRFFS-DL approach utilizes the DRF optimizer to select the finest
feature subset to improve the classification performance and resolve the high
dimensionality issue. Furthermore, the intrusion detection process is carried out
by using the Convolutional Sparse Autoencoder (CSAE) model. Moreover, BC
ensures the integrity of detection results and provides a secure record of network
actions. An extensive study of the BDRFFS-DL approach using the ToN_loT
dataset illustrated its superior performance, achieving an accuracy of 98.91%,
outperforming existing models.

Keywords: Blockchain, Security, Intrusion Detection System, Feature Selection,
Deep Learning, Decisive Red Fox Optimizer

Introduction

An IDS is applied to identify network or computer
anomalies (Shobana et al., 2022). IDSs are considered in
numerous methods, among them the most popular
techniques such as anomaly- and misuse-assisted IDS.
Misuse-based IDS is implemented proficiently to
recognize known outbreaks such as snort (Oseni et al.,
2022). This type of IDS has decreased the false alarm rate
(FAR). It cannot identify new attacks that do not
distinguish some information in a dataset. An anomaly-
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based IDS builds a model of consistent behaviour. Then,
it splits all crucial abnormalities from this system and
considers that abnormality an intrusion (Bahri et al.,
2023). This kind of IDS can identify unknown and known
outbreaks; however, it meets a higher FAR. Numerous
Machine Learning (ML) models are employed to reduce
FAR. ML is employed to develop an automatic analytical
system. This is a method of data analysis (Kumaran and
Mohan, 2023). It is one of the subdivisions of Artificial
Intelligence (Al) that performs under the notion that a
system obtains training, takes decisions, and learns to
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recognize the patterns with some involvements of humans
(Ferrag et al., 2021).

The development of cyberattacks requires new
security actions (Saveetha and Maragatham 2022). This
research discovers the combination of two cutting-edge
technologies, BC and optimum DL, to make an effective
defence against intrusions. BC's immutable and
decentralized ledger safeguards the reliability and liability
of data (Liu et al., 2022). Utilizing a distributed ledger
increases the security of sensitive data, avoiding
unauthorized modifications and safeguarding a tamper-
resistant record of actions. DL, fine-tuned through
optimization techniques, provides exceptional precision
to IDSs. Its capability to distinguish intricate patterns and
anomalies in network traffic improves the active
recognition of possible attacks (Vaiyapuri et al., 2024).
The incorporation of BC and DL makes a synergistic
security network. BC protects data integrity, and DL-
driven IDS secures the network against complex
intrusions. BC's decentralized feature ensures that
security actions must be allocated (Mbaya et al., 2023).
Integrating BC with the DL will provide various possible
advantages in improving the security of network systems.
BC presents an immutable and decentralized ledger that
could store logs and records connected to network actions
and safety measures (Monirah and Ykhlef, 2023). By
maintaining intrusion detection and prevention data under
a BC, the data is tamper-proof and apparent, safeguarding
the integrity of the records.

This study introduces a BC-enabled decisive red fox
optimizer-based FS wusing the DL (BDRFFS-DL)
technique to identify intrusions effectively. Initially, Z-
score standardization is used for normalizing the input
traffic data into a consistent format. The DRF optimizer is
employed to select the finest feature subset to improve the
classification performance and resolve the high
dimensionality issue. Furthermore, the intrusion detection
process is carried out by using the Convolutional Sparse
Autoencoder (CSAE) model. Moreover, BC ensures the
integrity of the detection result and provides a secure
record of network actions. The ToN_IoT dataset is used
for extensive analysis. The key contribution is listed
below:

e Z-score standardization is used to normalize the input
traffic data into a uniform scale, which improves
consistency across features. This step supports better
learning by the model and improves classification
accuracy. It plays a major role in data preparation for
intrusion detection

e The DRF optimizer addresses the high dimensionality
issue by choosing the most informative features from
the input data. This significantly improves detection
performance  while minimizing computational
overhead. Concentrating on significant features only
strengthens the overall system efficiency

The CSAE model is implemented to perform intrusion
detection by capturing deep spatial features and
enforcing sparsity. This enhances the technique's
capability to distinguish between normal and
malicious traffic. It adds robustness to the detection
framework through precise and efficient threat
detection

