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Abstract: The analysis of medical images presents many challenges,
especially when making precise diagnoses. In pediatric Chronic
Kidney Disease (CKD), early identification is critical because of its
gradual progression to significant kidney failure. This study proposes
a diagnostic framework for pediatric ultrasound image classification
that incorporated machine learning and advanced feature selection
methods. This approach is divided into four stages: Preprocessing,
feature extraction, feature selection, and classification. Initially,
pediatric kidney ultrasound images are enhanced using gaussian
median filter. Radiomics features were then extracted, including Gray
Level Co-Occurrence Matrix (GLCM), Gray Level Size Zone Matrix
(GLSZM), Gray Level Run Length Matrix (GLRLM), Neighboring
Gray Tone Difference Matrix (NGTDM), Gray Level Dependence
Matrix (GLDM), and first-order statistics. To optimize this feature
space, we introduce the Binary Coati Weighted Mean Vector
(BinCoWmv) optimization algorithm, which uses a customized fitness
function. Herein, the selected features were evaluated using different
classifiers: Random Forest (RF), Decision Tree (DT), Support Vector
Machine (SVM), Naive Bayes (NB), K-Nearest Neighbor (KNN), and
XG-Boost. Comparative evaluations with existing optimizers, such as
the Coati Optimization Algorithm (COA), weighted average vector
(INFO), Firefly Algorithm (FFA), and Harris Hawk Optimization
(HHO), showed that BinCoWwmv achieved a higher classification
accuracy. Our framework improves diagnostic reliability and assists
radiologist and nephrologist in the early detection of chronic kidney
disease in children.

Keywords: Kidney, Ultrasound, Feature Selection, Coati Optimization
Algorithm, Weighted Mean Vector (INFO)

Introduction

The kidneys are essential organs that maintain the
body’s balance by filtering waste products from the blood,
controlling blood pressure, regulating Ph levels,
producing hormones, and maintain proper mineral
concentration. Nowadays, the world is suffering from
different kidney abnormalities that include children and
adults (Dey et al., 2022). Chronic Kidney Disease (CKD)
often starts with no specific symptoms and develops in
uremic syndrome by the time the medical diagnosis has
started (Badawy et al., 2023). But CKD in pediatrics starts
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due to a number of reasons that include congenital
abnormalities, urinary tract problems, kidney infections,
genetic disease, dehydration, and high blood pressure.
Projections indicate that by 2040, CKD will be the fifth
leading cause of death worldwide. However, research has
shown that timely diagnosis and effective management
can significantly slow its progression and prevent kidney
failure (Francis et al., 2024). By employing Computer-
Aided Diagnosis (CAD), the planned selection of
materials can support nephrologists by offering accurate,
reliable, and specific scans, thereby promoting earlier
clinical decision-making.
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With the development and application of Atrtificial
Intelligence tools inherent in computer vision, which can
analyze and solve medical image processing, have easier
diagnosis. The use of these tools has been widely used in
classification, detection, segmentation and object
detection (Vasanthselvakumar et al., 2017). Then the
diagnosis of kidney disease in pediatrics by
ultrasonography is  considered as a  precise
characterization of the disease, with gray scale ultrasound
alone is difficult, even though the technique is non-
invasive, while being considered as the safest medical
imaging procedure and making it easier to distinguish
between normal and abnormal kidney images (Bhandari
etal., 2023).

Ultrasound image analysis often relies heavily on the
expertise of sonologists and nephrologists, where
minimizing human errors is essential for an accurate
diagnosis. However, the quality of ultrasound images can
sometimes be compromised by speckle noise, making it
difficult for practitioners to identify specific diagnosis
features of the images (Al-karawi et al., 2021). To
overcome this problem, we extracted various texture
features such as Gray level Co-Occurrence Matrix
(GLCM), Gray Level Size Zone Matrix (GLSZM), Gray
Level Run Length Matrix (GLRLM), Neighboring Gray
Tone Difference Matrix (NGTDM), and Gray Level
Difference Matrix (GLDM) features and first order
derivatives from pediatric ultrasound images. This study
aims to enable the early identification of kidney
abnormalities in children, which is crucial for timely
medical intervention and can significantly enhance long-
term health outcomes and survival rates for those affected.

The potential of the classifier mainly depends on the
feature extracted from ultrasound images. However, the is
quite prominent that not all the extracted features
contribute to the classification process. By eliminating the
redundant and irrelevant features, optimization algorithm
for feature selection have emerged as the most effective
tool in medical imaging that could reduce high
dimensionality and improving the classification process
(Pradeepa and Jeyakumar, 2023).

Feature Selection (FS) is termed to be a challenging
and expensive two-way step process; one is creating a
subset feature and the second is evaluating it. Based on
the evaluation, FS is classified into filter, wrapper, and
embedded methods (Nadimi-Shahraki et al., 2022). Filter
method such as correlation coefficient, information gain,
chi square test picks features based on the relevance of
feature, via univariate statistics, whereas the wrapper
method selects the features based on their usefulness in
the classification performance. Embedded method
combines the principle of filter and wrapper approaches
by incorporating feature selection directly into the model-
training process, thereby enhancing the overall

performance of the classifier (Dyoub and Letteri, 2023;
Seyyedabbasi, 2023).

Feature Selection (FS) can be expressed as a
combinatorial or binary optimization problem in which a
feature is either chosen or discarded. The primary goal is
to reduce the number of selected features while
simultaneously improving or at least preserving the
classification accuracy (Barrera-Garcia et al., 2023). In
bio-medicine, metaheuristics algorithms are termed to be
as optimization tool that can solve the FS problem
effectively, these algorithms use various techniques to
increase the efficiency of the search process (Aljarah et al.,
2018). Several metaheuristics algorithms are proposed
over the year that can solve FS problem such genetic
algorithm, Particle Swarm Optimization (Mirjalili and
Lewis, 2013), Ant Colony optimization (Wen et al.,
2008), Grey Wolf optimization (Raju et al., 2018), Harris
Hawk Optimization (Peng et al, 2023), Whale
Optimization (Eid, 2018), Cat Swarm Optimization
(Seyyedabbasi, 2023), Dragonfly optimization (Mirjalili,
2016), Firefly optimization (Lambert and Perumal, 2022)
to name a few, But yet they frequently suffer from
premature convergence, unstable search trajectories and
limited local refinement ability. This limitation is further
amplified in binary search spaces relevant to FS tasks,
maintaining a balance between two primary phases:
Exploration and exploitation is crucial.

Despite the development of numerous metaheuristics
algorithms, the exploration and exploitation phases are
crucial for finding optimal solutions within the search
space. When solving a search problem, it is essential to
balance the exploration of new regions of the search space
with a more focused investigation of promising areas.
This strategy reduces the risk of becoming trapped in local
optima, which are solution that may seem optimal within
a limited region but fail to represent the true global
optimum (Yildizdan and Bas, 2024).While exploration is
to search intensively around the promising region, which
can improve the quality of the solution. Balancing of the
exploration and exploitation phase can enhance the
effectiveness of the search algorithm (Hao et al., 2024;
Hashim et al., 2023). According to the “No Free Lunch”
theorem, no single optimization algorithm can perform
optimally across all problem domains (Wolpert and
Macready, 1997). To address this limitation, hybrid
strategies are often employed, combining the strengths of
different algorithms to improve their efficiency.
Motivated by this principle, we propose a hybrid
optimization method that integrates Binary Coati
Optimization with the weighted mean of vectors (INFO)
algorithm, designed to enhance both feature selection and
classification performance.

