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Abstract: The analysis of medical images presents many challenges, 

especially when making precise diagnoses. In pediatric Chronic 

Kidney Disease (CKD), early identification is critical because of its 

gradual progression to significant kidney failure. This study proposes 

a diagnostic framework for pediatric ultrasound image classification 

that incorporated machine learning and advanced feature selection 

methods. This approach is divided into four stages: Preprocessing, 

feature extraction, feature selection, and classification. Initially, 

pediatric kidney ultrasound images are enhanced using gaussian 

median filter. Radiomics features were then extracted, including Gray 

Level Co-Occurrence Matrix (GLCM), Gray Level Size Zone Matrix 

(GLSZM), Gray Level Run Length Matrix (GLRLM), Neighboring 

Gray Tone Difference Matrix (NGTDM), Gray Level Dependence 

Matrix (GLDM), and first-order statistics. To optimize this feature 

space, we introduce the Binary Coati Weighted Mean Vector 

(BinCoWmv) optimization algorithm, which uses a customized fitness 

function. Herein, the selected features were evaluated using different 

classifiers: Random Forest (RF), Decision Tree (DT), Support Vector 

Machine (SVM), Naïve Bayes (NB), K-Nearest Neighbor (KNN), and 

XG-Boost. Comparative evaluations with existing optimizers, such as 

the Coati Optimization Algorithm (COA), weighted average vector 

(INFO), Firefly Algorithm (FFA), and Harris Hawk Optimization 

(HHO), showed that BinCoWmv achieved a higher classification 

accuracy. Our framework improves diagnostic reliability and assists 

radiologist and nephrologist in the early detection of chronic kidney 

disease in children. 
 
Keywords: Kidney, Ultrasound, Feature Selection, Coati Optimization 

Algorithm, Weighted Mean Vector (INFO) 

 

Introduction 

The kidneys are essential organs that maintain the 

body’s balance by filtering waste products from the blood, 

controlling blood pressure, regulating Ph levels, 

producing hormones, and maintain proper mineral 

concentration. Nowadays, the world is suffering from 

different kidney abnormalities that include children and 

adults (Dey et al., 2022). Chronic Kidney Disease (CKD) 

often starts with no specific symptoms and develops in 

uremic syndrome by the time the medical diagnosis has 

started (Badawy et al., 2023). But CKD in pediatrics starts 

due to a number of reasons that include congenital 

abnormalities, urinary tract problems, kidney infections, 

genetic disease, dehydration, and high blood pressure. 

Projections indicate that by 2040, CKD will be the fifth 

leading cause of death worldwide. However, research has 

shown that timely diagnosis and effective management 

can significantly slow its progression and prevent kidney 

failure (Francis et al., 2024). By employing Computer-

Aided Diagnosis (CAD), the planned selection of 

materials can support nephrologists by offering accurate, 

reliable, and specific scans, thereby promoting earlier 

clinical decision-making. 
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With the development and application of Artificial 

Intelligence tools inherent in computer vision, which can 

analyze and solve medical image processing, have easier 

diagnosis. The use of these tools has been widely used in 

classification, detection, segmentation and object 

detection (Vasanthselvakumar et al., 2017). Then the 

diagnosis of kidney disease in pediatrics by 

ultrasonography is considered as a precise 

characterization of the disease, with gray scale ultrasound 

alone is difficult, even though the technique is non-

invasive, while being considered as the safest medical 

imaging procedure and making it easier to distinguish 

between normal and abnormal kidney images (Bhandari 

et al., 2023). 

Ultrasound image analysis often relies heavily on the 

expertise of sonologists and nephrologists, where 

minimizing human errors is essential for an accurate 

diagnosis. However, the quality of ultrasound images can 

sometimes be compromised by speckle noise, making it 

difficult for practitioners to identify specific diagnosis 

features of the images (Al-karawi et al., 2021). To 

overcome this problem, we extracted various texture 

features such as Gray level Co-Occurrence Matrix 

(GLCM), Gray Level Size Zone Matrix (GLSZM), Gray 

Level Run Length Matrix (GLRLM), Neighboring Gray 

Tone Difference Matrix (NGTDM), and Gray Level 

Difference Matrix (GLDM) features and first order 

derivatives from pediatric ultrasound images. This study 

aims to enable the early identification of kidney 

abnormalities in children, which is crucial for timely 

medical intervention and can significantly enhance long-

term health outcomes and survival rates for those affected. 

The potential of the classifier mainly depends on the 

feature extracted from ultrasound images. However, the is 

quite prominent that not all the extracted features 

contribute to the classification process. By eliminating the 

redundant and irrelevant features, optimization algorithm 

for feature selection have emerged as the most effective 

tool in medical imaging that could reduce high 

dimensionality and improving the classification process 

(Pradeepa and Jeyakumar, 2023). 

Feature Selection (FS) is termed to be a challenging 

and expensive two-way step process; one is creating a 

subset feature and the second is evaluating it. Based on 

the evaluation, FS is classified into filter, wrapper, and 

embedded methods (Nadimi-Shahraki et al., 2022). Filter 

method such as correlation coefficient, information gain, 

chi square test picks features based on the relevance of 

feature, via univariate statistics, whereas the wrapper 

method selects the features based on their usefulness in 

the classification performance. Embedded method 

combines the principle of filter and wrapper approaches 

by incorporating feature selection directly into the model-

training process, thereby enhancing the overall 

performance of the classifier (Dyoub and Letteri, 2023; 

Seyyedabbasi, 2023). 

Feature Selection (FS) can be expressed as a 

combinatorial or binary optimization problem in which a 

feature is either chosen or discarded. The primary goal is 

to reduce the number of selected features while 

simultaneously improving or at least preserving the 

classification accuracy (Barrera-García et al., 2023). In 

bio-medicine, metaheuristics algorithms are termed to be 

as optimization tool that can solve the FS problem 

effectively, these algorithms use various techniques to 

increase the efficiency of the search process (Aljarah et al., 

2018). Several metaheuristics algorithms are proposed 

over the year that can solve FS problem such genetic 

algorithm, Particle Swarm Optimization (Mirjalili and 

Lewis, 2013), Ant Colony optimization (Wen et al., 

2008), Grey Wolf optimization (Raju et al., 2018), Harris 

Hawk Optimization (Peng et al., 2023), Whale 

Optimization (Eid, 2018), Cat Swarm Optimization 

(Seyyedabbasi, 2023), Dragonfly optimization (Mirjalili, 

2016), Firefly optimization (Lambert and Perumal, 2022) 

to name a few, But yet they frequently suffer from 

premature convergence, unstable search trajectories and 

limited local refinement ability. This limitation is further 

amplified in binary search spaces relevant to FS tasks, 

maintaining a balance between two primary phases: 

Exploration and exploitation is crucial. 

Despite the development of numerous metaheuristics 

algorithms, the exploration and exploitation phases are 

crucial for finding optimal solutions within the search 

space. When solving a search problem, it is essential to 

balance the exploration of new regions of the search space 

with a more focused investigation of promising areas. 

This strategy reduces the risk of becoming trapped in local 

optima, which are solution that may seem optimal within 

a limited region but fail to represent the true global 

optimum (Yildizdan and Bas, 2024).While exploration is 

to search intensively around the promising region, which 

can improve the quality of the solution. Balancing of the 

exploration and exploitation phase can enhance the 

effectiveness of the search algorithm (Hao et al., 2024; 

Hashim et al., 2023). According to the “No Free Lunch” 

theorem, no single optimization algorithm can perform 

optimally across all problem domains (Wolpert and 

Macready, 1997). To address this limitation, hybrid 

strategies are often employed, combining the strengths of 

different algorithms to improve their efficiency. 

Motivated by this principle, we propose a hybrid 

optimization method that integrates Binary Coati 

Optimization with the weighted mean of vectors (INFO) 

algorithm, designed to enhance both feature selection and 

classification performance. 
Metaheuristic algorithm names Coati Optimization 

Algorithm (COA) was proposed by Dehghani et al. 

(2023) based on swarm intelligence-based algorithm, that 
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mimics coatis’ natural behavior. They use two strategies: 

A hunt and attack strategy on the iguana known as 

exploration, and a process of escape from predators, 

known as exploitation. COA appear to be competitive 

when compared to well know metaheuristic algorithms, 

Nevertheless, COA have several limitations, as any other 

metaheuristics algorithms. Such as an imbalance between 

exploration and exploitation, premature convergence, gets 

easily stuck in local optima. To overcome limitation 

mentioned, it is inferred that the binary version of COA 

has great potential in solving combinatorial optimization 

tasks, we utilize COA with a distinct transfer function, 

named V-shaped transfer function to tackle combinatorial 

problem efficiently (Yildizdan and Bas, 2024). 

Nonetheless, we have another optimizer, namely the 

weighted mean vector (INFO), which is detailed in 

(Ahmadianfar et al., 2022). This method contributes to the 

development of a powerful hybrid optimization 

algorithm. The algorithm relies on three basic principles: 

Vector position update, vector combination, and a local 

search mechanism. To update the vector positions, the 

algorithm uses convergence acceleration and a mean-

based rule. Afterwards, the updated vectors are 

concatenated to create a feasible solution. Finally, local 

search is used to improve utilization and eliminate less 

accurate solutions. 