BC is integrated to preserve the integrity of detection
results and securely log all network activities in an
immutable manner. This ensures transparency and
prevents tampering, strengthening the reliability and
accountability of the overall IDS

Literature Review

Alamro et al. (2023) introduced a BC-enabled loT
healthcare system employing an ant lion optimizer with a
hybrid DL (BHS-ALOHDL) technique. This Neural
Network (NN) method executes an ALO-FSS model for
generating a sequence of feature vectors. This HDL
method combines the LSTM model and CNN features for
IDS. In conclusion, the Flower Pollination Approach
(FPA) was utilized for optimization. Alkadi et al. (2021)
developed a Deep BC architecture method. The IDS
handled consecutive networking data using a BiLSTM-
based DL method. Ethereum is also utilized. (Mansour
2022) proposed an innovative poor and rich optimizer
with the DL and BC-based IDS in CPS, named the PRO-
DLBIDCPS method. Narayanan and Paul (2023)
introduced an innovative model named BC-based
federated learning for IDS (BlockFL-IDS). This model
utilizes Auction game theory and employs the Base
Criterion Method (BCM) technique to protect the channel
selection. In Abdel-Basset et al. (2022), a FED-IDS
technique was developed. A context-aware modifier
model is also utilized.

He et al. (2022) implemented a conditional GAN
(CGAN)-assisted combined IDS with BC-assisted
dispersed FL. Poorazad et al. (2023) developed an
incorporated technique comprising two modules: a CNN-
based IDS executed as an SDN utilization and a BC-based
model allowing network and application layers protection
correspondingly. An essential benefit of the developed
technique exists in mutually decreasing the effect of
attacks like rule and command injection under SDN-
assisted lloT architectural layers. Alamro et al. (2025)
proposed the mathematical modelling-based BC with
mountain gazelle optimizer and attention to DL for
cybersecurity (MGOADL-CS) model to improve drone
cybersecurity by integrating BC technology with an
Attention Long Short-Term Memory NN (ALSTM-NN)
optimized via MGO for accurate detection and
classification of cyberattacks in real-time. Perumal et al.
(2024) proposed an Enhanced Metaheuristics with a DL
Method for BC-based Cybersecurity Solution (EMDLM-
BCCS) methodology by integrating BC technology with
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Extreme Learning Machine (ELM) optimized by elite-
oppositional grasshopper optimizer approach (EGOA)
model for effective DDoS attack detection.

Al Mazroa et al. (2025) presented an Automated
Cyberattack Detection Utilizing Binary Metaheuristics
with DL (ACAD-BMDL) model using Binary Grey Wolf
Optimization (BGWO) combined with the enhanced
Elman Spike NN (EESNN) and Archimedes Optimizer
Approach (AOA) for accurate and efficient threat
identification. Dontu et al. (2024) presented a decisive red
fox with a CNN (DRF-CNN) model to enhance
cyberattack detection using DL-based FS and
classification for accurate and efficient intrusion
detection. Abdullah et al. (2025) proposed an ensemble
learning model using extreme gradient boosting
(XGBoost) to improve detection by accurately classifying
network traffic and enhancing healthcare cybersecurity.
(Salami et al., 2024) introduced hybrid method by
utilizing Harris Hawks Optimization (HHO) in detecting
attacks within 1oT networks by selecting optimal
features for classification. Algahtany et al. (2025)
proposed an enhanced grey wolf optimizer-based FS
(EGWO-FS) model to improve IDS in Internet of Things
(1oT) networks by selecting optimal features and using
RF for accurate and efficient attack detection. Alabdali
and Mashat (2024) proposed BC and federated learning-
based deep belief network (BC-FL-DBN) model by
integrating LSTM, BC, and Alloy Language for secure
and privacy-preserving predictive modelling in social
media.

While existing models such as BHS-ALOHDL, PRO-
DLBIDCPS, BlockFL-IDS, and FED-IDS have shown
robust intrusion detection capabilities, many rely on
single-layer optimization or lack real-time adaptability in
resource-constrained environments. Various methods like
CGAN:-integrated IDS and EMDLM-BCCS improve data
diversity and attack detection but face difficulty with
scalability and latency in distributed networks. Though
BC integration strengthens data integrity, models like
ACAD-BMDL and EGWO-FS often overlook adaptive
trust mechanisms. Ensemble and hybrid FS methods such
as DRF-CNN and HHO-based IDS improve detection but
may incur high computational costs. The research gap is
developing lightweight, adaptive, and real-time IDS
frameworks that integrate BC, DL, and metaheuristics
without compromising speed, accuracy, oOr resource
efficiency across diverse domains like 10T, CPS, and loMT.