Metaheuristic algorithm names Coati Optimization
Algorithm (COA) was proposed by Dehghani et al.
(2023) based on swarm intelligence-based algorithm, that
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mimics coatis’ natural behavior. They use two strategies:
A hunt and attack strategy on the iguana known as
exploration, and a process of escape from predators,
known as exploitation. COA appear to be competitive
when compared to well know metaheuristic algorithms,
Nevertheless, COA have several limitations, as any other
metaheuristics algorithms. Such as an imbalance between
exploration and exploitation, premature convergence, gets
easily stuck in local optima. To overcome limitation
mentioned, it is inferred that the binary version of COA
has great potential in solving combinatorial optimization
tasks, we utilize COA with a distinct transfer function,
named V-shaped transfer function to tackle combinatorial
problem efficiently (Yildizdan and Bas, 2024).

Nonetheless, we have another optimizer, namely the
weighted mean vector (INFO), which is detailed in
(Ahmadianfar et al., 2022). This method contributes to the
development of a powerful hybrid optimization
algorithm. The algorithm relies on three basic principles:
Vector position update, vector combination, and a local
search mechanism. To update the vector positions, the
algorithm uses convergence acceleration and a mean-
based rule. Afterwards, the updated vectors are
concatenated to create a feasible solution. Finally, local
search is used to improve utilization and eliminate less
accurate solutions.

In the following study, we propose a methodology,
Binary Coati Weighted Mean of Vector optimization
algorithm known as BinCoWmv optimization algorithm,
for FS, synergistically combines the exploration strength
of the Binary Coati Optimization Algorithm (BinCo) with
the adaptive local exploitation capability of the Weighted
Mean Vector Strategy (INFO), by integrating this
mechanism, BinCoWmv effectively balance global and
local search dynamics within the binary feature space,
enabling the identification of compact, high- quality
feature subset optimizes the performance classification of
abnormalities. To assess the effectiveness of the proposed
method, the optimally selected feature subsets were
evaluated across multiple classifiers using standard
performance metrics, including accuracy, precision,
recall, F1-Score, Receiver Operating Characteristic
(ROC), and specificity.

The key contributions of the this research are as
follows:

1. The Gaussian Median filter is employed to eliminate

noise from images, CLAHE for contrast
enhancement, while the Sobel Operator is utilized for
detecting edges

2. Radiomics texture features such as first-order
derivates and second order derivatives (GLCM,
GLRLM, GLDM, GLSZM, NGTDM), extracted
from the pediatric kidney ultrasound images, totalling
94 features

3. Anovel hybrid Metaheuristic algorithm called Binary
Coati Weighted Mean Optimization Algorithm
(BinCOWmv Optimization Algorithm) is proposed,
combining the Binary Coati Optimization algorithm
and the Weighted Mean of Vectors (INFO) method
for effectively selecting texture features for
classification of kidney ultrasound images into
normal and abnormal

4. The best features are evaluated using Random Forest,
and the results are compared with other classifiers
namely, RF, DT, KNN, SVM, NB, and XG-Boost,
based on accuracy, precision, recall, fl-score, ROC,
and specificity parameters

5 A comprehensive comparison was conducted against
standalone FS methods, including COA, INFO,
Harris Hawk Optimization (HHO), and Firefly
optimization Algorithm (FFA)

Literature Review

Exploring the combination of radiomics with
ultrasound images has gained considerable traction in
kidney ultrasound images. Numerous studies have
explored handcrafted, statistical and radiomics extracted
features in combination with machine learning or deep
learning techniques to improve the diagnosis of chronic
kidney disease, with varying degres of effectiveness.

Tian et al. (2024) aim to assess the effectiveness of
ultrasound imaging in detection of CKD. While
considering the gray-level aspect of US images in the
diagnosis, feature extraction was performed using CNN,
whereas the screening model was used along with texture
features and the ResNet34 deep learning model that could
identify CKD and its stages.

Addressing the gap in chronic kidney disease, where
most of the focus is on the adult population, often ignores
the physiological differences between adults and children.
Kou et al. (2024) bridges the gap by developing a non-
invasive diagnostic model for children glomerulonephritis
classification using ultrasound images; for preprocessing
and segmentation, the images were standardized to 512 x
512 pixels, manual pixel-level segmentation was
performed using the LabelMe tool to extract the region of
interest; to enhance the model generalization, data
augmentation was performed using random resizing,
cropping, flipping, and photometric distortion techniques;
Image segmentation was performed with precision using
the U-Net model, while radiomics features were extracted
from the identified region of interest for feature extraction
and selection purposes. Statistical method Analysis of
Variance (ANOVA) was used, and LASSO was used for
dimensionality reduction. From the selected features, the
random forest algorithm was applied to generate the
classification model.

To enhance early detection of CKD, Patil and
Choudhary (2024) proposed a novel approach for
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predicting CKD using a hybrid classification framework,
an improved Gaussian filter was applied to remove noise
and improve image quality. Watershed-based algorithm
used for segmentation, mean intensity, regions of interest,
and the proposed local vector model features are extracted
from the segmented images. The extracted features served
as input to the hybrid classification model, which included
an optimized neural network and a Long-Short-Term
Memory (LSTM) network, and the cat swarm
optimization algorithm was used to fine-tune the neural
network weights.

Integrating advanced machine learning techniques for
the diagnosis of CKD, researchers aim to address the gap
of traditional methods suffering from low accuracy,
ineffective data dimensionality handling. In the developed
classification model, Deepika et al. (2023) focuses on
improving the FS process. For handling unbalanced data
and missing values, normalization was applied, outlier
checking for noise reduction technique, to identify the
most important features of the fruit fly optimization
algorithm, and a heterogeneous modified artificial method
combining a combination of support vector machine,
multilayer perceptron, and backpropagation method was
proposed.

A new method is presented by Biradar et al. (2022) for
classifying kidney conditions (stones, cysts, and normal
tissue) by proposing a hybrid approach of feature
extraction and classification of digital kidney ultrasound
images. The suggested method employs the contourlet
transform for noise reduction in images. Following this,
histogram equalization is applied to enhance image
quality. The process then involves automatic
segmentation to isolate the Region of Interest (ROI).
Subsequently, various features are extracted, including
Haralick, shape, wavelet, Tamura, and HOG. These
extracted features are then individually input into
classifiers for the purpose of classification.

Overcoming the research gap in the application of
radiomics in CKD assessment using ultrasound images,
Bandara et al. (2022) explored the capabilities of
radiomics features derived from ultrasound images of the
kidney. The study extracted 465 radiomics features,
encompassing both first-order and second-order gray-
level statistical measures. Following this, a random forest
algorithm was employed to identify the most effective
features from the extracted set. The Gini index was
utilized to evaluate the significance of each feature,
resulting in the selection of the top 10 features. These
chosen features were then used to train a Support Vector
Machine (SVM) for classification purposes.

In the study by Tsai et al. (2022), pediatric kidney
ultrasound images were classified as normal or
abnormal, while the abnormalities included different
classes, such as stone cysts, hydronephrosis, space-
occupying lesions, and hyperechogenicity. The
proposed model underwent preprocessing to

standardize the input image dimensions. The ResNet-
50 architecture and CNN were pretrained on the
ImageNet dataset, and transfer learning was
subsequently used to redefine the final connecting layer
for the binary classification of normal and abnormal
images using ResNet-50.