In the following study, we propose a methodology, 

Binary Coati Weighted Mean of Vector optimization 

algorithm known as BinCoWmv optimization algorithm, 

for FS, synergistically combines the exploration strength 

of the Binary Coati Optimization Algorithm (BinCo) with 

the adaptive local exploitation capability of the Weighted 

Mean Vector Strategy (INFO), by integrating this 

mechanism, BinCoWmv effectively balance global and 

local search dynamics within the binary feature space, 

enabling the identification of compact, high- quality 

feature subset optimizes the performance classification of 

abnormalities. To assess the effectiveness of the proposed 

method, the optimally selected feature subsets were 

evaluated across multiple classifiers using standard 

performance metrics, including accuracy, precision, 

recall, F1-Score, Receiver Operating Characteristic 

(ROC), and specificity. 

The key contributions of the this research are as 

follows: 

 

1. The Gaussian Median filter is employed to eliminate 

noise from images, CLAHE for contrast 

enhancement, while the Sobel Operator is utilized for 

detecting edges 

2. Radiomics texture features such as first-order 

derivates and second order derivatives (GLCM, 

GLRLM, GLDM, GLSZM, NGTDM), extracted 

from the pediatric kidney ultrasound images, totalling 

94 features 

3. A novel hybrid Metaheuristic algorithm called Binary 

Coati Weighted Mean Optimization Algorithm 

(BinCOWmv Optimization Algorithm) is proposed, 

combining the Binary Coati Optimization algorithm 

and the Weighted Mean of Vectors (INFO) method 

for effectively selecting texture features for 

classification of kidney ultrasound images into 

normal and abnormal 

4. The best features are evaluated using Random Forest, 

and the results are compared with other classifiers 

namely, RF, DT, KNN, SVM, NB, and XG-Boost, 

based on accuracy, precision, recall, f1-score, ROC, 

and specificity parameters 

5 A comprehensive comparison was conducted against 

standalone FS methods, including COA, INFO, 

Harris Hawk Optimization (HHO), and Firefly 

optimization Algorithm (FFA) 

 

Literature Review 

Exploring the combination of radiomics with 

ultrasound images has gained considerable traction in 

kidney ultrasound images. Numerous studies have 

explored handcrafted, statistical and radiomics extracted 

features in combination with machine learning or deep 

learning techniques to improve the diagnosis of chronic 

kidney disease, with varying degres of effectiveness. 

Tian et al. (2024) aim to assess the effectiveness of 

ultrasound imaging in detection of CKD. While 

considering the gray-level aspect of US images in the 

diagnosis, feature extraction was performed using CNN, 

whereas the screening model was used along with texture 

features and the ResNet34 deep learning model that could 

identify CKD and its stages. 

Addressing the gap in chronic kidney disease, where 

most of the focus is on the adult population, often ignores 

the physiological differences between adults and children. 

Kou et al. (2024) bridges the gap by developing a non-

invasive diagnostic model for children glomerulonephritis 

classification using ultrasound images; for preprocessing 

and segmentation, the images were standardized to 512 × 

512 pixels, manual pixel-level segmentation was 

performed using the LabelMe tool to extract the region of 

interest; to enhance the model generalization, data 

augmentation was performed using random resizing, 

cropping, flipping, and photometric distortion techniques; 

Image segmentation was performed with precision using 

the U-Net model, while radiomics features were extracted 

from the identified region of interest for feature extraction 

and selection purposes. Statistical method Analysis of 

Variance (ANOVA) was used, and LASSO was used for 

dimensionality reduction. From the selected features, the 

random forest algorithm was applied to generate the 

classification model. 

To enhance early detection of CKD, Patil and 

Choudhary (2024) proposed a novel approach for 
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predicting CKD using a hybrid classification framework, 

an improved Gaussian filter was applied to remove noise 

and improve image quality. Watershed-based algorithm 

used for segmentation, mean intensity, regions of interest, 

and the proposed local vector model features are extracted 

from the segmented images. The extracted features served 

as input to the hybrid classification model, which included 

an optimized neural network and a Long-Short-Term 

Memory (LSTM) network, and the cat swarm 

optimization algorithm was used to fine-tune the neural 

network weights. 

Integrating advanced machine learning techniques for 

the diagnosis of CKD, researchers aim to address the gap 

of traditional methods suffering from low accuracy, 

ineffective data dimensionality handling. In the developed 

classification model, Deepika et al. (2023) focuses on 

improving the FS process. For handling unbalanced data 

and missing values, normalization was applied, outlier 

checking for noise reduction technique, to identify the 

most important features of the fruit fly optimization 

algorithm, and a heterogeneous modified artificial method 

combining a combination of support vector machine, 

multilayer perceptron, and backpropagation method was 

proposed. 

A new method is presented by Biradar et al. (2022) for 

classifying kidney conditions (stones, cysts, and normal 

tissue) by proposing a hybrid approach of feature 

extraction and classification of digital kidney ultrasound 

images. The suggested method employs the contourlet 

transform for noise reduction in images. Following this, 

histogram equalization is applied to enhance image 

quality. The process then involves automatic 

segmentation to isolate the Region of Interest (ROI). 

Subsequently, various features are extracted, including 

Haralick, shape, wavelet, Tamura, and HOG. These 

extracted features are then individually input into 

classifiers for the purpose of classification. 

Overcoming the research gap in the application of 

radiomics in CKD assessment using ultrasound images, 

Bandara et al. (2022) explored the capabilities of 

radiomics features derived from ultrasound images of the 

kidney. The study extracted 465 radiomics features, 

encompassing both first-order and second-order gray-

level statistical measures. Following this, a random forest 

algorithm was employed to identify the most effective 

features from the extracted set. The Gini index was 

utilized to evaluate the significance of each feature, 

resulting in the selection of the top 10 features. These 

chosen features were then used to train a Support Vector 

Machine (SVM) for classification purposes. 

In the study by Tsai et al. (2022), pediatric kidney 

ultrasound images were classified as normal or 

abnormal, while the abnormalities included different 

classes, such as stone cysts, hydronephrosis, space-

occupying lesions, and hyperechogenicity. The 

proposed model underwent preprocessing to 

standardize the input image dimensions. The ResNet-

50 architecture and CNN were pretrained on the 

ImageNet dataset, and transfer learning was 

subsequently used to redefine the final connecting layer 

for the binary classification of normal and abnormal 

images using ResNet-50. 

Kim and Ye (2021) utilized ultrasound images to 

classify the severity of kidney abnormalities into three 

classes, normal, mild, and moderate and severe, while in 

the study ROI recognized the cortex, medulla, cortex, and 

medulla of the kidney, features were extracted from the 

same, using the GLCM algorithm; 57 features were 

extracted including the size of the kidney, which is crucial 

in diagnosis; 58 input nodes, 10 hidden layers, and 3 

output layers were constructed using ANN for 

classification. 

The objective of the research proposed by Priyanka 

and Kumar (2020) was to develop a classification model 

for kidney images by extracting texture features and 

selecting the best subset to enhance classification 

accuracy. The researchers used ultrasound images of 

kidneys to extract GLCM features, which offer crucial 

insights into texture patterns. To reduce the 

dimensionality and computational complexity of the 

feature set, PCA was employed. PCA identified the 12 

most significant features out of the original 44, retaining 

most of the data's variance. This reduced feature set was 

then used to train an ANN for classification, achieving a 

classification accuracy of 77.8% with PCA and 53.3% 

without PCA. 

Nithya et al. (2020) focused on the application of 

machine learning techniques in medical image processing. 

The research proposes a novel hybrid method combining 

ANN for classification and multi- kernel k-means clustering 

for segmentation, the research highlights the importance of 

GLCM for detecting kidney abnormalities. To enhance the 

performance, the Crow Search Optimization Algorithm 

(CSOA) is used for feature selection. The experimental 

results showed that the proposed method achieves a 

maximum accuracy of 93.45%. 

A novel method for predicting kidney disease using 

ultrasound and an Artificial Neural Network (ANN) 

has been introduced by Balamurugan and Arumugam 

(2020). This approach involves four steps: Initially, 

images undergo pre-processing with an optimal 

wavelet and bilateral filter. Subsequently, GLCM 

features are extracted from each image, and the most 

significant features are selected through the 

oppositional grasshopper optimization algorithm. 

Finally, the ANN is employed to classify the images as 

either normal or abnormal. The proposed system 

achieves a peak accuracy of 95.83%. This research 

investigated the use of texture analysis for categorizing 

kidney disease across various stages. The methodology 

employed in the study by Ahmad and Mohanty (2021) 
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encompassed several steps: Preprocessing, which 

included speckle noise elimination and contrast 

enhancement; segmentation to extract regions of 

interest; feature extraction utilizing GLCM to capture 

spatial relationships between pixel intensities and 

wavelet transform; and classification. The final step 

involved applying machine learning algorithms, 

specifically ANN and SVM, to classify the trained 

selected features. Alkordy et al. (2023) provided a 

technique for the classification of kidney ultrasound 

images based on the stages, addressing the research gap 

of identifying CKD early stages by integrating Deep 

CNN, specifically VGG16, and PCA for feature 

extraction, and the performance of the model was 

assessed using metrics such as accuracy, precision, 

recall and F1score. A comparative summary of recent 

studies in kidney ultrasound classification is presented 

in Table 1, outlining their feature extraction, selection, 

dataset types, classifier performance, and limitations 

this table highlights the limited use of texture features 

in classification, especially in pediatric contexts. 