Methodology

This research introduces an innovative BDRFFS-DL
model to identify intrusions effectively. The BDRFFS-DL
technique exploits the FS approach to choose relevant
feature subset, thereby improving the accuracy and
reducing the computational complexity. Figure 1 depicts

the complete flow of the BDRFFS-DL technique. The
pseudocode of the BDRFFS-DL technique is showcased
in Algorithm 1.

Z-Score Normalization

Initially, the BDRFFS-DL model applies Z-score to
compute input traffic in a uniform format. This approach
standardizes traffic data to zero mean and unit variance,
ensuring balanced feature contribution. This model
handles extreme values more robustly by relying on
statistical distribution. This technique improves the
convergence speed and stability of learning algorithms,
specifically those sensitive to feature scales, namely NNs
and distance-based classifiers. It also enhances the
interpretability of the data, making anomalies more
distinguishable during detection. Compared to methods
like log or decimal scaling, this model maintains the original
distribution shape while mitigating the impact of skewed
data. Its adaptability across diverse datasets and consistent
performance in high-dimensional spaces make it an ideal
option for preprocessing in intrusion detection systems.

& |
S

N

Internet
Firewall

@] @
Canvalutional Spirse Autoencader
Model Decisive Red Fox Optimizer

Fig. 1: Overall flow of BDRFFS-DL technique

Algorithm 1: Pseudocode of BDRFFS DL approach

BDRFFS_DL _Intrusion_Detection(input_traffic_data)

Z_score_normalization(input_data):

# Implement Z-score normalization on the input data

normalized_traffic =
Z_score_normalization(input_traffic_data)

# Return the normalized data
DRF_Optimizer(data):

# Perform the DRF optimizer for FS

# Choose a feature subset using the optimizer

selected features =
DRF_Optimizer(normalized_traffic)
# Return the selected features
CSAE_Intrusion_Detection(features):
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# Execute the CSAE for intrusion detection

# Apply the features selected for the detection
method

intrusion_results =
CSAE_Intrusion_Detection(selected_features)
# Return the intrusion detection outcomes
BC_integration(results):

# Incorporate BC for result integrity

# Create a secure record of network actions

# Ensure the security and integrity of the intrusion
detection outcomes

Z-score normalization plays a vital part in normalizing
the input features of the method, safeguarding a reliable
scale through different data sources (Cochran et al.,
2021). By altering the raw data into Z-scores, which
signify the number of Standard Deviations (SD) a data
point is from the mean, the IDS attains an even
distribution of values. This normalization procedure is
vital for upholding the reliability of anomaly recognition
systems, as it permits the system to separate unusual designs
or deviations from the model. The use of BC technology
further strengthens the safety of the IDS by certifying a
tamper-resistant and clear record of the regularized data,
improving the reliability of the IDS mechanism.

BC Integration

Finally, BC is applied to ensure the detection result's
integrity and provide a secure record of network actions.
Decentralization is the foremost inspiration behind the BC
model (Liang et al., 2020). The transparent and distributed
features of the BC archive mean that the one-node flop
will not concern the entire system. BC reformed the
structure of the transaction system from a lead to a Point-
to-Point (P2P) layout. This altered structure permits dual
parties to contract with one another directly with security
and encryption depending upon code and system safety.
The nodes in the transaction network depend on itself for
establishing trust, thus eliminating the need to evaluate
third-party validating in this setting. Hyperledger fabric
and Ethereum, which share similar core technologies, are
the two major platforms for BC. The significant
dissimilarity among these platforms lies in the method
they are intended for and in the objective users. Smart
deals and community BCs are directed at uses that
common users utilize. Hyperledger Fabric has a very
flexible design that is highly suitable for corporate use.
The main intention is to shorten effort and trade procedures
utilizing the technology of BC, which helps resolve the inter-
firm credit issue. Figure 2 represents the BC framework.