Kim and Ye (2021) utilized ultrasound images to
classify the severity of kidney abnormalities into three
classes, normal, mild, and moderate and severe, while in
the study ROI recognized the cortex, medulla, cortex, and
medulla of the kidney, features were extracted from the
same, using the GLCM algorithm; 57 features were
extracted including the size of the kidney, which is crucial
in diagnosis; 58 input nodes, 10 hidden layers, and 3
output layers were constructed using ANN for
classification.

The objective of the research proposed by Priyanka
and Kumar (2020) was to develop a classification model
for kidney images by extracting texture features and
selecting the best subset to enhance classification
accuracy. The researchers used ultrasound images of
kidneys to extract GLCM features, which offer crucial
insights into texture patterns. To reduce the
dimensionality and computational complexity of the
feature set, PCA was employed. PCA identified the 12
most significant features out of the original 44, retaining
most of the data's variance. This reduced feature set was
then used to train an ANN for classification, achieving a
classification accuracy of 77.8% with PCA and 53.3%
without PCA.

Nithya et al. (2020) focused on the application of
machine learning techniques in medical image processing.
The research proposes a novel hybrid method combining
ANN for classification and multi- kernel k-means clustering
for segmentation, the research highlights the importance of
GLCM for detecting kidney abnormalities. To enhance the
performance, the Crow Search Optimization Algorithm
(CSOA) is used for feature selection. The experimental
results showed that the proposed method achieves a
maximum accuracy of 93.45%.

A novel method for predicting kidney disease using
ultrasound and an Artificial Neural Network (ANN)
has been introduced by Balamurugan and Arumugam
(2020). This approach involves four steps: Initially,
images undergo pre-processing with an optimal
wavelet and bilateral filter. Subsequently, GLCM
features are extracted from each image, and the most
significant features are selected through the
oppositional grasshopper optimization algorithm.
Finally, the ANN is employed to classify the images as
either normal or abnormal. The proposed system
achieves a peak accuracy of 95.83%. This research
investigated the use of texture analysis for categorizing
kidney disease across various stages. The methodology
employed in the study by Ahmad and Mohanty (2021)
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encompassed several steps: Preprocessing, which
included speckle noise elimination and contrast
enhancement; segmentation to extract regions of
interest; feature extraction utilizing GLCM to capture
spatial relationships between pixel intensities and
wavelet transform; and classification. The final step
involved applying machine learning algorithms,
specifically ANN and SVM, to classify the trained
selected features. Alkordy et al. (2023) provided a
technique for the classification of kidney ultrasound
images based on the stages, addressing the research gap
of identifying CKD early stages by integrating Deep
CNN, specifically VGG16, and PCA for feature
extraction, and the performance of the model was
assessed using metrics such as accuracy, precision,
recall and Flscore. A comparative summary of recent
studies in kidney ultrasound classification is presented
in Table 1, outlining their feature extraction, selection,
dataset types, classifier performance, and limitations
this table highlights the limited use of texture features
in classification, especially in pediatric contexts.
Existing research on kidney disease classification
often integrates deep learning, radiomic, and other

Table 1: Detailed description of literature review

features, but tends to overlook the standalone
diagnostic significance of texture features in pediatric
ultrasound. On the other hand, meta-heuristic methods
like Coati Optimization Algorithm (COA) and INFO
(weighted average of vector optimization) have yielded
encouraging outcomes for FS tasks. COA has been
employed in breast cancer classification using transfer
learning to enhance model precision (Emam et al.,
2024). Enhanced versions of Coati, such as dynamic
COA and elite opposition COA, have been utilized on
benchmark and biomedical datasets, showing an
improved balance between exploration and exploitation
(Qtaish et al., 2025; Wang et al., 2022). Likewise,
INFO has been used for FS on microarray genetic data
and EEG signal classification (Osama et al., 2023;
Wang et al.,, 2022) demonstrates its capability to
manage  high-dimensional inputs  effectively.
Nonetheless, no current research integrates COA and
INFO into a unified binary hybrid optimization
algorithm framework. Additionally, earlier studies
have predominantly concentrated on structural tabular
datasets for FS, with limited exploration of texture-rich
FS-based medical images.

FS techniques

Features extracted and

Reference used Data type and Size count Accuracy Limitations
. Deep features .
(Tian et al, o\ nopg)  Ulasound, 1456 pocier34)-GLCM,  Notreported NO FS  strategy:
2024) images HOG Potential overfitting
Pediatric L Statistical FS lack
(Kou et al, LASSO glomerulonephritis, Radiomics (ROI)-1422 95.16% adaptability; manual
2024) . features :
469 images segmentation
(Patil and Local vector model+ -
Choudhary, None iLrJTI];raZé)und, 137 ROI + mean intensity- 94.08% Eesurisrt]i?;ttun?r?“mlzem
2024) g based features g
Random —_ L st nd No optimizer; high
(Bandara et al., Forest +Gini UItra}sound radiomics, Radiomics (1%& 2 93.73% dimensionality
2022) . 102 images order)-465 features -
index retained
. US Kidney (3 class: . . )
(Kim and Ye, GLCM Normal/Mild/Severe) GLCM+ Size metrics- 95 4% Ma_nu_al ) ROI;  no
2021) . 57 features optimization
-471 images
Optimization and
. Ultrasound  (Normal, o other classifier need to
ijzrkgozg;‘d PCA Kidney stone, cysts GLCM,44 features 77.:8% be applied to check the
' tumor) robustness  of  the
proposed approach
. Crow search I
(Nithya et al., optimization Ultrasound _ (stone, GLCM, 22 features 93.45% Limited dataset_ may
2020) . tumor), 100 images have led to overfitting
algorithm
Ultrasound  (normal, -
(Alkordy et al, PCA stone, hydrops and VGG-16 features 92.11% C|a_33|f|er not clearly
2023) . defined
cysts), 1260 images
(Balamurugan Oppositional GLCM, 22 features Research does  not
and Grasshopper Ultrasound, 1000 L .
A S . 95.83% explicitly provide
rumugam, optimization images
. recall, f1 score or AUC
2020) algorithm
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This research is dedicated solely to estimating texture
features and feature extraction by introducing the binary
hybrid metaheuristics feature selection algorithm,
BinCoWmv, which merges Binary Coati Optimization
with the Weighted Mean Vector method. The proposed
approach effectively identifies highly correlated features,
enhancing the classification process while preserving the
simplicity of the model.

Methods

This section outlines methodological framework for
classifying pediatric kidney ultrasound images using an
optimized feature selection strategy. The proposed
pipeline combines image processing, radiomics-based
texture feature extraction, a novel hybrid feature selection
algorithm (BinCoWmv), and a machine learning classifier
to facilitate early detection of pediatric renal abnormalities.
Figure 1 displays the workflow diagram of the proposed
system for organizing pediatric kidney ultrasound images.
The following subsections provide a step-by-step
explanation of each component of the methodology.

Dataset Description

For the following research work, acquiring the dataset
of pediatric kidney ultrasound images was a tedious task,
as there are no standard datasets offered for this purpose.
Therefore, it was necessary to gather images for the
dataset from the ultrasound case site (Shankar, 2024). For
our study, we collected images of various Kidney cases
from pediatric ultrasound examinations, considering the

Table 2: Outline of texture features extracted and its description

age group from 3 weeks to 7 years old. In total 340 images
of both normal and abnormal cases.