Existing research on kidney disease classification 

often integrates deep learning, radiomic, and other 

features, but tends to overlook the standalone 

diagnostic significance of texture features in pediatric 

ultrasound. On the other hand, meta-heuristic methods 

like Coati Optimization Algorithm (COA) and INFO 

(weighted average of vector optimization) have yielded 

encouraging outcomes for FS tasks. COA has been 

employed in breast cancer classification using transfer 

learning to enhance model precision (Emam et al., 

2024). Enhanced versions of Coati, such as dynamic 

COA and elite opposition COA, have been utilized on 

benchmark and biomedical datasets, showing an 

improved balance between exploration and exploitation 

(Qtaish et al., 2025; Wang et al., 2022). Likewise, 

INFO has been used for FS on microarray genetic data 

and EEG signal classification (Osama et al., 2023; 

Wang et al., 2022) demonstrates its capability to 

manage high-dimensional inputs effectively. 

Nonetheless, no current research integrates COA and 

INFO into a unified binary hybrid optimization 

algorithm framework. Additionally, earlier studies 

have predominantly concentrated on structural tabular 

datasets for FS, with limited exploration of texture-rich 

FS-based medical images.

 

Table 1: Detailed description of literature review 

Reference 
FS techniques 

used 
Data type and Size 

Features extracted and 

count 
Accuracy Limitations 

(Tian et al., 

2024) 
CNN (No FS) 

Ultrasound, 1456 

images 

Deep features 

(Resnet-34)-GLCM, 

HOG 

Not reported 
NO FS strategy: 

Potential overfitting 

(Kou et al., 

2024) 
LASSO 

Pediatric 

glomerulonephritis, 

469 images 

Radiomics (ROI)-1422 

features 
95.16% 

Statistical FS lack 

adaptability; manual 

segmentation 

(Patil and 

Choudhary, 

2024) 

None 
Ultrasound, 137 

images 

Local vector model+ 

ROI + mean intensity-

based features 

94.08% 
FS not optimized, 

heuristic tuning 

(Bandara et al., 

2022) 

Random 

Forest +Gini 

index 

Ultrasound radiomics, 

102 images 

Radiomics (1st& 2nd 

order)-465 features 
93.73% 

No optimizer; high 

dimensionality 

retained 

(Kim and Ye, 

2021) 
GLCM 

US Kidney (3 class: 

Normal/Mild/Severe) 

-471 images 

GLCM+ Size metrics-

57 features 
95.4% 

Manual ROI; no 

optimization 

(Priyanka and 

Kumar, 2020) 
PCA 

Ultrasound (Normal, 

Kidney stone, cysts 

tumor) 

GLCM,44 features 
77.8% 

 

Optimization and 

other classifier need to 

be applied to check the 

robustness of the 

proposed approach 

(Nithya et al., 

2020) 

Crow search 

optimization 

algorithm 

Ultrasound (stone, 

tumor), 100 images 
GLCM, 22 features 93.45% 

Limited dataset may 

have led to overfitting 

(Alkordy et al., 

2023) 
PCA 

Ultrasound (normal, 

stone, hydrops and 

cysts), 1260 images 

VGG-16 features 92.11% 
Classifier not clearly 

defined 

(Balamurugan 

and 

Arumugam, 

2020) 

Oppositional 

Grasshopper 

optimization 

algorithm 

Ultrasound, 1000 

images 

GLCM, 22 features 

 

 

 

95.83% 

Research does not 

explicitly provide 

recall, f1 score or AUC 
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This research is dedicated solely to estimating texture 

features and feature extraction by introducing the binary 

hybrid metaheuristics feature selection algorithm, 

BinCoWmv, which merges Binary Coati Optimization 

with the Weighted Mean Vector method. The proposed 

approach effectively identifies highly correlated features, 

enhancing the classification process while preserving the 

simplicity of the model. 

Methods 

This section outlines methodological framework for 

classifying pediatric kidney ultrasound images using an 

optimized feature selection strategy. The proposed 

pipeline combines image processing, radiomics-based 

texture feature extraction, a novel hybrid feature selection 

algorithm (BinCoWmv), and a machine learning classifier 

to facilitate early detection of pediatric renal abnormalities. 

Figure 1 displays the workflow diagram of the proposed 

system for organizing pediatric kidney ultrasound images. 

The following subsections provide a step-by-step 

explanation of each component of the methodology. 

Dataset Description 

For the following research work, acquiring the dataset 

of pediatric kidney ultrasound images was a tedious task, 

as there are no standard datasets offered for this purpose. 

Therefore, it was necessary to gather images for the 

dataset from the ultrasound case site (Shankar, 2024). For 

our study, we collected images of various kidney cases 

from pediatric ultrasound examinations, considering the 

age group from 3 weeks to 7 years old. In total 340 images 

of both normal and abnormal cases. 

This Process synthetically generated additional 

samples for the minority (Normal) class based on nearest 

neighbor interpolation, resulting in a balanced dataset of 

477 images-238 normal and 239 abnormal. Subsequently, 

the data were partitioned using a stratified 70:30 split, 

where 70% for training, 30% for testing. Ensuring that the 

class distribution was maintained across the subset and 

improving the reliability of the performance evaluation 

across classifiers, a detailed description of the 

preprocessing is mentioned in the following research 

paper (Kausar and Ramamurthy, 2023). 

Feature Extraction 

In the proposed study, we have extracted 94 image 

characteristics, encompassing both primary and 

secondary texture measurements from the Pyrandiomics 

library (Van Griethuysen et al., 2017). Primary features 

evaluate the distribution of voxel intensities, whereas 

texture measurements assess the spatial arrangement of 

these intensities. The analysis incorporated a wide range 

of texture metrics, including features derived from Gray-

Level Co-occurrence Matrix (GLCM), Gray-Level Size 

Zone Matrix (GLSZM), Gray-Level Run Length Matrix 

(GLRLM), neighboring gray-tone difference matrix 

(NGTDM), Gray-Level Difference Matrix (GLDM), and 

first-order derivatives. This comprehensive approach 

enhanced the thoroughness of feature extraction. A 

concise Table 2 outlines the textural characteristics and 

their properties utilized in this research. 

 
Table 2: Outline of texture features extracted and its description 

Feature group Count of 

features 

Description Relevance  

First-Order 

19 

Statistical measure of pixel intensity is calculated, such as 

mean, entropy percentile 

To measure the overall strength 

properties, including the uniformity 

of tissue in the area 

GLCM 

24 

It studies image texture based on the spatial relationship 

between pixels, includes features such as contrast, 

correlation, joint 

entropy.

  

Helpful for recognizing regions 

with different textures and designs 

GLRLM 

16 

It calculates the occurrence of gray level values and their 

path for different combination, includes features such as 

short or long run emphasis 

Determine the form or resemblance 

of the components, particularly if 

they are alike. 

GLSZM 

16 

Counts the occurrence of gray level in the images, feature 

including zone size and zone percentage 

Helpful for identifying regions 

where pixel values are 

concentrated, which might suggest 

tissue patterns. 

GLDM 

14 

Quantifies the relationship between gray level within 

connected to centre pixel, considering features with low 

and high dependency emphasis 

Illustrates the connection between 

pixel brightness levels and might 

indicate subtle differences in tissue. 

NGTDM 

05 

Determines the variance between individual pixel 

grayscale values and the mean grayscale pixel value, 

encompassing characteristics such as intensity, intricacy, 

and activity level. 

Highlight the area with high and 

low intensity variations  
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Fig. 1: Proposed methodology framework 

 

Feature Selection 

Coati Optimization Algorithm (COA) 

The COA, introduced by Dehghani et al. (2023), is 

inspired by the natural foraging and social behaviors of 

coatis. In this algorithm, each coati represents a member 

of the population. A key advantage of the COA is that it 

operates without any algorithm-specific control 

parameters, which enhances its simplicity and makes it 

effective for tackling high dimensional and complex 

optimization problem. 

 The development of the metaheuristic algorithm is 

based on their predatory actions and strategies to avoid 

becoming prey. It simulated two specific behaviors: 

Predation, iguana attack, and avoidance of attack by their 

own predators. Behavior of the coatis are mathematically 

formulated sequentially below. 

Initialization of Coati Swarm 

The COA process begins by randomly initializing the 

position of the coatis within the search spaces. The 

position of the ith in the jth dimension is mathematically 

defined using the Eq. 1: 
 
𝐶𝑂𝑖𝑗 = 𝐿𝑂𝑗 + 𝑟. (𝑈𝑃𝑗 − 𝐿𝑂𝑗)  (1) 

 

Where COij represents the position of the ith coati, r is 

a random real number in the range (0,1), and UPj and LOj 
: the upper and lower bounds of the jth decision variable 

respectively. 

Phase 1: Hunting and Attacking on Iguana 

(Exploration) 

In this phase, the coatis mimic their natural hunting 

strategy by dividing into two groups. One group climbs 

tree to frighten the iguana, while other group waits below 

to capture the prey. This Cooperative behavior models the 

exploration process, enabling the algorithm to search 

diverse region of the solution space, as mathematically 

formulated in Eq. 2: 

 

𝐶𝑂𝑗
𝑝1 = 𝐶𝑂𝑖𝑗 + 𝑅𝑎. (𝐼𝑞𝑢𝑎𝑛𝑎𝑗 − 𝐼. 𝐶𝑂𝑖𝑗)  (2) 

Where 𝐶𝑂𝑗
𝑝1denotes the new position of the ith coati, 

𝐶𝑂𝑖𝑗  represents the current position of the ith coati in the 

jth dimension, I is a random value, Ra is another random 

variable, and Iguanaj indicates the position of the iguana 

in the jth dimension. 