This method applies a private chain to protect
communication among agents. The technique combines
the embedded and the BC node datasets in a similar agent,
initial and ending at the equivalent period. Storing a
dataset copy in entire agents will decrease the
communicating agent by executing a local hunt of the

recently upgraded data

(Blockehain Network)

Blockchain Blockchain
Node

(Blockehain Database)

Timestamp Timestamp limestamp

Block 0 Block n-1 Block n

Blackehain

Blackehain
Node

Fig. 2: BC architecture

The recognition and analysis module of the
communication agent is a great node for the BC unit. It
includes the complete BC ledger and ensures all nodes in
the system can obtain and attach the precise copy. Other
agents in every module are permitted as light nodes, and
the link to an agent is a parent node. The BC unit is
utilized to validate and control the behaviours of agents
and is also used to construct faith in systems in which
several parties are involved. Furthermore, data from
messages of communication is utilized for analyzing
assaults and enhancing agents by using Reinforcement
Learning (RL).

DRF-Based FS

The BDRFFS-DL technique applies the DRF
optimizer to select an optimum feature subset. This model
effectually handles high-dimensional data by utilizing the
merits of decision forests to evaluate feature importance.
Unlike conventional methods that may depend on simple
statistical measures, DRF considers intrinsic interactions
between features, improving the selection of the most
relevant subset. This results in an improved performance
and reduced overfitting. Compared to other optimizers,
DRF presents faster convergence and scalability to
massive datasets, thus facilitating real-time detection.
Additionally, it balances exploration and exploitation
effectively, ensuring a comprehensive search of the
feature space. Overall, DRF optimizes accuracy and
computational effectiveness, making it an ideal for FS in
complex network settings.

After attaining the balanced data from the prior stage,
the DRF optimizer method was implemented to choose
the optimum feature to increase the accuracy and training
speed of IDS (Rabie et al., 2024). The classical IDS
framework introduces Different metaheuristic
optimization techniques to improve network safety.
However, the main issues are related to factors such as
over-fitting, complicated computation operations, slow
processes, and reduced convergence rates. This approach
is widely applied in safety applications to resolve complex
optimizer problems. The DRF is the recent optimizer
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method with several advantages over other techniques. It
consists of reduced local optimum, lower computation
complexity, avoiding stacking of algorithm under
optimizer, and fast convergence. The study uses this
algorithm to enhance the data features based on the
optimum output. Furthermore, this technique assists in
simplifying the classification process with an improved
recognition rate.

This technique can tune the parameters of a balanced
IoT. In general, foxes are small and medium-sized,
omnivorous animals that belong to the Canidae genera.
Furthermore, the foxes are distinguished from other
members of giant dogs or their families. The hunting
habits of RFs motivates this model. During hunting, the
RF gets closer to the target, hides in bushes, and then
attacks the prey. This method integrates exploration and
exploitation abilities similar to other metaheuristics
approaches. During this method, the parameter
initialization is carried out depending on the group of
arbitrary individuals as defined in Egs. (1-2):

P = [po, 01 - Pn-1] (@)

P = [@o)", )" - (Pn-1)'] @

On the other hand, i implies the populations from the
searching space. Afterwards, a better performance was
obtained from the search space by utilizing the global
optimum function. At this point, the Euclidean distance
was executed to get a better result by employing the
following method:

E(((P)Y*, (Ppest)®) = v (PYD — (Ppest)®) 3)

In this case, k signifies the iteration counts, P,
refers to the best optimal, and E stands for the Euclidean
distance. Accordingly, better performance is employed to
migrate every candidate, as expressed:

((P)i)k = ((PYY* + rsign((Ppest)® — (((P)i)k) 4)

Whereas r implies the random number within an
interval of [0-1], which is an arbitrarily elected scaling
parameter that is fixed. After moving to the finest
location, once the fitness value at their novel locations is
developed, individuals remain there or can return to their
new places. This demonstrates how the family members
arrive home later on an expedition and explain to the
others somewhere to search. Once there is a possibility of
discovering food, it will stay to search; or else, it would
arrive home with empty-hand”. In every cycle of DRF,
these processes stand in for presented global hunts.

