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Abstract: In a subscription-based service such as cloud computing, clients 

have scheduled access to shared resources such as data, software, storage, 

and other assets as needed. Despite several benefits, cloud computing still 

faces significant difficulties. Load balancing, which is the capacity of the 

cloud infrastructure to equally distribute tasks among the resources in the 

cloud environment has significant issues. Cloud federation is a novel concept 

in cloud deployment that was developed to overcome load imbalance and 

other drawbacks that come with standalone clouds. However, in a federated 

cloud system, effective workload sharing among participating Cloud Service 

Providers (CSP) is also challenging. Therefore, this study presents a 

Federated Load Balancing Architecture version 1 (FedLoBA-1) for optimal 
distribution of inter-cloud and intra-cloud loads within federated cloud 

infrastructures. The inter-cloud load balancing was realized using Ant 

Colony Optimization (ACO) whereas the intra-cloud component was 

realized with the Throttled algorithm. The implementation of the FedLoBA-

1 and simulation of the federated cloud were carried out using the 

CloudAnalyst simulation toolkit. Experimental results show that FedLoBA-

1 gave an average response time of 92.33 ms as compared with 328.4ms and 

176.55 ms for Closest Datacenter (CDC) and Optimize Response Time 

(ORT) algorithms respectively. The minimum average processing time 

obtained for FedLoBA-1, CDC, and ORT were 1.49, 17.00, and 6.68 ms 

respectively. FedLoBA-1 is a valuable solution for effective resource 
utilization in federated cloud environments. It significantly improves load 

balancing in cloud federation by offering an optimized two-tiered approach 

for intra-cloud and inter-cloud load distribution. This approach results in 

significantly better performance than existing algorithms. 
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Introduction 

The advent of cloud computing technology has made 

computing services such as application hosting, content 

storage, and other services to be in high demand at a 
reduced cost (Meenaskhi and Chhibber, 2016; Patrick et al., 

2022). Cloud computing is a subscription-based service in 

which shared assets, data, software, and other resources 

are made accessible as needed to clients at scheduled 

times. In cloud computing, there is internetworking of 

computing resources, and on-demand configuration and 

accessibility of computing resources are made flexible, 

easy, and fast through the Internet (Bura et al., 2018).  

However, despite the various advantages, there are 
still some challenges confronting cloud technology 
(Mrhaoaurh et al., 2018).  

 One of the major issues in cloud computing is the 

inability of the cloud infrastructure to evenly distribute 



Damola Gideon Akinola et al. / Journal of Computer Science 2025, 21 (2): 432.443 

DOI: 10.3844/jcssp.2025.432.443 

 

433 

tasks among resources in the cloud environment leading 

to load imbalance (Fatemi Moghaddam et al., 2015; 

Balne, 2019). This is a consequence of the rapid increase 
in the number of cloud users requesting or accessing cloud 

services (Chamoli et al., 2016; Mohammadian et al., 

2022; Prasadhu and Mehfooza, 2020). Thus, there is often 

a degradation in the Quality of Service (QoS) and a 

compromise of the Service Level Agreement (SLA) 

between the CSPs and the consumers (Afzal and Kavitha, 

2019). Load balancing involves the dynamic and even 

allocation of workloads among all the nodes that are 

accessible in the cloud. This even distribution of traffic to 

various data centers or geographic regions provides 

geographic redundancy and enhances performance for 
users located in different areas (Bogdanov et al., 2018). 

Efficient load balancing ensures that each virtual machine 

within the cloud system can handle an equivalent 

workload. As a result, load balancing becomes crucial for 

optimizing throughput by reducing response times 

(Mishra et al., 2020). 

 In order to improve the load imbalance problem, a 
new paradigm of cloud deployment known as cloud 
federation was introduced (Bhuskute and Kadu, 2021). In 
cloud federation (also known as federated cloud), 
aggregation and interconnection of various CSPs are done 
to satisfy market requirements. The main elements of a 

federated cloud include a cloud broker, cloud exchange, 
and cloud coordinator (Bhuskute and Kadu, 2021).  

One crucial advantage of federated cloud 
environments is the guaranteed availability, as users 
experience reduced response times thanks to a pool of 
virtualized resources from various Cloud Service 
Providers (CSPs) in the federation (Levin et al., 2018). 

However, as opined in Ray et al. (2018), the federated 
cloud environments are still confronted with issues such as:  
 

i) Intercloud load balancing between CSPs 

ii) Dynamic allocation of computing resources in the 

data center (DC) 

 

Thus, this study presents a federated load-balancing 

architecture based on metaheuristic optimization and 

throttle algorithms, to mitigate overloading in federated 

clouds. The proposed Federated Load Balancing 

Architecture (FedLoBA-1) presents a load-balancing 

solution at both the inter-cloud (i.e., Federated) and the 

intra-cloud levels. The inter-cloud level is load balancing 

among the data centers (DCs) of a federated cloud whereas 

the intra-cloud level is load balancing within the DC.  