This Process synthetically generated additional
samples for the minority (Normal) class based on nearest
neighbor interpolation, resulting in a balanced dataset of
477 images-238 normal and 239 abnormal. Subsequently,
the data were partitioned using a stratified 70:30 split,
where 70% for training, 30% for testing. Ensuring that the
class distribution was maintained across the subset and
improving the reliability of the performance evaluation
across classifiers, a detailed description of the
preprocessing is mentioned in the following research
paper (Kausar and Ramamurthy, 2023).

Feature Extraction

In the proposed study, we have extracted 94 image
characteristics, encompassing both primary and
secondary texture measurements from the Pyrandiomics
library (Van Griethuysen et al., 2017). Primary features
evaluate the distribution of voxel intensities, whereas
texture measurements assess the spatial arrangement of
these intensities. The analysis incorporated a wide range
of texture metrics, including features derived from Gray-
Level Co-occurrence Matrix (GLCM), Gray-Level Size
Zone Matrix (GLSZM), Gray-Level Run Length Matrix
(GLRLM), neighboring gray-tone difference matrix
(NGTDM), Gray-Level Difference Matrix (GLDM), and
first-order derivatives. This comprehensive approach
enhanced the thoroughness of feature extraction. A
concise Table 2 outlines the textural characteristics and
their properties utilized in this research.

Feature group Count of Description Relevance
features
First-Order Statistical measure of pixel intensity is calculated, such as To measure the overall strength
19 mean, entropy percentile properties, including the uniformity
of tissue in the area
GLCM It studies image texture based on the spatial relationship Helpful for recognizing regions
between pixels, includes features such as contrast, with different textures and designs
24 correlation, joint
entropy.
GLRLM It calculates the occurrence of gray level values and their  Determine the form or resemblance
16 path for different combination, includes features such as of the components, particularly if
short or long run emphasis they are alike.
GLSZM Counts the occurrence of gray level in the images, feature Helpful for identifying regions
16 including zone size and zone percentage where pixel values are
concentrated, which might suggest
tissue patterns.
GLDM Quantifies the relationship between gray level within Illustrates the connection between
14 connected to centre pixel, considering features with low pixel brightness levels and might
and high dependency emphasis indicate subtle differences in tissue.
NGTDM Determines the variance between individual pixel Highlight the area with high and
05 grayscale values and the mean grayscale pixel value, low intensity variations

encompassing characteristics such as intensity, intricacy,
and activity level.
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Fig. 1: Proposed methodology framework

Feature Selection
Coati Optimization Algorithm (COA)

The COA, introduced by Dehghani et al. (2023), is
inspired by the natural foraging and social behaviors of
coatis. In this algorithm, each coati represents a member
of the population. A key advantage of the COA is that it
operates without any algorithm-specific control
parameters, which enhances its simplicity and makes it
effective for tackling high dimensional and complex
optimization problem.

The development of the metaheuristic algorithm is
based on their predatory actions and strategies to avoid
becoming prey. It simulated two specific behaviors:
Predation, iguana attack, and avoidance of attack by their
own predators. Behavior of the coatis are mathematically
formulated sequentially below.

Initialization of Coati Swarm

The COA process begins by randomly initializing the
position of the coatis within the search spaces. The
position of the i in the j™ dimension is mathematically
defined using the Eq. 1:

€Oy, = LO; +1.(UP; - LO;) (1)

Where COj; represents the position of the i coati, r is
a random real number in the range (0,1), and UP; and LO;
: the upper and lower bounds of the j* decision variable
respectively.

Phase 1: Hunting and Attacking on Iguana
(Exploration)

In this phase, the coatis mimic their natural hunting
strategy by dividing into two groups. One group climbs
tree to frighten the iguana, while other group waits below
to capture the prey. This Cooperative behavior models the
exploration process, enabling the algorithm to search
diverse region of the solution space, as mathematically
formulated in Eq. 2:

CO™ = CO;; + Ra. (Iquana; — 1.CO;j) )

Where C Ofldenotes the new position of the i coati,

CO;; represents the current position of the i coati in the
j™ dimension, I is a random value, Ra is another random
variable, and /guana; indicates the position of the iguana
in the j dimension.

The second group models the random falls fo the
iguana using Eq. 3:

Iguana® = LB; + Ra(UP; — LO)) 3)

The position is adjusted according to the comparison
of fitness between the current and new position using Eq. 4:

COU +r. (Iguana -1 COij),FL-guana < Fi

cort =
' CO;; + Ra. (COU - Iguana]-),else

“)

Where Iguana® denotes the position of the iguana,
Fliquana represents the objective function value of Iguana,
and F; is the objective function value of the i coati.

Phase 2: Escaping from predatory (Exploitation)

This phase illustrates the coatis' tendency to avoid
danger by seeking refuge. They head towards a secure
spot within their immediate vicinity. The size of this local
area is adjusted dynamically according to the current
iteration number t:

LO;j Uuo
Lo;ocal — _J' Uo;ocal 27 (5)
J t J t

The new position is computed as in Eq. 6:

COf? = €O; + (1 — 2Ra). (LO/*°® + Ra. (UP/*°* —
Lojlocal) (6)

Where COF? defines the updated position of the coati,
LO}"CZ’11 the local minimum bound of the jt* decision
variable, U O}OC‘” denotes its local maximum bound, and t
corresponds to the current iteration index.

Phase 3: Selection Mechanism

A greedy strategy is applied to preserve the most
promising solutions, whereby a new position is accepted
only if it improves the fitness value, as defined in Eq. 7:

2992



Fizhan Kausar and Ramamurthy B. / Journal of Computer Science 2025, 21 (12): 2986.3004

DOI: 10.3844/jcssp.2025.2986.3004

cor? FP2 .. <F;

iguana

cof* =
¢ CO;; else

0

Where COf? is j™ dimension, F[2.., represents
objective value function.

After the coatis in the population have undergone
position placement according to the algorithm's phases,
from updating the population in equations 2 through 7 to
identifying the remaining coatis in the search space and
reaching the final iteration, the COA presents its output as
the optimal solution across all iterations.

Weighted Mean Optimization Algorithm (INFO)

The Weighted Mean of Vectors (INFO) algorithm,
proposed by Ahmadianfar et al. (2022) is a population-
based optimization technique designed to tackle complex
search problems using a dynamic vector-driven strategy.
The algorithm proceeds through three main stages: A
vector construction mechanism, a vector assembly phase,
and a local search process. Its central principle lies in
improving the population by computing a weighted mean
of candidate’s solutions, after which unfit vectors are
replaced or refined. This process strengthens the global
search capability while preserving local optimality.

Initialization Stage

The INFO algorithm, the population of vectors NP is
distributed within a DOdimensional search space,
expressed as:

g _.9 .9 g gy —
(Xl_]. = X1, X3 X[z -, Xiph L = 1,2, ..., Np)

Theo key parameters govern the process: The
weighted average factor (&) and the scaling factor, which
refine the updated vectors in line with the search domain.
These parameters are computed adaptively, often through
an exponential formulation, ensuring they remain
consistent with the feasible search boundaries. Unlike
algorithms that reply on user-defined settings, INFO
adjusts these parameters dynamically. The algorithm
begins by randomly initializing the vector population,
thereby establishing diversity in the initial search.

Phase 1: Updating Rule

The INFO algorithm employs a distinctive update
strategy that encourages diversity among the population
while utilizing the weighted mean of vector to create new
vectors. This algorithms unique method is founded on two
core principles. The first principle involves a rule bases
on the mean, derived from a weighted average of
randomly chose vectors within the population. The second
principle focuses on accelerating convergence, which
aims to enhance the algorithms speed and efficiency,

ultimately aiding in the identification of the optimal
solution.