Additionally, the candidates’ novel place can present
an appropriate choice, or the previous place will still
occur. The RF method detects the target using a DRF

model, which incorporates a random value w between 0
and 1:

{Move forward if, w > 3/4 5
Stay hidden if, w > 3/4 ®)
sin(8y) .
a):{hx—so if 8y # 0 ©
T lf 60 =0

Where h stands for an arbitrary number in 0 and 0.2,
6, refers to the arbitrary number within an interval of
[0,27] assumed as the Fox observation viewpoint, and t
implies the arbitrary value from zero to one:

(P = h x @ X cos(8,) + pgera!
ip{ww =h X w X sin(8;) + h X @ X cos(§,) + pfervat
417{'”" =h X w % sin(8;) + h X w X sin(8,) + h X w X cos(8;) + pgetuat (7)

| prew = h x o x X222 sin (8,) + h X @ X cos(8,_,) + paeyat
kp,’;i“{ =h X wxsin(8;) +h X w X sin(8,) + -+ h X @ X sin(8,_,) + preguet

The population's worst members are removed to
continue a stable population size, and several new
members are added. Afterwards, the two optimum
members are recognized at iteration k, and their centre
was evaluated as:

ck=2(P(1)" - (P@)" ®)

At this point, a parameter ¢ among (0 and 1) was
employed for all the iterations that certain alternates from
the iteration according to the following model:

{new nomadic individual if, ¢ > 0.45 9
reproduction if, p <045 ©)

According to this process, the random places are
upgraded from the search space, and the novel members
are included by utilizing the subsequent method:

PPk =2(P(1)" - (P@))" (10)

This function acquires the mimicked individual, and
the finest Py, IS given back as the output. This work was
employed to optimally select the features to train the
optimizer's data instances.

In the DRF method, the intentions are combined into a
solitary intent data such that a present weight identifies
every goal prominence (Mafarja et al., 2023). This study
implements an FF that integrates both objectives of FS, as
shown in Eq. (11):

Fitness(X) =a-E(X)+B*(1—%) (11)

Here, E(X) is the classifier error rate for the chosen
features X, and Fitness(X) is its fitness value. |R| and |N|
are the chosen numbers and original features. a\alphaa (in
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[0,1] weights classification error, while g = (1—a)
weights feature reduction.

Classification using the CSAE model

The intrusion detection process is carried out using the
CSAE model for classification. This technique is selected
for its ability to automatically learn deep hierarchical
features while enforcing sparsity, which assists in
capturing the most informative patterns in network traffic
data. Compared to conventional classifiers, CSAE
outperforms in handling high-dimensional and complex
data by extracting robust spatial features without heavy
manual feature engineering. Its sparse coding promotes
model generalization and reduces overfitting, crucial for
accurately detecting varied intrusion types. Unlike
standard autoencoders, the convolutional architecture
preserves spatial relationships, improving detection
sensitivity. Additionally, CSAE is more resilient to noise
and anomalies, improving overall classification reliability
in dynamic network environments. This combination of
deep feature extraction and sparsity makes CSAE a
powerful model for intrusion detection tasks. Fig. 3
represents the architecture of CSAE.

A supervised model is a data-driven Feature Learning
(FL) approach that updates the weight connection through
forward and backward training (Mohana and Subashini,
2023). Compared to the supervised method, unsupervised
learning openly obtains an unlabelled input dataset and
learns applicable features. This technique considerably
decreases the workload for a labelling dataset.

Unsupervised AE (UAE), consisting of an encoder, a
hidden (latent) space, and a decoder, efficiently detects
intrusions. AEs are primarily used for feature extraction
and dimensionality reduction. They reconstruct an output

Tnput

Conv + Pool

Cony + Pool

Eocoder

Flatten

Encoder Visual Feature

that closely resembles the original input data, capturing
crucial patterns to facilitate accurate detection. The
encoder converts the input dataset into code of the HL by
code(c) = f(w.x + b), where f depicts an activation
function, w shows the weight, x refers to the input value,
and b indicates a bias. The decoder recreates the output
from the code of HL by x" = f'(w'.c + b') and evaluates
the mean squared value between reconstructed output and
input through the cost cost = min Y, | x' — x|?.