The second group models the random falls fo the 

iguana using Eq. 3: 
 

𝐼𝑔𝑢𝑎𝑛𝑎𝐺 = 𝐿𝐵𝑗 + 𝑅𝑎(𝑈𝑃𝐽 − 𝐿𝑂𝐽) (3) 
 

The position is adjusted according to the comparison 

of fitness between the current and new position using Eq. 4: 
 

𝐶𝑂𝑖
𝑃1 = [

𝐶𝑂𝑖𝑗 + 𝑟. (𝐼𝑔𝑢𝑎𝑛𝑎 − 𝐼. 𝐶𝑂𝑖𝑗), 𝐹𝑖𝑔𝑢𝑎𝑛𝑎 < 𝐹𝑖

𝐶𝑂𝑖𝑗 + 𝑅𝑎. (𝐶𝑂𝑖𝑗 − 𝐼𝑔𝑢𝑎𝑛𝑎𝑗), 𝑒𝑙𝑠𝑒
]  (4) 

 

Where IguanaG denotes the position of the iguana, 

Figuana represents the objective function value of Iguana, 

and Fi is the objective function value of the ith coati.  

Phase 2: Escaping from predatory (Exploitation) 

This phase illustrates the coatis' tendency to avoid 

danger by seeking refuge. They head towards a secure 

spot within their immediate vicinity. The size of this local 

area is adjusted dynamically according to the current 

iteration number t: 
 

𝐿𝑂𝑗
𝑙𝑜𝑐𝑎𝑙 =

𝐿𝑂𝑗

𝑡
,  𝑈𝑂𝑗

𝑙𝑜𝑐𝑎𝑙 =
𝑈𝑂𝐽

𝑡
 (5) 

 
The new position is computed as in Eq. 6: 

 
𝐶𝑂𝑖

𝑃2 = 𝐶𝑂𝑖𝑗 + (1 − 2𝑅𝑎). (𝐿𝑂𝑗
𝑙𝑜𝑐𝑎𝑙 + 𝑅𝑎. (𝑈𝑃𝑗

𝑙𝑜𝑐𝑎𝑙 −

𝐿𝑂𝑗
𝑙𝑜𝑐𝑎𝑙)   (6) 

 
Where 𝐶𝑂𝑖

𝑃2 defines the updated position of the coati, 

LOj
local  the local minimum bound of the 𝑗𝑡ℎ  decision 

variable, 𝑈𝑂𝑗
𝑙𝑜𝑐𝑎𝑙  denotes its local maximum bound, and t 

corresponds to the current iteration index. 

Phase 3: Selection Mechanism 

A greedy strategy is applied to preserve the most 

promising solutions, whereby a new position is accepted 

only if it improves the fitness value, as defined in Eq. 7: 
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𝐶𝑂𝑖
𝑃2 = [

𝐶𝑂𝑖
𝑃2 , 𝐹𝑖𝑔𝑢𝑎𝑛𝑎

𝑃2 < 𝐹𝑖
𝐶𝑂𝑖𝑗 𝑒𝑙𝑠𝑒

]  (7) 

 

Where 𝐶𝑂𝑖
𝑃2  is 𝑗𝑡ℎ dimension, 𝐹𝑖𝑔𝑢𝑎𝑛𝑎

𝑃2  represents 

objective value function. 

After the coatis in the population have undergone 

position placement according to the algorithm's phases, 

from updating the population in equations 2 through 7 to 

identifying the remaining coatis in the search space and 

reaching the final iteration, the COA presents its output as 

the optimal solution across all iterations. 

Weighted Mean Optimization Algorithm (INFO) 

The Weighted Mean of Vectors (INFO) algorithm, 

proposed by Ahmadianfar et al. (2022) is a population-

based optimization technique designed to tackle complex 

search problems using a dynamic vector-driven strategy. 

The algorithm proceeds through three main stages: A 

vector construction mechanism, a vector assembly phase, 

and a local search process. Its central principle lies in 

improving the population by computing a weighted mean 

of candidate’s solutions, after which unfit vectors are 

replaced or refined. This process strengthens the global 

search capability while preserving local optimality. 

Initialization Stage  

The INFO algorithm, the population of vectors NP is 

distributed within a D0dimensional search space, 

expressed as: 

 

(𝑋𝑙,𝑗
𝑔
= 𝑥𝑙1

𝑔
, 𝑥𝑙2

𝑔
, 𝑥𝑙3
𝑔
, … . , 𝑥𝑙𝐷

𝑔
}, 𝑙 = 1,2,… , 𝑁𝑃) 

 

Theo key parameters govern the process: The 

weighted average factor (𝛿) and the scaling factor, which 

refine the updated vectors in line with the search domain. 

These parameters are computed adaptively, often through 

an exponential formulation, ensuring they remain 

consistent with the feasible search boundaries. Unlike 

algorithms that reply on user-defined settings, INFO 

adjusts these parameters dynamically. The algorithm 

begins by randomly initializing the vector population, 

thereby establishing diversity in the initial search. 

Phase 1: Updating Rule 

The INFO algorithm employs a distinctive update 

strategy that encourages diversity among the population 

while utilizing the weighted mean of vector to create new 

vectors. This algorithms unique method is founded on two 

core principles. The first principle involves a rule bases 

on the mean, derived from a weighted average of 

randomly chose vectors within the population. The second 

principle focuses on accelerating convergence, which 

aims to enhance the algorithms speed and efficiency, 

ultimately aiding in the identification of the optimal 

solution. 

 

The Mean Rule (MR) is defined as follows: 
 

 𝑀𝑅 = 𝑟 ×𝑀1𝑙
𝑔
+ (1 − 𝑟) × 𝑀2𝑙

𝑔
 where l = 1,2,3…,Np  (8) 

 

Where:  

 

M1l
g
= δ ×

w1(xa1−xa2)+ w2(xa1−xa3)+w3(xa2−xa3)

w1+w2+w3+ε
+ ε × rand (9)  

 

Where:  
 

w1 = cos((f (xa1) − f(xa2)) + π) × exp (−
f(xa1)−f(xa2)

ω
)  (10) 

 

w2 = cos((f (xa1) − f(xa3)) + π) × exp (−
f(xa1)−f(xa3)

ω
)   (11)  

 

w3 = cos((f (xa2) − f(xa3)) + π) × exp (−
f(xa2)−f(xa3)

ω
) (12)  

 

ω = max (f (xa1), f (xa2), f (xa3))  (13) 
 

Where:  

 

𝑀2𝑙
𝑔
= 𝛿 ×

𝑤1(𝑥𝑏𝑠−𝑥𝑏𝑡)+ 𝑤2(𝑥𝑏𝑠−𝑥𝑤𝑠)+𝑤3(𝑥𝑏𝑡−𝑥𝑤𝑠)

𝑤1+𝑤2+𝑤3+𝜀
+ 𝜀 × 𝑟𝑎𝑛𝑑  (14) 

 

Where:  
 

w1 = cos((f (xbs) − f(xbt)) + π) × exp (−
f(xbs)−f(xbt)

ω
) (15)  

 

w2 = cos((f (xbs) − f(xws)) + π) ×

exp (−
f(xbs)−f(xws)

ω
) (16) 

 

w3 = cos((f (xbt) − f(xws)) + π) × exp (−
f(xbt)−f(xws)

ω
) (17) 

 

 𝜔 = 𝑓(𝑥𝑤𝑠)  (18) 

 

 𝛿 = 2𝛽 × −𝛽  (19) 

 

𝛽 = 2𝑒𝑥𝑝 (−4 ×
𝑔

𝑀𝑎𝑥𝑔
)   (20) 

 

In the above context, f(x) represents the objective 

function, while w1, w2, w2  denoten from the interval [0, 

0.5] and ω serve wavelet functions. The variable r is a 

random value draw s as an adjustment factor for the 

expansion parameter. The term ε refers to a very small 

constant. The indices a1 ≠ a2 ≠ a3 ≠ l  are distinct 

integers randomly selected from the range [1, N]. The 

notations 𝑥𝑏𝑠 , 𝑥𝑏𝑡 , 𝑥𝑤𝑠 corresponds to the best, better, and 

worst individuals in the population during the gth 

generation, respectively, while Max g denotes the 

maximum number of generations. 
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Within INFO, CA facilitates the movement of vectors 

in various directions, striving to achieve an optimal 

solution. This process can be described as follows:  

 

C𝐴 = 𝑟𝑎𝑛𝑑𝑛 ×
(𝑥𝑏𝑠−𝑥𝑎1)

(𝑓 (𝑥𝑏𝑠)−𝑓 (𝑥𝑎1)+𝜖)
 (21) 

 

Hence, the new vector is defined as follows: 

 

𝑧𝑙
𝑔
= 𝑥𝑙

𝑔
+ 𝜎 ×𝑀𝑅 + 𝐶𝐴 (22) 

 

During the iterative process, a comprehensive global 

search is required to identify the most promising regions 

within the search space, a stage referred to as the 

exploration phase. In the INFO algorithm, these regions 

are represented by the vectors xbs, xbt, xws , which 

corresponds to candidate solutions proposed in the ith 

iteration and are defined through specific mathematical 

formulations:  
 

{
 
 
 
 

 
 
 
 

if rand < 0.5

z1l
g
= xl

g
+ σ ×MR + randn 

xbs−xl
g

(f (xbs)−f (xl
g
)+1)

z2l
g
= xbs + σ ×MR + randn 

xa1
g
−xa2

g

(f (xa1
g
)−f (xa2

g
)+1)

else

z1l
g
= xa

g
+ σ ×MR + randn 

xa2
g
−xa3

g

(f (xa2
g
)−f (xa3

g
)+1)

z2l
g
= xbt + σ ×MR + randn 

xa1
g
−xa2

g

(f (xa1
g
)−f (xa2

g
)+1)

  (23) 

 

In the gth generation, the newly generated vectors are 

denoted as 𝑧1𝑙
𝑔
, 𝑧2𝑙

𝑔
 . The scaling rate of a vector, 

represented by σ, is calculated using Eq. 24: 
 
𝜎 = 2𝛼 × 𝑟𝑎𝑛𝑑 − 𝛼 (24) 
 
Where, α has the ability to modify its location using an 

exponential function, which is expressed as:  

 

𝛼 = 𝑐 𝑒𝑥𝑝 (−𝑑 ×
𝑔

𝑀𝑎𝑥𝑔
) (25) 

 
Where α  = 2 and 𝑑  = 4 are constant numbers, it is 

worth noting that, if value of σ very large, the algorithm 

employs a larger step size, allowing the current vector to 

conduct a broad search. This results in the algorithm 

favouring exploration or else causing the current vector to 

perform a localized search. In this case, the algorithm 

leans towards the development phase. 