Background 

Load Balancing 

Load balancing is the process of distributing the entire 

workload across nodes that are available in a cloud 
computing infrastructure in order to have efficient task 

allocation and optimum resource utilization (Narale and 

Butey, 2018; Prasadhu and Mehfooza, 2020). It ensures 

equitable and dynamic workload distribution and better 
resource usage in the cloud environment. As the 

population of cloud users increases, the workloads on the 

cloud (i.e., memory capacity, network, and computing 

resources (e.g. Central Processing Unit (CPU) and 

Graphical Processing Unit (GPU)) become imbalanced 

due to overloading or underloading (Jadav and Gayatri 

Pandi, 2021). The consequence of load imbalance is a 

degradation in the Quality of Service (QoS) and Service 

Level Agreement (SLA) between the CSPs and the 

consumers (Afzal and Kavitha, 2019). An efficient task 

distribution contributes to better resource management 
and a high level of user satisfaction. Applying load 

balancing minimizes delays in data transmission and 

prevents overloaded node conditions in cloud data centers 

(Goyal and Bharti, 2014; Shafiq et al., 2021).  

In response to the challenge of load imbalance, several 

cloud providers offer Load-Balancing-as-a-Service 

(LBaaS) to customers who employ these services on an 

as-needed basis. Instead of distributing traffic among a 

group of servers within a single data center, LBaaS 

spreads workloads across servers and operates as a 

subscription or on-demand service (Ramya et al., 2014). 

Load balancing in cloud computing works exactly like a 

traffic controller directing traffic to avoid congestion. 

Figure (1) shows a generic architecture of a load balancing 

scheme within a stand-alone cloud environment. 

Information Technology (IT) teams utilize load 

balancing to ensure that each node operates at maximum 

efficiency (Chamoli et al., 2016; Sajjan and Yashwantrao, 

2017). As a result of the essentiality of load balancing in 

cloud computing, different algorithms are being used 

depending on the QoS demands between the CSPs and the 

customers (Shafiq et al., 2022; Thakur and Goraya, 2017). 

There are three broad categories of load-balancing 

algorithms, namely; static, dynamic, and nature-

inspired/metaheuristic algorithms. 

 

 
 

Fig. 1: Generic architecture of cloud load balancing 
(Singh et al., 2017) 
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Static Algorithm 

In static load balancing methods, nodes are given jobs 

depending on their capacity to handle new requests after 

past knowledge of their capabilities and attributes has 

been taken into account (Ghutke and Shrawankar, 2014; 

Sajjan and Yashwantrao, 2017). These load-balancing 

algorithms are employed when the initial configuration, 

network topologies, and already established 

computational variables are all designated (Yadav and 

Prasad, 2018). As a result of a lack of consideration for 

the current state of the cloud infrastructure, the algorithm 

usually encounters a lack of fault tolerance as a major 

setback (Shafiq et al., 2021). Instantaneous migration of 

tasks can also be a challenge in static algorithms (Shah 

and Farik, 2015). Some of the common static load 

balancing algorithms in cloud load balancing include 

round-robin, weighted round-robin, opportunistic or 

random, min-min, and max-min (Bura et al., 2018). 

Dynamic Algorithm 

Dynamic load balancing algorithms are developed to 

proffer solutions to some of the challenges encountered in 

static load balancing algorithm. They search for the 

network's lightest server and then place the proper load on 

it (Kumar and Singh, 2015; Shah and Farik, 2015). The 

selection and distribution of tasks are based on the current 

state of the nodes, making them more flexible and 

complex (Fatima et al., 2019). These algorithms are more 

suitable for heterogeneous environments. Examples 

include throttled, Equally Spaced Current Execution 

(ESCE), and least connection algorithms (Agarwal and 

Singh, 2019; Ramadhan et al., 2018), etc. 

Nature Inspired Algorithm 

These load-balancing algorithms involve the 

development of optimization techniques with the aim of 

leveraging natural processes to solve the problem 

encountered during resource allocation and task 

scheduling in cloud computing (Thakur and Goraya, 

2017). They are motivated by the behaviors of organisms 

such as ants, honey bees, lions, etc., or biological 

processes such as evolution and genetics (Shafiq et al., 

2021). Examples of nature-inspired algorithms that have 

been employed for load-balancing tasks include genetic 

algorithms, particle swarm optimization, honey bee 

foraging, ant colony optimization, etc., (Hashem et al., 

2017; Jyoti et al., 2020). 