A Convolutional AE (CAE) is a variation of the CNN
designed to preserve the spatial relationships within the
input data. This architecture automatically extracts
relevant features and discovers underlying patterns
without manual intervention. The encoder compresses the
input feature map through convolutional layers, while the
decoder reconstructs the output using transposed
convolution (deconvolution) layers, enabling effective
data representation and reconstruction. Furthermore, the
reconstructed fault of the convolution encoder and
decoder is evaluated like the typical AE. The significant
components of CSAE are the convolution layer, pooling
layer, neuron size, sparsity, filter size, and ReLU function.
This model comprises three deconvolution blocks of a
decoder and four convolution blocks of an encoder, each
with batch normalization and convolution layer and filter
size (3x3), which is used for generalizing the network's
learning process. Then, the max pooling (2x2 kernel size)
layer with sparsity is applied for down-sampling the
feature maps of the convolution encoder. Now, the
sparsity highlights the pertinent feature for learning. The
convolution layer and activation are added to the batch
normalization, the convolution decoder. After the two
convolution blocks, an up-sampling layer (2x2 kernel
size) is used.

Output

DeCony + Upsample

DeCony + Upsample

Decoder

Fig. 3: Architecture of CSAE
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Firstly, the inputs are encoded with a pixel patch
x;, 1 = 1,2 ...x, and multiplied with neuron weight sw;,
where j is applied to compute the convolution layer.
Lastly, the output layer 0 is evaluated as o;; =
f(w;.x; + b). Next, the output from the convolution
decoder is described by x; = f'(w;.0;; + b). Lastly,
reconstruction error is computed by CSA=
%Zle || x; — x/||, where p refers to a reconstructed

operation of convolution kernel size with dxd, where
d < pixels.

Results Analysis

The BDRFFS-DL technique in examined in this
section. The method runs on Python 3.6.5 with an i5-
8600k CPU, 4GB GPU, 16GB RAM, 250GB SSD, and
1TB HDD, using a 0.01 learning rate, ReLU, 50 epochs,
0.5 dropout, and batch size 5. In Table 1 and Fig. 4, the
Execution Time (ET) of the BDRFFS-DL technique is
examined under varying numbers of transactions (Tx) and
nodes. The results show that the BDRFFS-DL technique
acquires effectual EXET values. With 100 Txs, the
BDRFFS-DL technique presents minimal EXET of 17s,
30s, 143s, and 289s under 20-80 nodes, respectively.
Additionally, with 200 Txs, the BDRFFS-DL model
delivers the least EXET of 26s, 52s, 420s, and 617s below
20-80 nodes, correspondingly. Meanwhile, with 300 Txs,
the BDRFFS-DL method presents the least EXET of 56s,
102s, 627s, and 962s under 20-80 nodes, respectively.

Table 2 and Fig. 5 signify the Transaction Mining
Time (TMT) comparison outputs of the BDRFFS-DL
technique illustrating the enhanced outcomes with the least
TMT values. The BDRFFS-DL technique consistently
outperforms other models, achieving the lowest TMT
values of 0.00058 seconds at 5 Txs, 0.00084 seconds at 15
Txs, and 0.00088 seconds at 25 Txs, compared to higher
values from Pow, ePow, and BHS-ALOHDL.

(1) The detection results of the BDRFFS-DL model
are verified by employing the ToN_loT dataset. It holds
50000 instances with dual classes, as demonstrated in
Table 3. The BDRFFS-DL approach has selected 28
features from the 44 features.

Table 1: ET analysis of BDRFFS-DL technique under various
transactions and nodes

ET (Sec)
Tx 20 40 60 80
Nodes

100 17 30 143 289
150 24 36 302 439
200 26 52 420 617
250 54 78 516 910
300 56 102 627 962

1200
I 20 Nodes [ 60 Nodes
W 40 Nodes [ 80 Nodes
1000 - -
s —
(1]
v 800+
']
E
F 600 m
c
2
5
g 400 -
X
[}
200 -
0 |
100 150 200 250 300

Number of Transactions (Tx)

Fig. 4: ET analysis of BDRFFS-DL technique under various
nodes

Table 2: TMT analysis of BDRFFS-DL technique under
various transactions

TMT (Sec)

'I’\'lroaln?;ctions Pow ePoW iEgHDL EERFFS'
()

5 0.00222  0.00146  0.00108 0.00058
10 0.00280 0.00161  0.00099 0.00050
15 0.00266  0.00201  0.00094 0.00084
20 0.00254  0.00174  0.00099 0.00047
25 0.00276  0.00181  0.00091 0.00088

Figure 6 presents the classifier outputs of the
BDRFFS-DL approach under all two classes using test
dataset. Figs. 6a-6b depicts the confusion matrix at 70:30
of TRAP/TESP. Likewise, Fig. 6¢-d validates the PR and
ROC study of the BDRFFS-DL model. The figure
illustrates greater results with the most excellent ROC
values.