The Mean Rule (MR) is defined as follows:
MR =rx M1} + (1 —r) x M2] where |=1,23....N, (8)

Where:

Mllg =§x W1 (Xa1—Xaz2)+ W2(Xa1—Xa3)+W3(Xaz —Xa3) + & X rand (9)
WitW,o+wste

Where:

w; = cos((f (xa1) — f(xa2)) + ) X exp(— W) (10)
w = cos((F (%a1) — f(xa3)) + ) x exp(— =)y - (17

ws = cos((F (%az) — f(xa3)) + ) x exp(— 2=y (19)

o = max(f (Xa1), f (Xa2), f (Xa3)) (13)
Where:
M2 = & x MRt et ) DGt 1 g rand (14)
Where:
w; = cos((f (xps) — f(xpy)) + 1) X exp(— f("bs)wﬂ) (15)
wy = cos((f (xps) — f(xys)) + ) X
exp(— a2 =Ttxus)) 16)
w3 = cos((f (Xp) — f(Xys)) + T0) X exp (_ f(xbt);f(st)) a7
w = f(Xws) (18)
6=2%xX—P (19)
B = 2exp(—4 x —2-) 20)

Maxg

In the above context, f(x) represents the objective
function, while w;, w,, w, denoten from the interval [0,
0.5] and w serve wavelet functions. The variable r is a
random value draw s as an adjustment factor for the
expansion parameter. The term € refers to a very small
constant. The indices al # a2 # a3 #1 are distinct
integers randomly selected from the range [1, N]. The
notations x,, x,:, X,,s COrresponds to the best, better, and
worst individuals in the population during the g®
generation, respectively, while Max ¢ denotes the
maximum number of generations.
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Within INFO, CA facilitates the movement of vectors
in various directions, striving to achieve an optimal
solution. This process can be described as follows:

(Xps—Xa1) (21)

CA = randn X o S a0

Hence, the new vector is defined as follows:
z) =x] + o X MR + CA (22)

During the iterative process, a comprehensive global
search is required to identify the most promising regions
within the search space, a stage referred to as the
exploration phase. In the INFO algorithm, these regions
are represented by the vectors Xy, Xpe Xws » Which
corresponds to candidate solutions proposed in the it"
iteration and are defined through specific mathematical
formulations:

ifrand < 0.5
g
g g Xbs—X]
= X D T
z1; = x + 0 X MR + randn (o) —F OB D)
728 = Xy, + 0 X MR + randn e
! bs (£ (x5)-f (x3,)+1)
(23)
else
g g
g _ 8 Xaz " Xa3
z1y = x; + 0 X MR + randn (ACAEICAR)
g _.8
221g = Xpt + 6 X MR + randn Xa1 %2z

(£ (g0)—f (<) +1)

In the g generation, the newly generated vectors are
denoted as z17,z27 . The scaling rate of a vector,
represented by o, is calculated using Eq. 24:

o=2axrand —a (24)

Where, a has the ability to modify its location using an
exponential function, which is expressed as:

a = cexp(—d X fog) (25)

Where o = 2 and d = 4 are constant numbers, it is
worth noting that, if value of o very large, the algorithm
employs a larger step size, allowing the current vector to
conduct a broad search. This results in the algorithm
favouring exploration or else causing the current vector to
perform a localized search. In this case, the algorithm
leans towards the development phase.

Phase 2: Vector Combining Phase

In the second phase, vector merging is essential for
boosting population diversity and enhancing the ability to
conduct local searches. The newly created vectors z1¥and
zzf are merged to form new ones, which can potentially
lead to improved solutions during the search process. This
merging is illustrated by the equation given below:

if rand < 0.5
if rand < 0.5
uf’ = zlf + u. |Zlf - ZZ;q|
else
u;q = 222‘] + u. |leq - ZZlgl (26)
end
else
uf = xf
end

Where u/ denoted the newly generated vector in the
gth.
Generation, and p = 0.05 X randn , with randn
representing a normally distributed random value.

Phase 3: Local Search Strategy

The INFO algorithm employs a local search strategy
to prevent stagnation in local optima and to strengthen
exploitation, thereby improving convergence toward the
global solution. This is achieved through a heuristic that
generates a new vector. When r < 0.5, a candidate vector,
denoted as x;,, , is created around the current operator.
In this context, rand represents a random value within the
interval [0,1]. This stage of the process is defined as
follows:

ifrand < 0.5
ulg = Xy + randn X (MR + randn X xgs - X§1))
else (27)
uf = xps + randn X (MR + randn X (v; X Xps — V3 X Xrng))

end
L end

( ifrand < 0.5
1
I

Where:

de=Q)XXavg-l-(l—@)X(@Xth-l-(l—@)Xsz (28)

Xavg — (Xa+x3b+X3) (29)

_ (2xrandifp> 0.5
1= { 1 otherwise (30
_ (rand if p < 0.5
- { 1 otherwise Gh

where, @ denotes a value randomly selected from the
range of 0 to 1; v; and v, are two such random numbers
as previously described and detailed description of the
following optimization algorithm is described in
following research work (Ahmadianfar et al., 2022).

Proposed BinCoWmv Optimization Algorithm
(Binary Coati Weighted Mean Vector)

The BinCoWmv Optimization Algorithm process
begins with the initialization of the coati population; in
first phase the coati location is initialized:
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Cij = LOj +r. (Up] - LOJ) (32)

Where C;; denotes the position of the coati, r is a
random value, and Lo; and Up; represents the lower and
upper bound of the j™ decision variable, respectively. In
this phase, the coatis split into two groups: One climbs the
tree to chase iguanas, while the other waits on the ground
to capture it. Based on this cooperative behavior, the
iguana’s position is updated according to the following
Equations:

CJ»”"’W = (i +Rv.(Iq; — 1.Gyp) 33

Where C;**" is the new position of the ith coati, C;; is
the position of the ith coati in jth dimension, I is the
random value, Rv is the random value, Iq; is the location
of the Iguana. The position of the coati is updated based
on their random position:

19% = Lb; + Ra(Up; — Loj) 34

Cij+r.(Ig—1.C;j),Fig < F (Cij) 35)
Cij + Ra.(Cij — 1g;), else
Where Ig¢ is the location of the iguana, F;yqnq is the
iguana objective function, F;is the objective function of
the ith coati, the position of the iguana shows the best
location.

In the second phase, the process involves updating
rules and combining vectors. Rather than moving towards
an improved solution, a set of randomly chosen coati
differential vectors is used to calculate a weighted
average. This phase considers population diversity
through the Mean Rule, which is influenced by the better,
best, and worst solutions. The better solution is identified
by evaluating the objective value of the top-performing
solution, and the Meang,,;, is conducted based on the Eq.
36 defined:

Meangy,, =1v-CWM; + (1-r1): CWM, (36)

CWM1 = §x% wy(ca— cp)+wa(ca— c)+ws(cp— co) +exT (37)

Wi+W,+Ws+e

Where:

wy = cos((f, — fp) + ) X exp (f“_fb) (38)

w

wy = cos((fo — fo) + ) X exp (fﬂ;fﬂ) (39)

ws = cos((fy — £2) +m) x exp (2K) (40)
Where:

w; =max(fy,fo,fe) 4D

fa = f(Ca), fo = f(Co). fo = f(CC) (42)