Phase 2: Vector Combining Phase 

In the second phase, vector merging is essential for 

boosting population diversity and enhancing the ability to 

conduct local searches. The newly created vectors z1l
g
and 

z2l
g
 are merged to form new ones, which can potentially 

lead to improved solutions during the search process. This 

merging is illustrated by the equation given below: 

{
 
 
 
 

 
 
 
 

𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5
𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5

𝑢𝑙
𝑔
= 𝑧1𝑙

𝑔
+ 𝜇. |𝑧1𝑙

𝑔
− 𝑧2𝑙

𝑔
|

𝑒𝑙𝑠𝑒
𝑢𝑙
𝑔
= 𝑧2𝑙

𝑔
+ 𝜇. |𝑧1𝑙

𝑔
− 𝑧2𝑙

𝑔
|

𝑒𝑛𝑑
𝑒𝑙𝑠𝑒

𝑢𝑙
𝑔
= 𝑥𝑙

𝑔

𝑒𝑛𝑑

  (26) 

 

Where 𝑢𝑙
𝑔
 denoted the newly generated vector in the 

gth. 

Generation, and 𝜇 = 0.05 × randn , with randn 

representing a normally distributed random value. 

Phase 3: Local Search Strategy 

The INFO algorithm employs a local search strategy 

to prevent stagnation in local optima and to strengthen 

exploitation, thereby improving convergence toward the 

global solution. This is achieved through a heuristic that 

generates a new vector. When r < 0.5, a candidate vector, 

denoted as 𝑥𝑏𝑒𝑠𝑡
𝑔

 , is created around the current operator. 

In this context, rand represents a random value within the 

interval [0,1]. This stage of the process is defined as 

follows:  

 

{
  
 

  
 

if rand < 0.5
if rand < 0.5

ul
g
= xbs + randn × (MR+ randn × xbs

g
− xa1

g
))

else
ul
g
= xbs + randn × (MR+ randn × (v1 × xbs − v2 × xrnd))

end
end

 (27) 

 

Where:  

 

xrnd = ∅ × xavg + (1 − ∅) × (∅ × xbt + (1 − ∅) × xbs  (28) 

 

xavg =
(xa+xb+x3)

3
 (29) 

 

v1 = {
2 × rand if p > 0.5
1 otherwise 

 (30) 

 

v2 = {
rand if p < 0.5
1 otherwise 

  (31) 

 

where, ∅ denotes a value randomly selected from the 

range of 0 to 1; 𝑣1 and 𝑣2 are two such random numbers 

as previously described and detailed description of the 

following optimization algorithm is described in 

following research work (Ahmadianfar et al., 2022). 

Proposed BinCoWmv Optimization Algorithm 

(Binary Coati Weighted Mean Vector)  

The BinCoWmv Optimization Algorithm process 

begins with the initialization of the coati population; in 

first phase the coati location is initialized:  
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𝐶𝑖𝑗 = 𝐿𝑜𝑗 + 𝑟. (𝑈𝑝𝑗 − 𝐿𝑜𝑗)  (32) 

 

Where 𝐶𝑖𝑗  denotes the position of the coati, r is a 

random value, and 𝐿𝑜𝑗  𝑎𝑛𝑑 𝑈𝑝𝑗 represents the lower and 

upper bound of the jth decision variable, respectively. In 

this phase, the coatis split into two groups: One climbs the 

tree to chase iguanas, while the other waits on the ground 

to capture it. Based on this cooperative behavior, the 

iguana’s position is updated according to the following 

Equations: 

 

𝐶𝑗
𝑛𝑒𝑤 = 𝐶𝑖𝑗 + 𝑅𝑣. (𝐼𝑞𝑗 − 𝐼. 𝐶𝑖𝑗) (33) 

 

Where 𝐶𝑗
𝑛𝑒𝑤 is the new position of the ith coati, 𝐶𝑖𝑗 is 

the position of the ith coati in jth dimension, 𝐼  is the 

random value, 𝑅𝑣 is the random value, 𝐼𝑞𝑗  is the location 

of the Iguana. The position of the coati is updated based 

on their random position: 

 

 𝐼𝑔𝐺 = 𝐿𝑏𝑗 + 𝑅𝑎(𝑈𝑝𝑗 − 𝐿𝑜𝑗) (34) 

 

[
𝐶𝑖𝑗 + 𝑟. (𝐼𝑔 − 𝐼. 𝐶𝑖𝑗), 𝐹𝐼𝑔 <  𝐹 (𝐶𝑖𝑗)

𝐶𝑖𝑗 + 𝑅𝑎. (𝐶𝑖𝑗 − 𝐼𝑔𝑗), 𝑒𝑙𝑠𝑒
] (35) 

 

Where 𝐼𝑔𝐺  is the location of the iguana, 𝐹𝑖𝑔𝑢𝑎𝑛𝑎 is the 

iguana objective function, 𝐹𝑖is the objective function of 

the ith coati, the position of the iguana shows the best 

location.  

In the second phase, the process involves updating 

rules and combining vectors. Rather than moving towards 

an improved solution, a set of randomly chosen coati 

differential vectors is used to calculate a weighted 

average. This phase considers population diversity 

through the Mean Rule, which is influenced by the better, 

best, and worst solutions. The better solution is identified 

by evaluating the objective value of the top-performing 

solution, and the 𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒  is conducted based on the Eq. 

36 defined:  
 
𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 = rv ∙ 𝐶𝑊𝑀1 + (1 − r) ∙  𝐶𝑊𝑀1 (36) 
 

𝐶𝑊𝑀1 =  𝛿 ×
𝑤1∙(𝑐𝑎− 𝑐𝑏)+𝑤2∙(𝑐𝑎− 𝑐𝑐)+𝑤3∙(𝑐𝑏− 𝑐𝑐)

𝑤1+𝑤2+𝑤3+𝜀
+ 𝜀 × 𝑟 (37) 

 

Where:  
 

𝑤1 = cos((𝑓𝑎 − 𝑓𝑏) + 𝜋) × exp (
𝑓𝑎−𝑓𝑏

𝜔
) (38) 

 

𝑤2 = cos((𝑓𝑎 − 𝑓𝑐) + 𝜋) × exp (
𝑓𝑎−𝑓𝑐

𝜔
) (39) 

 

𝑤3 = cos((𝑓𝑏 − 𝑓𝑐) + 𝜋) × exp (
𝑓𝑏−𝑓𝑐

𝜔
) (40) 

 
Where:  

 
𝜔1 = max( 𝑓𝑎  , 𝑓𝑏  , 𝑓𝑐)  (41) 

𝑓𝑎 = 𝑓(𝐶𝑎), 𝑓𝑏 = 𝑓(𝐶𝑏), 𝑓𝑐 = 𝑓(𝐶𝑐) (42) 

 

𝐶𝑊𝑀2 =  𝛿 ×
𝑤4∙(𝐶𝑏𝑠− 𝐶𝑏𝑡)+𝑤5∙(𝐶𝑏𝑠− 𝐶𝑤𝑠)+𝑤3∙(𝐶𝑏𝑡− 𝐶𝑤𝑠)

𝑤4+𝑤5+𝑤6+𝜀
+ 𝜀 × 𝑟  (43) 

 

Where:  
 

𝑤1 = cos((𝑓1 − 𝑓2) + 𝜋) × exp (
𝑓1−𝑓2

𝜔2
) (44) 

 

𝑤2 = cos((𝑓1 − 𝑓3) + 𝜋) × exp (
𝑓1−𝑓3

𝜔2
) (45) 

 

𝑤3 = cos((𝑓2 − 𝑓3) + 𝜋) × exp (
𝑓2−𝑓3

𝜔2
) (46) 

 

Where:  

 

𝜔2 = max( 𝑓1 , 𝑓2 , 𝑓3) (47) 

 

𝑓1 = 𝑓(𝐶𝑏𝑠), 𝑓2 = 𝑓(𝐶𝑏𝑡), 𝑓3 = 𝑓(𝐶𝑤𝑠) (48) 

 

Where 𝑓𝑥 is the objective function value, where a 𝑎 ≠
𝑏 ≠ 𝑐  are the coatis randomly selected from the 

population, 𝜀 is very small constant value, r is the random 

value normally distributed, 𝐶𝑏𝑠  , 𝐶𝑏𝑠  , 𝐶𝑏𝑠  are the coati’s 

best, better and worst solution among all the vectors in the 

population. Based on the iteration the solution is being 

determined, rv is the random value, 𝑤1, 𝑤2, 𝑤3 are the 

WF’s to calculate the weighted mean vector of the coatis, 

that help to search in the solution space globally. To 

discover promising search space, the updating is based on 

following condition: 

 

{
 
 
 

 
 