The detection results of the BDRFFS-DL approach are
inspected with 70:30 of TRAP/TESP in Table 4 and Fig.
7. With 70:30 of TRAP/TESP, the BDRFFS-DL
approach attains an average accu, of 98.80% and
98.91%, prec, of 98.80% and 98.91%, reca; of
98.80% and 98.91%, F,.,. of 98.80% and 98.91%,
AUCyeore 0 98.80% and 98.91%, and Kuppa of 98.87%
and 98.95.

The accu, curves for TRA and validation (VL)
illustrated in Fig. 8. Both TRA/TES accu, steadily
improve with growing epochs, showing the ability of
the model in learning patterns and generalize well to
unseen data.
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Table 4: Detection output of BDRFFS-DL technique with 70:30 of TRAP/TESP

Classes Accu,, Prec, Reca, Fscore AUCscore Kuppa
TRAP (70%)
Normal 99.04 98.58 99.04 98.81 98.80 98.88
Attack 98.57 99.03 98.57 98.80 98.80 98.86
Average 98.80 98.80 98.80 98.80 98.80 98.87
TESP (30%)
Normal 99.16 98.67 99.16 98.91 98.91 98.92
Attack 98.67 99.16 98.67 98.92 98.91 98.97
Average 98.91 98.91 98.91 98.91 98.91 98.95
0.0035 99.2 -
Hm Pow — BHS- ALOHDL B Training Phase (70%)

'G 0.0030 | I ePoW 1 BDRFFS-DL 99.0 I Testing Phase (30%)

_3’_: .
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97.8 1 -
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10 15 20
No. of Transactions (Tx)

Fig. 5: TMT analysis of BDRFFS-DL technique under various
transactions

Table 3: Dataset description

Classes Instance Numbers
Normal 25000
Attack 25000
Overall Instances 50000

Training Phase (70%) - Confusion Matrix Testing Phase (30%) - Confusion Matrix

Normal
Normal

Actual

Actual

Attack
Attack

Normal
Predicted

(b)
ROC-Curve

Normal
Predicted

(a)
Precision-Recall Curve

Attack Attack

Precision

Normal
—— Attack

a5 06 0.7
Recall

(c)

Fig. 6: Classifier result of (a-b) confusion matrices and (c-d) PR
and ROC curves

Fig. 7: Average of BDRFFS-DL technique with 70:30 of
TRAP/TESP
Training and Validation Accuracy

T
| —— Training
—— Vvalidation

0.9890
0.9885

0.9880 -4

Accuracy

0.9875 <
0.9870 4

0.9865

Epochs

Fig. 8: Accu,, the curve of the BDRFFS-DL method

Figure 9 outlines the TRA/TES loss for the BDRFFS-
DL technique across diverse epochs. The TRA loss
steadily lessens as the weight is refined, illustrating
effective learning. The BDRFFS-DL model consistently
improves parameters to minimize the gap between actual
and predicted TRA labels.

Table 5 and Fig. 10 depict the comparison assessment
of the BDRFFS-DL model (Alamro et al., 2023). Based
on accu,, the BDRFFS-DL model reaches an improved
accu, of 98.91% while the IDS, DT, RF, NB, and
BILSTM techniques obtain decreased accu,, of 98.43%,
96.49%, 97.86%, 96.84%, and 96.36%.

Meanwhile, based on prec,, the BDRFFS-DL
approach ranges enhanced prec, of 98.91% while the
IDS, DT, RF, NB, and BiLSTM techniques get reduced
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prec, of 98.08%, 98.28%, 98.39%, 96.74%, and 97.71%.
Furthermore, based on F,,.., the BDRFFS-DL technique
attains an enhanced F,,. 0of 98.91%, where the IDS, DT,
RF, NB, and BiLSTM techniques gain diminished F; e
of 98.71%, 96.24%, 98.67%, 97.15%, and 97.99%. These
outcomes displayed the better performance of the
BDRFFS-DL method.