CWM, = & x 2 tpos ConCug s T 4 o 1 (43)
Where:

wy = cos((fy — f2) +m) x exp (2F) (44)

wy = cos((f; = f2) +m) x exp (252) (45)

ws = cos((f, = f3) +m) x exp (52) (46)
Where:

wz = max(f1,f2,f3) (47)

fi = f(Cos), f2 = f(Cpe), f3 = f(Cus) (48)

Where f, is the objective function value, where a a #
b # c are the coatis randomly selected from the
population, ¢ is very small constant value, r is the random
value normally distributed, Cp , Cs , Cps are the coati’s
best, better and worst solution among all the vectors in the
population. Based on the iteration the solution is being
determined, rv is the random value, w;, w,, w; are the
WE’s to calculate the weighted mean vector of the coatis,
that help to search in the solution space globally. To
discover promising search space, the updating is based on
following condition:

Tv.(Cps—Ca)

fi—fat+1
10.(Cq—Cp)

€O, =Ci+ o - (rv - Meangy,) +

€O, = Cps+ 0 - (rv - Meangy,) +

fa_fb+1

else (49)
€0,y =C,+ o - (rv - Mean )+M
z1 a Rule fo—fotl

10.(Cq—Cp)
fa—fptl

CO,p =Cpe + 0 - (rv - Meangy,) +

Where CO,and CO, represents the newly generated
population vectors, o is the scaling factor as defined in Eq
49 and « is an adaptive parameter that can be adjusted
according to the exponential function specified in Eq. 50:

a = cexp(—d x =2 (50)

Max¢

In the exploration phase of the BinCoWmv
optimization algorithm, population diversity is enhanced
by combining two coati vectors with the vector C;;. When
the condition rand <0.5 is satisfied, a new vector CV;; is
generated according to Eq. 51. This operator strengthens
the local search capability, allowing the algorithm to
introduce novel potentially more promising candidate
solutions:
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if rand < 0.5
if rand < 0.5
CVij = €Oy + 1 #|COz — COyy|
else
CVij = €Oz +p €O, — COyy|
end

else
Cij = CVY-J

(51)

CVIeW F1eW < F(C;;
ci={ G R < F(Gy) (52)

Cyj else

Where CV;; represents the vector generated through
the combination process within the population,
uis set to 0.05.

Lastly, in the third phase, the algorithm refines
solutions by updating the positions of the coatis in the
search space, simulating their response to an attack or
threat form a predator:
= (53)

Ib;
localy, = T] ,localy, =

local}'* —

CleY = Cyj+ (1 —2r)- (locall’ + 1 - < ) (54)

local}b

Where C*** denotes the updated position of the i
coati in the third phase of COA, and C[**" represents its
position in the j dimension. Here r is a random value, t
indicates the current iteration, localj*” and local;® define
the local upper and lower bounds of the j™ decision
variable, while ub; and lb;, corresponds to the global
upper and lower bounds of the j" decision variable,
respectively.

Furthermore, to prevent coatis from becoming trapped
in local optima, the mean rule defined in Eq. 36 is
incorporated within the local search during the
exploitation phase. This mechanism enhances both the
search process and convergence towards the global
optimum. Based on this operator, a new vector is
generated using Eq. 55:

if rand < 0.5
[ if rand < 0.5
CVij = Cps +rand * (Meangy, + rand * (Cps — f,)
else (55)
CVij = Cps +rand * (Meang,, + rand * (v * Cps — v, * Crang)
end
end

Where @ stands for random number between (0,1),
Crana 1S the new solution that combines the elements of
the solution x4, Cps, Cpy:

Crnd:@xCavg+(1_®)X(Qxcbt"'(l_@)xcbs(SG)

CatCp+C
Xavg = ¢ Sb 2 (57)

The newly calculated and updated position to improve
the objective function, simulated using the following
condition:

cl-={C"1' JFPY < F(Cyj) (60)

C; else

Here C**" represents the updated position of the coati
as determined in the third phase of the BinCoWmv
optimization algorithm, CJ}*" denotes its position in the j™"
dimension, F**" corresponds to its objective function
value.

In medical feature selection problems, binary values 0
and 1 are used to represent whether a feature is excluded
or selected. Since the proposed BinCoWmv optimization
algorithm functions in a continuous search space, a
transformation into binary search space is required. To
achieve this, a V-shaped transfer function is applied
during the exploration phase, with its formulation defined
in Eq. 61:

T(x) = | tan(x)| (61)

lLifrv < X(x)

*Binary = {0 ifrv = X(x) (62)

Where X(x) is the binary representation of the
solution P produced by 61 and 62, rv e [0,1] is random
number. The Algorithm 1 describes the pseudocode of the
BinCoWmv optimization algorithm.

Algorithm 1: Pseudocode of the proposed BinCoWmv
Optimization Algorithm

Start BinCoWmv Optimization Algorithm

Input the information about the optimization problem
Set the no. of iteration T and population of the coati N
Initialize the position of the coati using Eq. 32 and
evaluate the Objective function

Fort=1:T

Updating location of the iguana

Phase 1: Exploration

For i=1: [N/2]

Calculate the new position of i coati using Eq. 33
position of i coati is updated using Eq. 52

End for

For i=1+ [N/2]: N

Random position of iguana is calculated using Eq. 34
The new position for i coati is calculated using Eq. 35
Phase 2: INFO rule

Select coati randomly a # b # c within range [1, N]
Update rule stage

Calculate Vector of the coati C0O,, and CO,, using Eq. 49
Vector combing stage

Calculate combing of coati’s vectors using Eq. 51
Position of i" coati is updated using Eg. 52

End for
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Phase 3: Exploitation using local search operator
Calculate the bounds for the coatis using Eq. 53
Fori=1: N

New position of the coati’s is calculated using Eq. 54
Local search operator is calculated using the Eq. 55
Update the i" coati position using the Eq. 60

End for

Best solution so far is saved

End for

Display the optimal coati result generated by BinCowmv
optimization algorithm.

Classification

Several widely-used classification algorithms for
kidney ultrasound image analysis include RF, DT, SVM,
NB, KNN, and XG-Boost, all of which were employed in
our research. The RF classifier functions by aggregating
the outputs of multiple decision trees to improve
classification performance. It is versatile, working well
with both small and large datasets. In contrast, DT is a
simpler and faster model that can capture complex non-
linear relationships, and it can effectively process both
numerical and categorical data. SVM is an algorithm that
performs well on unseen data, effectively managing both
linearly and non-linearly separable data by employing
kernel functions (RBF, sigmoid, poly, and linear) for
nonlinear datasets. KNN is a simple, easily interpretable
classifier that categorizes based on the k-value. NB,
founded on Bayes' theorem, is uncomplicated and quick
to train, functioning optimally with small datasets. XG-
boost, a boosting classifier, offers flexibility in its
objective function.

Results

The experiments were conducted on a high-
performance workstation equipped with an Intel Core i9-
13900K CPU, 64 GB DDR5 RAM, and an NVIDIA RTX
A6000 GPU, ensuring fast and parallel processing of
computationally intensive tasks. The system utilized a 1
TB NVMe SSD for high-speed operations and a 5 TB
HDD for data storage, running on Windows 10 (64-bit).
Python 3.10 was used for data preprocessing, feature
extraction (via PyRadiomics), classification, and
performance evaluation, while MATLAB R2023b
facilitated the implementation and execution of
metaheuristic optimization algorithms, leveraging its
optimization and parallel computing toolboxes.