 𝐶𝑂𝑧1 = 𝐶𝑖 +  𝜎 ∙ (𝑟𝑣 ∙ 𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒) +

𝑟𝑣.(𝐶𝑏𝑠−𝐶𝑎)

𝑓1−𝑓𝑎+1

𝐶𝑂𝑧2 = 𝐶𝑏𝑠 +  𝜎 ∙ (𝑟𝑣 ∙ 𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒) +
𝑟𝑣.(𝐶𝑎−𝐶𝑏)

𝑓𝑎−𝑓𝑏+1

𝑒𝑙𝑠𝑒

𝐶𝑂𝑧1 = 𝐶𝑎 +  𝜎 ∙ (𝑟𝑣 ∙ 𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒) +
𝑟𝑣.(𝐶𝑏−𝐶𝑐)

𝑓𝑏−𝑓𝑐+1

𝐶𝑂𝑧2 = 𝐶𝑏𝑡 +  𝜎 ∙ (𝑟𝑣 ∙ 𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒) +
𝑟𝑣.(𝐶𝑎−𝐶𝑏)

𝑓𝑎−𝑓𝑏+1

 (49) 

 

Where 𝐶𝑂1 and 𝐶𝑂2  represents the newly generated 

population vectors, 𝜎 is the scaling factor as defined in Eq 

49 and 𝛼 is an adaptive parameter that can be adjusted 

according to the exponential function specified in Eq. 50: 
 

𝛼 = 𝑐 exp (−𝑑 ×
𝑔

𝑀𝑎𝑥𝐶
) (50) 

 

In the exploration phase of the BinCoWmv 

optimization algorithm, population diversity is enhanced 

by combining two coati vectors with the vector 𝐶𝑖𝑗. When 

the condition rand <0.5 is satisfied, a new vector 𝐶𝑉𝑖𝑗 is 

generated according to Eq. 51. This operator strengthens 

the local search capability, allowing the algorithm to 

introduce novel potentially more promising candidate 

solutions: 
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{
 
 
 
 

 
 
 
 

𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5
𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5

𝐶𝑉𝑖𝑗 =  𝐶𝑂𝑧1 + 𝜇 ∗ |𝐶𝑂𝑧1 − 𝐶𝑂𝑧2|

𝑒𝑙𝑠𝑒
𝐶𝑉𝑖𝑗 =  𝐶𝑂𝑧2 + 𝜇 ∗ |𝐶𝑂𝑧1 − 𝐶𝑂𝑧2|

𝑒𝑛𝑑
𝑒𝑙𝑠𝑒

𝐶𝑖𝑗 = 𝐶𝑉𝑖𝑗

  (51) 

 

𝐶𝑖 = {
𝐶𝑉𝑖𝑗

𝑛𝑒𝑤 , 𝐹𝑖
𝑛𝑒𝑤 < 𝐹(𝐶𝑖𝑗)

𝐶𝑖𝑗 𝑒𝑙𝑠𝑒 
  (52) 

 

Where 𝐶𝑉𝑖𝑗  represents the vector generated through 

the combination process within the population, 

𝜇 𝑖𝑠 𝑠𝑒𝑡 𝑡𝑜 0.05.  
Lastly, in the third phase, the algorithm refines 

solutions by updating the positions of the coatis in the 

search space, simulating their response to an attack or 

threat form a predator: 

 

𝑙𝑜𝑐𝑎𝑙𝑙𝑏 =
𝑙𝑏𝑗

𝑡
 , 𝑙𝑜𝑐𝑎𝑙𝑢𝑏 =

𝑢𝑏𝑗

𝑡
  (53) 

 

𝐶𝑖
𝑛𝑒𝑤 =  𝐶𝑖𝑗 + (1 − 2𝑟) ∙ (𝑙𝑜𝑐𝑎𝑙𝑗

𝑙𝑏 + 𝑟 ∙ (
𝑙𝑜𝑐𝑎𝑙𝑗

𝑢𝑏 −

𝑙𝑜𝑐𝑎𝑙𝑗
𝑙𝑏
)  (54) 

 

Where 𝐶𝑖
𝑛𝑒𝑤  denotes the updated position of the ith 

coati in the third phase of COA, and 𝐶𝑖
𝑛𝑒𝑤 represents its 

position in the jth dimension. Here r is a random value, t 

indicates the current iteration, 𝑙𝑜𝑐𝑎𝑙𝑗
𝑢𝑏 and 𝑙𝑜𝑐𝑎𝑙𝑗

𝑙𝑏  define 

the local upper and lower bounds of the jth decision 

variable, while 𝑢𝑏𝑗  and 𝑙𝑏𝑗 , corresponds to the global 

upper and lower bounds of the jth decision variable, 

respectively. 

Furthermore, to prevent coatis from becoming trapped 

in local optima, the mean rule defined in Eq. 36 is 

incorporated within the local search during the 

exploitation phase. This mechanism enhances both the 

search process and convergence towards the global 

optimum. Based on this operator, a new vector is 

generated using Eq. 55: 

 

 

{
  
 

  
 

𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5
𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5

𝐶𝑉𝑖𝑗 = 𝐶𝑏𝑠 + 𝑟𝑎𝑛𝑑 ∗ (𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 + 𝑟𝑎𝑛𝑑 ∗ (𝐶𝑏𝑠 − 𝑓𝑎)

𝑒𝑙𝑠𝑒
𝐶𝑉𝑖𝑗 = 𝐶𝑏𝑠 + 𝑟𝑎𝑛𝑑 ∗ (𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 + 𝑟𝑎𝑛𝑑 ∗ (𝑣1 ∗ 𝐶𝑏𝑠 − 𝑣2 ∗ 𝐶𝑟𝑎𝑛𝑑)

𝑒𝑛𝑑
𝑒𝑛𝑑

(55) 

 
Where ∅ stands for random number between (0,1), 

𝐶𝑟𝑎𝑛𝑑 is the new solution that combines the elements of 

the solution 𝑥𝑎𝑣𝑔, 𝐶𝑏𝑠, 𝐶𝑏𝑡:  
 
 𝐶𝑟𝑛𝑑 = ∅ × 𝐶𝑎𝑣𝑔 + (1 − ∅) × (∅ × 𝐶𝑏𝑡 + (1 − ∅) × 𝐶𝑏𝑠 (56) 

 

𝑥𝑎𝑣𝑔 =
(𝐶𝑎+𝐶𝑏+𝐶𝐶)

3
  (57)  

The newly calculated and updated position to improve 

the objective function, simulated using the following 

condition:  
 

𝐶𝑖 = {
𝐶𝑖𝑗
𝑛𝑒𝑤 , 𝐹𝑖

𝑛𝑒𝑤 < 𝐹(𝐶𝑖𝑗)

𝐶𝑖  𝑒𝑙𝑠𝑒 
  (60) 

 
Here 𝐶𝑖

𝑛𝑒𝑤 represents the updated position of the coati 

as determined in the third phase of the BinCoWmv 

optimization algorithm, 𝐶𝑖𝑗
𝑛𝑒𝑤 denotes its position in the jth 

dimension, 𝐹𝑖
𝑛𝑒𝑤  corresponds to its objective function 

value. 

In medical feature selection problems, binary values 0 

and 1 are used to represent whether a feature is excluded 

or selected. Since the proposed BinCoWmv optimization 

algorithm functions in a continuous search space, a 

transformation into binary search space is required. To 

achieve this, a V-shaped transfer function is applied 

during the exploration phase, with its formulation defined 

in Eq. 61: 
 

T(x) = | tan(𝑥)|  (61) 
 

𝑥𝐵𝑖𝑛𝑎𝑟𝑦 =  {
1 𝑖𝑓 𝑟𝑣 < 𝑋(𝑥)

0 𝑖𝑓 𝑟𝑣 ≥  𝑋(𝑥)
 (62) 

 
Where 𝑋(𝑥)  is the binary representation of the 

solution P produced by 61 and 62, rv 𝜖 [0,1] is random 

number. The Algorithm 1 describes the pseudocode of the 

BinCoWmv optimization algorithm. 

 

Algorithm 1: Pseudocode of the proposed BinCoWmv 

Optimization Algorithm 

Start BinCoWmv Optimization Algorithm 

Input the information about the optimization problem 

Set the no. of iteration T and population of the coati N 

Initialize the position of the coati using Eq. 32 and 

evaluate the Objective function  

For t = 1: T 

Updating location of the iguana  

Phase 1: Exploration 

For i=1: [N/2] 

Calculate the new position of ith coati using Eq. 33 

position of ith coati is updated using Eq. 52 

End for  

For i=1+ [N/2]: N 

Random position of iguana is calculated using Eq. 34 

The new position for ith coati is calculated using Eq. 35 

Phase 2: INFO rule 

Select coati randomly 𝑎 ≠ 𝑏 ≠ 𝑐 within range [1, N] 

Update rule stage 

 Calculate Vector of the coati 𝐶𝑂𝑧1 and 𝐶𝑂𝑧2 using Eq. 49 

Vector combing stage  

Calculate combing of coati’s vectors using Eq. 51 

Position of ith coati is updated using Eq. 52 

End for  
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Phase 3: Exploitation using local search operator 

Calculate the bounds for the coatis using Eq. 53 

For i=1: N 

New position of the coati’s is calculated using Eq. 54 

Local search operator is calculated using the Eq. 55 

Update the ith coati position using the Eq. 60 

End for  

Best solution so far is saved 

End for  

Display the optimal coati result generated by BinCoWmv 

optimization algorithm. 