Table 6 and Fig. 11 specify the Computational Time
(CT) evaluation of the BDRFFS-DL approach with
existing models. The BDRFFS-DL  approach
demonstrates the fastest CT with 4.01 seconds, indicating
superior efficiency. In contrast, the IDS model records the
highest CT at 12.56 seconds, illustrating it is the most
time-consuming. Decision Tree (DT) and Random Forest
(RF) follow with CT values of 7.62 and 6.78 seconds,
respectively, giving a moderate performance. Naive
Bayes (NB) exhibits a CT of 11.47 seconds while Bi-
LSTM takes 8.91 seconds, requiring more time than RF
but less than the IDS model.

Table 7 and Fig. 12 demonstrate the ablation study of
the BDRFFS-DL methodology with existing models. The
BDRFFS-DL  methodology demonstrated  superior
performance, achieving an accu,, of 98.91%, prec, of
98.91%, reca; of 98.91%, and F,.,. Of 98.91%,
indicating highly balanced and consistent results across
all metrics. In comparison, the CSAE and DRF models
attained lesser values. These results highlight the
reliability and robustness of the BDRFFS-DL model in
handling classification tasks.

Training and Validation Loss

—— Training

OU‘)H—- = Validation

0.056

0.054

Loss

0.052
0.050

0.048

Epochs

Fig. 9: Loss curve of the BDRFFS-DL method

Table 5: Comparison evaluation of BDRFFS-DL approach
with existing models

Techniques Accuy,  Prec,  Reca;  Fscore
BDRFFS-DL 9891 98.91 98.91 9891
IDS 98.43 98.08 98.67 98.71
DT 96.49 98.28 97.47 96.24
RF 97.86 98.39 96.50  98.67
NB 96.84 96.74 98.54 97.15
BiLSTM 96.36 97.71 98.22 97.99

Table 6: CT analysis of BDRFFS-DL approach with existing

methods

Methods CT (sec)
BDRFFS-DL 4.01
IDS Model 12.56
DT 7.62

RF 6.78

NB 11.47
Bi-LSTM 8.91

Table 7: Result evaluation of the ablation study of BDRFFS-

DL model
Techniques Accu,, Prec, Reca;  Fscore
BDRFFS-DL  98.91 98.91 98.91 98.91
CSAE 98.30 98.33 98.20 98.20
DRF 97.61 97.82 97.67 9755
100
mmm BDRFFS-DL ) Random Forest
I IDS Model [ Naive Bayes
[ Decision Tree [ Bi-LSTM
99 4
3 o8 — ] -
"': —
]
=2 L
S 97
96 1
95 -
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Fig. 10: Comparison evaluation of BDRFFS-DL approach with

16

existing models

14
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Fy - © =) N
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I T
3 4
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Fig. 11: CT analysis of BDRFFS-DL approach with existing
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Fig. 12: Result analysis of the ablation study of BDRFFS-DL
approach

Conclusion

This research presents a novel BDRFFS-DL model for
the effective identification of intrusions. The BDRFFS-
DL technique exploits the FS approach to pick a relevant
subset of features, thereby improving classification
accuracy and decreasing the computation complexity.
Initially, Z-score standardization is applied. To improve
the classification performance and resolve the high
dimensionality problem, the BDRFFS-DL technique
applies a DRF optimizer to choose the finest feature
subset. Lastly, the intrusion detection process is carried
out using the CSAE model. Furthermore, BC is applied to
ensure the detection result's integrity and provide a secure
record of network actions. An extensive study of the
BDRFFS-DL approach using the ToN_loT dataset
illustrated its superior performance, achieving an
accuracy of 98.91%, outperforming existing models. The
limitations of the BDRFFS-DL technique comprise
limited evaluation under real-time network conditions and
restricted scalability across heterogeneous environments.
The use of static datasets may not fully capture evolving
attack patterns, leading to potential performance
degradation in dynamic scenarios. Furthermore, the
reliance on complex models can result in high
computational overhead, making deployment challenging
for resource-constrained devices. There is also
insufficient focus on interpretability, which affects trust
and adoption in critical sectors. Integration with privacy-
preserving mechanisms remains minimal, raising
concerns in sensitive applications. Future works may
explore lightweight model architectures, adaptive
learning mechanisms, real-time benchmarking, enhanced
interpretability, and secure collaborative detection
frameworks across distributed environments.
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