The application of the BinCoWmv optimization
algorithm as a Feature Selection (FS) technique for
categorizing pediatric ultrasound images. The dataset,
obtained from an online source, consists of normal and
abnormal kidney images from children aged 3 weeks to 7

years. A total of 94 texture features were extracted from
the kidney ultrasound images, though not all features were
crucial for classifying pediatric kidney images. The
proposed method was employed for FS to enhance
classification accuracy. The primary goal of this research
was to minimize features while improving classification
accuracy. Classifiers such as RF, DT, SVM, NB, KNN,
and XG-Boost were employed with 5-fold cross-
validation to evaluate with and without proposed FS
method, and the parameters of the classifiers are
mentioned in Table 3. Additionally, original optimization
algorithms were applied using both the original features
and those selected by COA, INFO, FFA, and HHO. To
assess the effectiveness of the proposed BinCoWmv
optimization algorithm, the experiment was conducted
over pop size of 10, a dimension 30, 5 iterations, 30 runs,
and 100 epochs; its parameters are mentioned in Table 4.
Metrics used to evaluate classifiers include fitness
measures, the performance of the classifier, and
computational efficiency, which provide information
about the behavior of the model. The description of the
measure are as follows: Coati true positive (CT,),coati
true negative (CT,),coati false positive (CF,),coati false
negative (CF,).

Accuracy: To measure the accurate efficiency of the
proposed system using the formula:

CTy+CTy (62)

Accuracy =
CTp+CTn+CFp+CFy
Precision: To measure no of positive class are accurate
in the classification of images:

CTy 63)

Precision = ——
CTy+CFy
Table 3: Parameters setting for classifiers used in the study
Classifiers Hyperparameters
Random Forest (RF) n_estimator=100,
criterion="" gini”
criterion=""gini”, max_depth
=8, min_samples =4

Decision Tree (DT)

Naive Bayes (NB) GaussianNB

K-Nearest Neighbor (KNN) K =5, Weights ="distance’

Support  Vector Machine Kernel = ‘rbf, decision

(SVM) function= ‘ovo’, gamma =
100

Extreme Gradient Boost Max_dept = 2, learning rate

(XG-Boost) =0.01

Table 4: Parameter setting of the algorithm used in the study

Algorithms Parameter Values
BinCoWmv (Proposed) ¢, d 2,4

INFO c,d 2,4

HHO Bo,o,y 0.2,1.0,0.5
BCOA Parameter free -

FFA Parameter free -
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Specificity: To measure the negative class in the
classification of images:

CTn (64)

Specificity =
p y CTp+CFp

Recall: To measure the positive rate in the
classification of images:

— CTP
Recall = oT,ecr (65)
F-measure: To measure the test accuracy, to verify
how well the test performs:
Recall xPrecision (66)

Fmeasure = 2 X —
Recall+Precision

Average Solution Time: The average time taken by the
BinCoWmv for the computation in seconds, 7' times is
determined as follows:

Average solution time = %2?:1 AvgSolnTime, 67)

Where AvgSolnTime, is the computational time at ¢
run or iteration.

Best Fit: BinCoWmv derives the minimum fitness
value, which computes as follows:

. Ci

Bestyye = min ¥, f(Ciy) (68)

Worst Fit: BinCoWmv derives the maximum fitness
value, which computes as follows:
Worsts; =

CL ..
e 221 f (Cj) (69)

N denotes the total number of candidate solutions in
the population. The index i € {1, 2, ..., N} represents the
i candidate solution. C;; refers to the ; feature selected
by the i candidate solution, while C;; indicates the total
number of features selected in the i" solution. The
objective function f(C;;) evaluates the quality of the
selected feature C;;.

Average feature count: count on average BinCowmv
selects features is calculated as:

AvgCount® (70)

Avgerage selected feature = %Zzzl N

Where AvgCount® is the selected feature count, and
N represents total number of features.

Mathews Correlation Coefficient (MCC): to evaluate
the Corelation between the predicted and actual binary
outcomes:

CT,CT,—CF,+CF,
Mcc, = p_np-n

(71)

\/(CTp+CFp)(CTp+CFn)(CTn+CFp)(CTn+CFn)

Fitness Function: The fitness function assesses the
trade-off between the classification error and the quantity
of features chosen:
f=a-(1 - Accuarcy) + % (72)

Where a and 8 are the weights of selection ratio,
selected features quality. That fall within the range of
[0,1], SF and N are the selected features and total features
respectively and (1-accuracy) is the classification error
obtained by the classifiers. The p-value obtained from
Friedmans test is used to evaluate the validity of a
hypothesis. A p-value below 0.05 is generally interpreted
as significant evidence to reject the null hypothesis,
indicating that the observed differences are unlikely to
have occurred by chance.

The performances of the proposed Binary Coati
Weighted Mean of Vector (BinCowmv) optimization
algorithm for feature selection were evaluated using
metrics such as mean fitness, standard deviation of
fitness, worst fitness values and number, selected
features, computational time, and Matthew’s
Correlation Coefficient (MCC) as described in Table 5.
As shown in Figure 5, the Random Forest (RF)
classifier presented the lowest average fitness before
feature selection, indicating an efficient cost function
and robust base learning. The Naive Bayes (NB)
classifier displayed the highest average fitness,
reflecting suboptimal initial performances. XG-Boost
achieved a competitive fitness average of 0.01073.
After applying the BinCoWmv feature selection,
improvements were observed for all classifiers. RF and
XG-Boost achieved an optimal fitness value of
0.01042. RF presented zero fitness variance,
confirming its stability, with an increase in the number
of selected features to 27.07. MCC values improved for
all classifiers, RF reaching 0.9590, indicating reliable
classification in the presence of class imbalance. Table
6 shows that RF outperforms the other classifiers,
improving the accuracy from 94.41 to 96.50%, as
confirmed by the confusion matrix in Figure 3. XG-
Boost achieves an accuracy of 95.10% after feature
selection, which is a decision that presents a better
generalization. Naive Bayes improves recall, but its
precision remains lower, while SVM displays a slight
improvement in recall. Figure 2 illustrates the
improvement of ROC-AUC scores after feature
selection for all classifiers. Despite the increased
computational time, the gains in accuracy, Matthew’s
Correlation Coefficient (MCC), and model reliability
justify this trade-off, especially for clinical decision
support systems. Figures 4 and 5 demonstrate the
comparative gains achieved by feature selection.
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Table 5: Evaluation of classifiers of with / without FS across different classifiers for values: Mean, STD, Best fit, Worst fit, Avg Feature
count, Avg Solution time, MCC, Fitness

Worst Avg Avg
Classifier Mean Std Best fit fit feature solution MCC Fitness
count time
DT 0.01976 0.00642 0.01001 0.02873 10.50000 0.01599 0.70700 0.01976
RF 0.00902 0.00240 0.00575 0.01283 6.80000 0.18443 0.86010 0.00902
Without ES SVM 0.06949 0.01072 0.05869 0.08458 14.10000 0.09920 0.27200 0.06949
KNN 0.06674 0.01021 0.04884 0.08240 13.50000 0.00378 0.39900 0.06674
NB 0.08475 0.01308 0.06669 0.10819 12.20000 0.00416 0.23220 0.08475
XG-Boost 0.01073 0.00375 0.00564 0.01752 7.90000 0.33520 0.84610 0.01073
DT 0.01563 0.00521 0.01042 0.02083 10.81078 178.20962 0.91746 0.02083
RF 0.01042 0.00000 0.01042 0.01042 27.07243 325.22336 0.95903 0.01042
With FS SVM 0.04167 0.04501 0.00000 0.13542 29.14797 101.94759 0.93754 0.03125
(BinCoWmv) KNN 0.05469 0.05381 0.01042 0.14583 16.56446 98.00257 0.91946 0.04167
NB 0.05903 0.06153 0.01042 0.14583 19.88417 119.84259 0.70794 0.14583
XG-Boost 0.04375 0.04904 0.01042 0.13542 29.38760 119.40345 0.94648 0.01042
ROC AUC Score Comparison With and Without Feature Selection
wm Without FS
Em With FS
1.0 A n.og3g 09889 09789 0.9840
g
z
E
XGBOOST
Fig. 2: Graphical illustrating the comparison of AUC with and without FS
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Table 6: Performance metrics of the classifiers with and without FS