 

Classification 

Several widely-used classification algorithms for 

kidney ultrasound image analysis include RF, DT, SVM, 

NB, KNN, and XG-Boost, all of which were employed in 

our research. The RF classifier functions by aggregating 

the outputs of multiple decision trees to improve 

classification performance. It is versatile, working well 

with both small and large datasets. In contrast, DT is a 

simpler and faster model that can capture complex non-

linear relationships, and it can effectively process both 

numerical and categorical data. SVM is an algorithm that 

performs well on unseen data, effectively managing both 

linearly and non-linearly separable data by employing 

kernel functions (RBF, sigmoid, poly, and linear) for 

nonlinear datasets. KNN is a simple, easily interpretable 

classifier that categorizes based on the k-value. NB, 

founded on Bayes' theorem, is uncomplicated and quick 

to train, functioning optimally with small datasets. XG-

boost, a boosting classifier, offers flexibility in its 

objective function. 

Results 

The experiments were conducted on a high-

performance workstation equipped with an Intel Core i9-

13900K CPU, 64 GB DDR5 RAM, and an NVIDIA RTX 

A6000 GPU, ensuring fast and parallel processing of 

computationally intensive tasks. The system utilized a 1 

TB NVMe SSD for high-speed operations and a 5 TB 

HDD for data storage, running on Windows 10 (64-bit). 

Python 3.10 was used for data preprocessing, feature 

extraction (via PyRadiomics), classification, and 

performance evaluation, while MATLAB R2023b 

facilitated the implementation and execution of 

metaheuristic optimization algorithms, leveraging its 

optimization and parallel computing toolboxes. 

The application of the BinCoWmv optimization 

algorithm as a Feature Selection (FS) technique for 

categorizing pediatric ultrasound images. The dataset, 

obtained from an online source, consists of normal and 

abnormal kidney images from children aged 3 weeks to 7 

years. A total of 94 texture features were extracted from 

the kidney ultrasound images, though not all features were 

crucial for classifying pediatric kidney images. The 

proposed method was employed for FS to enhance 

classification accuracy. The primary goal of this research 

was to minimize features while improving classification 

accuracy. Classifiers such as RF, DT, SVM, NB, KNN, 

and XG-Boost were employed with 5-fold cross-

validation to evaluate with and without proposed FS 

method, and the parameters of the classifiers are 

mentioned in Table 3. Additionally, original optimization 

algorithms were applied using both the original features 

and those selected by COA, INFO, FFA, and HHO. To 

assess the effectiveness of the proposed BinCoWmv 

optimization algorithm, the experiment was conducted 

over pop size of 10, a dimension 30, 5 iterations, 30 runs, 

and 100 epochs; its parameters are mentioned in Table 4. 

Metrics used to evaluate classifiers include fitness 

measures, the performance of the classifier, and 

computational efficiency, which provide information 

about the behavior of the model. The description of the 

measure are as follows: Coati true positive (𝐶𝑇𝑝),coati 

true negative (𝐶𝑇𝑛),coati false positive (𝐶𝐹𝑝),coati false 

negative (𝐶𝐹𝑛). 
Accuracy: To measure the accurate efficiency of the 

proposed system using the formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑇𝑝+𝐶𝑇𝑛

𝐶𝑇𝑝+𝐶𝑇𝑛+𝐶𝐹𝑝+𝐶𝐹𝑛
  (62) 

 

Precision: To measure no of positive class are accurate 

in the classification of images:  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑇𝑝

𝐶𝑇𝑝+𝐶𝐹𝑝
  (63) 

 
Table 3: Parameters setting for classifiers used in the study 

Classifiers Hyperparameters 

Random Forest (RF) n_estimator=100, 

criterion=” gini” 

Decision Tree (DT) criterion=” gini”, max_depth 

= 8, min_samples = 4 

Naïve Bayes (NB) GaussianNB 

K-Nearest Neighbor (KNN) K = 5, Weights =’distance’ 

Support Vector Machine 

(SVM) 

Kernel = ‘rbf, decision 

function= ‘ovo’, gamma = 

100 

Extreme Gradient Boost 

(XG-Boost) 

Max_dept = 2, learning rate 

= 0.01 

 
Table 4: Parameter setting of the algorithm used in the study 

Algorithms Parameter Values 

BinCoWmv (Proposed) c, d 2,4 

INFO c, d 2,4 

HHO 𝛽0 , α, γ 0.2, 1.0, 0.5 

BCOA Parameter free - 

FFA Parameter free - 
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Specificity: To measure the negative class in the 

classification of images: 

 

Specificity =
CTn

CTn+CFp
   (64) 

 
Recall: To measure the positive rate in the 

classification of images: 
 

Recall =
CTp

CTp+CFn
  (65) 

 
F-measure: To measure the test accuracy, to verify 

how well the test performs: 
 

Fmeasure = 2 ×
Recall ×Precision

Recall+Precision
 (66)  

 

Average Solution Time: The average time taken by the 

BinCoWmv for the computation in seconds, T times is 

determined as follows: 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =
1

𝑇
∑ 𝐴𝑣𝑔𝑆𝑜𝑙𝑛𝑇𝑖𝑚𝑒𝑐
𝑇
𝑡=1  (67) 

 
Where 𝐴𝑣𝑔𝑆𝑜𝑙𝑛𝑇𝑖𝑚𝑒𝑐 is the computational time at t 

run or iteration. 

Best Fit: BinCoWmv derives the minimum fitness 

value, which computes as follows: 

 

𝐵𝑒𝑠𝑡𝑓𝑖𝑡 = min
𝑖𝜖{1,2,…,𝑁}

∑ 𝑓(𝐶𝑖𝑗)
𝐶𝑖
𝑗=1   (68) 

 

Worst Fit: BinCoWmv derives the maximum fitness 

value, which computes as follows: 

 

𝑊𝑜𝑟𝑠𝑡𝑓𝑖𝑡 =  max
𝑖𝜖{1,2,…,𝑁}

∑ 𝑓(𝐶𝑖𝑗)
𝐶𝑖
𝑗=1   (69) 

 

N denotes the total number of candidate solutions in 

the population. The index i ∈ {1, 2, …, N} represents the 

ith candidate solution. 𝐶𝑖𝑗 refers to the jth feature selected 

by the ith candidate solution, while 𝐶𝑖𝑗 indicates the total 

number of features selected in the ith solution. The 

objective function 𝑓(𝐶𝑖𝑗)  evaluates the quality of the 

selected feature 𝐶𝑖𝑗. 
Average feature count: count on average BinCoWmv 

selects features is calculated as:  

 

𝐴𝑣𝑔𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =
1

𝑇
∑

𝐴𝑣𝑔𝐶𝑜𝑢𝑛𝑡𝑐

𝑁
𝑇
𝑐=1   (70) 

 

Where 𝐴𝑣𝑔𝐶𝑜𝑢𝑛𝑡𝑐 is the selected feature count, and 

N represents total number of features. 

Mathews Correlation Coefficient (MCC): to evaluate 

the Corelation between the predicted and actual binary 

outcomes: 

 

𝑀𝐶𝐶𝐶 =
CTp∙CTn−CFp+CFn

√(CTp+CFp)(CTp+CFn)(CTn+CFp)(CTn+CFn)
  (71) 

Fitness Function: The fitness function assesses the 

trade-off between the classification error and the quantity 

of features chosen: 
 

𝑓 = 𝛼 ∙ (1 − 𝐴𝑐𝑐𝑢𝑎𝑟𝑐𝑦) + 𝛽 ∙
|𝑆𝐹|

|𝑁|
  (72) 

 

Where 𝛼  and 𝛽  are the weights of selection ratio, 

selected features quality. That fall within the range of 

[0,1], SF and N are the selected features and total features 

respectively and (1-accuracy) is the classification error 

obtained by the classifiers. The p-value obtained from 

Friedmans test is used to evaluate the validity of a 

hypothesis. A p-value below 0.05 is generally interpreted 

as significant evidence to reject the null hypothesis, 

indicating that the observed differences are unlikely to 

have occurred by chance. 

The performances of the proposed Binary Coati 

Weighted Mean of Vector (BinCoWmv) optimization 

algorithm for feature selection were evaluated using 

metrics such as mean fitness, standard deviation of 

fitness, worst fitness values and number, selected 

features, computational time, and Matthew’s 

Correlation Coefficient (MCC) as described in Table 5. 

As shown in Figure 5, the Random Forest (RF) 

classifier presented the lowest average fitness before 

feature selection, indicating an efficient cost function 

and robust base learning. The Naïve Bayes (NB) 

classifier displayed the highest average fitness, 

reflecting suboptimal initial performances. XG-Boost 

achieved a competitive fitness average of 0.01073. 