Classifier Accuracy Precision Recall F-measure Roc Specificity
DT 0.8462 0.8356 0.8714 0.8531 0.8535 0.8356
RF 0.9441 0.9286 0.9286 0.9286 0.9838 0.9315
. SVM 0.6224 0.5816 0.8143 0.6786 0.6335 0.4384
Without FS
KNN 0.6993 0.7143 0.6429 0.6767 0.7891 0.7534
NB 0.6154 0.6364 0.5000 0.5600 0.6393 0.7260
XG-Boost 0.9231 0.9275 0.9143 0.9209 0.9789 0.9315
DT 0.9231 0.9155 0.9286 0.9220 0.9232 0.9178
RF 0.9650 0.9851 0.9429 0.9635 0.9889 0.9863
With FS SVM 0.6314 0.5730 0.7286 0.6415 0.6935 0.4795
(BinCOWmv) KNN 0.7762 0.8393 0.6714 0.7460 0.8815  0.8767
NB 0.7762 0.7159 0.9000 0.7975 0.8695 0.6575
XG-Boost 0.9510 0.9565 0.9429 0.9496 0.9840 0.9589
. in Table 4, while Table 7 shows classification accuracies
Performance metrics across six classifiers. The Results show that BinCowmv
outperforms all benchmark optimizers. The Decision Tree
XGBOOST classifier accuracy increased from 84.62 to 92.31% with
- BinCowWmv, outperforming HHO and COA. Random
Forest achieved 96.50% accuracy, surpassing HHO's
g KNN 95.80%. BinCoWmv increases the BinCowmv.
& I of the model by improving feature relevance and
3 W compactness. K-nearest neighbors showed significant
RE improvements, whereas Naive Bayes improved owing to
irrelevant feature removal. XG-Boost with BinCoWmv
oT achieved higher accuracy than INFO and HHO. Table 8
0 0s  os o6 os L - shows BinCoWmv achieved the highest average fitness
(0.94775) and lowest standard deviation (0.00404),
Hspecificity  ®roc  Mflscore  Mrecall M Precision indicating robustness. Its higher average feature count

Fig. 5: Performance metrics for proposed method across
different classifiers

Discussion

A comparative study evaluated the proposed approach
against metaheuristic algorithms, including Coati
optimization (COA), vector-weighted averaging (INFO),
FireFly Algorithm (FFA), Harris Hawk optimization
(HHO) and BinCoWvm. The Parameter settings are listed

balances the compactness and representation. Although
INFO showed faster convergence, it retained more
features. The computational time of BinCoWmv was
moderate, shorter than HHO, FFA, and COA. Statistical
validation using the Friedman test showed a p-value of
0.0530. While HHO, INFO, and FFA achieved p values
below 0.01, BinCoWmv higher p value indicated
improved consistency. The 95% confidence interval
ranged from 0.9472 to 0.9491 over 30 iterations. Table 9
shows that BinCoWmv with RF achieved 96.50%
accuracy, outperforming PCA+ANN  (77.89%),
CSA+ANN, PCA+VGG16, and OGOA+ANN classifiers.

Table 7: Comparison of accuracies across different optimization algorithms

with HHO

Classifiers Withqut feature With Coati With INFO With FFA features features with BinCoWmyv
selection features features features

DT 0.8462 0.8881 0.8392 0.7902 0.9091 0.9231

RF 0.9441 0.9301 0.9441 0.9091 0.958 0.965

SVM 0.6224 0.6014 0.6643 0.5664 0.5944 0.6014

KNN 0.6993 0.7413 0.5664 0.6993 0.6573 0.7762

NB 0.6154 0.6713 0.6783 0.6853 0.6783 0.7762
XG-Boost 0.9231 0.9091 0.9161 0.9091 0.9441 0.9510
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Table 8: Value of mean, STD, Best fit, Worst fit, Avg Feature count, Avg Solution time, P-value, Confidence interval determined by

BinCoWmv against original optimization algorithms

Optimizatio Avg Avg Confidence
N l; loo Mean fitness ~ Std fitness  Best fit Worst fit feature solution p-value interval
& count time

BinCoWmv 4 94775 0.00404 940659 921875 001657 27 0.053043 8'323%

Coati 0.90567 0.001338 88.89090 89.68688 0.03487 133.78 0.053044 8382,

INFO 0.95670 0.000767 87.56778 87.97567 0.25087 112.52 0.004720 ggg;g,

FFA 0.86977 0.005977 86.63587 86.52454 0.56897 145.63 0.000228 gggz(l),

HHO 0.88460 0.006897 87.57878 89.57556 0.27076 139.08 0.004720 0.8822,
0.8872

Table 8: Comparison of proposed method with existing state-of-art

Ref. Features Method Classification Accuracy

(Priyanka and Kumar, GLCM, 44 features PCA ANN 77.8%

2020)

(Nithya et al., 2020) GLCM, 22 features CSA ANN 93.45%

(Alkordy et al., 2023)  VGG16 features PCA VGG16 95%

(Balamurugan and GLCM, 22 features OGOA ANN 95.83%

Arumugam, 2020)

Proposed GLCM, GLRLM, GLSZM, GLDM, BinCoWmv RF 96.50%

NGTDM, FIRST ORDER, 94 optimization
features algorithm
Conclusion show this approach outperforms existing methods,

Feature Selection (FS) can substantially enhance
classification accuracy. This research presents a novel
hybrid algorithm called Binary Coati and Weighted mean
vector (BinCowWmv) optimization algorithm for
classifying pediatric kidney ultrasound images. The
methodology comprises five key stages: Initially,
pediatric ultrasound images are acquired from an online
repository. Next, these images are preprocessed to
eliminate noise and artifacts, as well as to focus on the
area of interest. The third step involves extracting
radiomics features, with a focus on grey level
characteristics of the ultrasound images. Subsequently, FS
is performed, as not all extracted features are essential for
classification due to the tissue-based nature of kidney
structures. In this stage, metaheuristic optimization
algorithms are utilized, specifically integrating coati
optimization with a weighted mean vector (INFO),
referred to as the BinCoWmv optimization algorithm.
This approach enhances both exploration and exploitation
abilities while preventing the algorithm from getting stuck
in local optima. Initially operating in a continuous search
space, the algorithm is subsequently converted into a
binary search space tailored for the medical dataset. The
subset of features that have been optimally chosen is
subsequently classified using a range of classifiers, such
as RF, DT, NB, KNN, SVM, and XG-Boost. The
evaluation is based on confusion matrix parameters. The
proposed method was evaluated against feature selection
algorithms like Coati, INFO, FFA, and HHO. Results

delivering higher classification accuracy to support
pediatric nephrologists in earlier detection of Kkidney
abnormalities and improving patient outcomes. Future
research directions include testing the proposed
methodology with different larger dataset, assessing the
feasibility of integrating the model into clinical
workflows for real-time diagnostics assistance.
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