After applying the BinCoWmv feature selection, 

improvements were observed for all classifiers. RF and 

XG-Boost achieved an optimal fitness value of 

0.01042. RF presented zero fitness variance, 

confirming its stability, with an increase in the number 

of selected features to 27.07. MCC values improved for 

all classifiers, RF reaching 0.9590, indicating reliable 

classification in the presence of class imbalance. Table 

6 shows that RF outperforms the other classifiers, 

improving the accuracy from 94.41 to 96.50%, as 

confirmed by the confusion matrix in Figure 3. XG-

Boost achieves an accuracy of 95.10% after feature 

selection, which is a decision that presents a better 

generalization. Naïve Bayes improves recall, but its 

precision remains lower, while SVM displays a slight 

improvement in recall. Figure 2 illustrates the 

improvement of ROC-AUC scores after feature 

selection for all classifiers. Despite the increased 

computational time, the gains in accuracy, Matthew’s 

Correlation Coefficient (MCC), and model reliability 

justify this trade-off, especially for clinical decision 

support systems. Figures 4 and 5 demonstrate the 

comparative gains achieved by feature selection. 
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Table 5:  Evaluation of classifiers of with / without FS across different classifiers for values: Mean, STD, Best fit, Worst fit, Avg Feature 

count, Avg Solution time, MCC, Fitness 

  

Classifier Mean  Std  Best fit 
Worst 

fit 

Avg 

feature 

count 

Avg 

solution 

time 

MCC Fitness 

Without FS 

DT 0.01976 0.00642 0.01001 0.02873 10.50000 0.01599 0.70700 0.01976 

RF 0.00902 0.00240 0.00575 0.01283 6.80000 0.18443 0.86010 0.00902 

SVM  0.06949 0.01072 0.05869 0.08458 14.10000 0.09920 0.27200 0.06949 

KNN 0.06674 0.01021 0.04884 0.08240 13.50000 0.00378 0.39900 0.06674 

NB  0.08475 0.01308 0.06669 0.10819 12.20000 0.00416 0.23220 0.08475 

XG-Boost 0.01073 0.00375 0.00564 0.01752 7.90000 0.33520 0.84610 0.01073 

With FS 

(BinCoWmv) 

DT 0.01563 0.00521 0.01042 0.02083 10.81078 178.20962 0.91746 0.02083 

RF 0.01042 0.00000 0.01042 0.01042 27.07243 325.22336 0.95903 0.01042 

SVM 0.04167 0.04501 0.00000 0.13542 29.14797 101.94759 0.93754 0.03125 

KNN 0.05469 0.05381 0.01042 0.14583 16.56446 98.00257 0.91946 0.04167 

NB  0.05903 0.06153 0.01042 0.14583 19.88417 119.84259 0.70794 0.14583 

XG-Boost  0.04375 0.04904 0.01042 0.13542 29.38760 119.40345 0.94648 0.01042 
 

 
 

Fig. 2: Graphical illustrating the comparison of AUC with and without FS 

 

 

 

Fig. 3: Confusion matrix for the highest performing classifier 

for classification of pediatric kidney ultrasound images 

 
 
Fig. 4: Represent the classification accuracy with and without 

feature selection 
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Table 6: Performance metrics of the classifiers with and without FS 

  Classifier Accuracy Precision Recall F-measure Roc Specificity 

Without FS 

DT 0.8462 0.8356 0.8714 0.8531 0.8535 0.8356 

RF 0.9441 0.9286 0.9286 0.9286 0.9838 0.9315 

SVM 0.6224 0.5816 0.8143 0.6786 0.6335 0.4384 

KNN 0.6993 0.7143 0.6429 0.6767 0.7891 0.7534 

NB 0.6154 0.6364 0.5000 0.5600 0.6393 0.7260 

XG-Boost 0.9231 0.9275 0.9143 0.9209 0.9789 0.9315 

With FS 

(BinCOWmv)  

DT 0.9231 0.9155 0.9286 0.9220 0.9232 0.9178 

RF 0.9650 0.9851 0.9429 0.9635 0.9889 0.9863 

SVM 0.6314 0.5730 0.7286 0.6415 0.6935 0.4795 

KNN 0.7762 0.8393 0.6714 0.7460 0.8815 0.8767 

NB 0.7762 0.7159 0.9000 0.7975 0.8695 0.6575 

XG-Boost 0.9510 0.9565 0.9429 0.9496 0.9840 0.9589 

 

 

Fig. 5: Performance metrics for proposed method across 

different classifiers 

 

Discussion 

A comparative study evaluated the proposed approach 

against metaheuristic algorithms, including Coati 

optimization (COA), vector-weighted averaging (INFO), 

FireFly Algorithm (FFA), Harris Hawk optimization 

(HHO) and BinCoWvm. The Parameter settings are listed 

in Table 4, while Table 7 shows classification accuracies 

across six classifiers. The Results show that BinCoWmv 

outperforms all benchmark optimizers. The Decision Tree 

classifier accuracy increased from 84.62 to 92.31% with 

BinCoWmv, outperforming HHO and COA. Random 

Forest achieved 96.50% accuracy, surpassing HHO's 

95.80%. BinCoWmv increases the BinCoWmv. 

 of the model by improving feature relevance and 

compactness. K-nearest neighbors showed significant 

improvements, whereas Naive Bayes improved owing to 

irrelevant feature removal. XG-Boost with BinCoWmv 

achieved higher accuracy than INFO and HHO. Table 8 

shows BinCoWmv achieved the highest average fitness 

(0.94775) and lowest standard deviation (0.00404), 

indicating robustness. Its higher average feature count 

balances the compactness and representation. Although 

INFO showed faster convergence, it retained more 

features. The computational time of BinCoWmv was 

moderate, shorter than HHO, FFA, and COA. Statistical 

validation using the Friedman test showed a p-value of 

0.0530. While HHO, INFO, and FFA achieved p values 

below 0.01, BinCoWmv higher p value indicated 

improved consistency. The 95% confidence interval 

ranged from 0.9472 to 0.9491 over 30 iterations. Table 9 

shows that BinCoWmv with RF achieved 96.50% 

accuracy, outperforming PCA+ANN (77.89%), 

CSA+ANN, PCA+VGG16, and OGOA+ANN classifiers. 

Table 7: Comparison of accuracies across different optimization algorithms 

Classifiers 
Without feature 

selection 

With Coati 

features 

With INFO 

features 
With FFA features 

with HHO 

features 

 

with BinCoWmv 

features 

DT 0.8462 0.8881 0.8392 0.7902 0.9091 0.9231 

RF 0.9441 0.9301 0.9441 0.9091 0.958 0.965 

SVM  0.6224 0.6014 0.6643 0.5664 0.5944 0.6014 

KNN 0.6993 0.7413 0.5664 0.6993 0.6573 0.7762 

NB 0.6154 0.6713 0.6783 0.6853 0.6783 0.7762 

XG-Boost 0.9231 0.9091 0.9161 0.9091 0.9441 0.9510 

0 0.2 0.4 0.6 0.8 1 1.2

DT

RF

SVM

KNN

NB

XGBOOST

C
LA

SS
IF

IE
R

S

Performance metrics 
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Table 8: Value of mean, STD, Best fit, Worst fit, Avg Feature count, Avg Solution time, P-value, Confidence interval determined by 

BinCoWmv against original optimization algorithms 

Optimizatio

n algo 
Mean fitness Std fitness Best fit Worst fit 

Avg 

feature 

count 

Avg 

solution 

time 

p-value 

Confidence 

interval 

BinCoWmv 
0.94775 0.00404 94.0659 92.1875 0.01657 

123.75 
0.053043 

0.9472, 

0.9491 

Coati 0.90567 0.001338 88.89090 89.68688 0.03487 133.78 
0.053044 

0.9053, 

0.9062 

INFO 0.95670 0.000767 87.56778 87.97567 0.25087 112.52 
0.004720 

0.9573, 

0.9570 

FFA 0.86977 0.005977 86.63587 86.52454 0.56897 145.63 
0.000228 

0.8671, 

0.8710 

HHO  0.88460 0.006897 87.57878 89.57556 0.27076 139.08 
0.004720 

0.8822, 

0.8872 
 
Table 8: Comparison of proposed method with existing state-of-art 

Ref. Features  Method Classification Accuracy 

(Priyanka and Kumar, 

2020) 

GLCM, 44 features PCA ANN 77.8% 

(Nithya et al., 2020) GLCM, 22 features CSA ANN 93.45% 

(Alkordy et al., 2023) VGG16 features PCA VGG16 95% 

(Balamurugan and 

Arumugam, 2020) 

GLCM, 22 features OGOA ANN 95.83% 

Proposed GLCM, GLRLM, GLSZM, GLDM, 

NGTDM, FIRST ORDER, 94 

features 

BinCoWmv 

optimization 

algorithm 

RF 96.50% 

 

Conclusion 

Feature Selection (FS) can substantially enhance 

classification accuracy. This research presents a novel 

hybrid algorithm called Binary Coati and Weighted mean 

vector (BinCoWmv) optimization algorithm for 

classifying pediatric kidney ultrasound images. The 

methodology comprises five key stages: Initially, 

pediatric ultrasound images are acquired from an online 

repository. Next, these images are preprocessed to 

eliminate noise and artifacts, as well as to focus on the 

area of interest. The third step involves extracting 

radiomics features, with a focus on grey level 

characteristics of the ultrasound images. Subsequently, FS 

is performed, as not all extracted features are essential for 

classification due to the tissue-based nature of kidney 

structures. In this stage, metaheuristic optimization 

algorithms are utilized, specifically integrating coati 

optimization with a weighted mean vector (INFO), 

referred to as the BinCoWmv optimization algorithm. 

This approach enhances both exploration and exploitation 

abilities while preventing the algorithm from getting stuck 

in local optima. Initially operating in a continuous search 

space, the algorithm is subsequently converted into a 

binary search space tailored for the medical dataset. The 

subset of features that have been optimally chosen is 

subsequently classified using a range of classifiers, such 

as RF, DT, NB, KNN, SVM, and XG-Boost. The 

evaluation is based on confusion matrix parameters. The 

proposed method was evaluated against feature selection 

algorithms like Coati, INFO, FFA, and HHO. Results 

show this approach outperforms existing methods, 

delivering higher classification accuracy to support 

pediatric nephrologists in earlier detection of kidney 

abnormalities and improving patient outcomes. Future 

research directions include testing the proposed 

methodology with different larger dataset, assessing the 

feasibility of integrating the model into clinical 

workflows for real-time diagnostics assistance. 
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