Federated Cloud 

Cloud federation, also known as federated cloud, is the 

merging and coordinating of different cloud computing 

services to meet business goals and customers’ demands 

(Vaghela et al., 2018). It is a global cloud system that 

combines community, private, and public clouds into 

High-Performance Computing (HPC) platforms. One of 

the fundamental goals is to meet high clients’ demand by 

harnessing a large pool of computing resources from 

different CSPs. Consumers may not always be able to 

access high-quality services if they rely entirely on one 

cloud provider (Molo et al., 2021). Thus, cloud federation 

helps CSPs render optimal services as the workload grows 

by renting resources from other providers. The cloud 

federation architecture comprises the major components 

hereafter described (Fig. 2): 

 

i) Cloud broker: The federated cloud entity known as 

the cloud broker communicates with the cloud 

exchange on behalf of the client to learn about 

premium pricing models, SLA guidelines, resource 

availability, and cloud service providers. It is in 

charge of allocating resources in accordance with 

user needs (Molo et al., 2021; Zangara et al., 2015) 

ii) Cloud exchange: The cloud exchange component 

serves as a mediator between the cloud coordinator 

and broker. It matches up the cloud coordinator's 

available resources with the cloud broker's requests. 

The cloud exchange keeps track of cloud service 

providers (who are actively offering their services), 

typical customer requests, and the current cost of 

facilities (Assis and Bittencourt, 2016) 

iii) Cloud coordinator: The cloud coordinator readily 

updates all the data kept in the cloud exchange 

database storage. All the computing resources from 

different CSPs are pooled together by the cloud 

coordinator. The customer's budget and the Quality 

of Service (QoS) they require are taken into 

consideration when the cloud coordinator distributes 

the customer's access to the cloud's resources 

(Bhuskute and Kadu, 2021) 

 

 
 
Fig. 2: Federated cloud architecture (Neha, 2020) 
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Both CSPs and cloud users can benefit from the cloud 

federation framework. Customers primarily gain from 

low prices and high performance, while CSPs can give 
their entire customer base increased cloud capabilities 

(Bhuskute and Kadu, 2021). However, federated cloud 

often encounters the problem of load imbalance due to 

the complexities involved in setting them up and in their 

operation (Molo et al., 2021; Zangara et al., 2015). In a 

federated cloud, more than one provider typically 

processes a user request. In such circumstances, dividing 

user requests equally between CSPs (using existing load-

balancing techniques) becomes challenging for 

transparent workload sharing. 

Related Works  

The ultimate goal of load balancing in a cloud 

environment (both standalone and federated) is to provide 

seamless allocation of resources to cloud users. 

Researchers have developed different algorithms to 

handle load balancing in cloud computing infrastructure.  

In (Ramadhan et al., 2018), an experimental 

simulation of the throttled algorithm was implemented on 

Cloud analysis. Key parameters such as response time, 

latency, servicing times, and cost were used in the 
evaluation. The authors reported that the response time 

was directly proportional to the number of UserBase.  

Sharma and Jain (2018) proposed a load-balancing 

algorithm based on clients' QoS demand. Priority was 

based on Cost Based QoS Request (CBQR), which 

satisfies SLA between CSPs and clients. Three UserBases 

with different CBQRs were used for simulation on Cloud 

Analyst. The results showed an increase in response time 

for UserBase and datacenter in different locations while a 

decrease in response time occurred when the UserBase 

and datacenter were in the same location.  

In (Jaikar et al., 2014), the authors proposed workload 

balancing in a federated cloud environment formed by 

different CSPs. The algorithm involves the development 

of two models (A and B) that study the access probability 

and resource utilization of federated cloud resources. The 

performance evaluation of the two models showed that 

Model A has a higher overall access probability of 2.67% 

than Model B.  

Ray et al. (2018), developed the Overloaded Cloud 

Provider Detection Algorithm (OCPDA) to identify CSPs 

in a federation that are overloaded. It utilized Multiple 

Linear Regression (MLR) to estimate current load values 

for all the partner CSPs thereby detecting the overloaded 

ones. Experimental results showed that the algorithm 

successfully determined overloaded CSPs with an error 

between 0.9-8% for the estimated and actual overloading. 

However, the algorithm did not implement the balancing 

of loads among the CSPs.  
The authors (Rajarajeswari and Aramudhan, 2016) 

proposed two load-balancing algorithms for improving 

the performance of federated cloud broker architecture. 

The first algorithm named Agent-based Round Robin 

Scheduling (ARRS) distributes service requests among 
the selected brokers by considering the workload and 

queue size of brokers. It was however reported that with 

ARRS, load imbalance still persists in the architecture. 

The second algorithm named the Decentralized Agent-

based Load Balancing (DALB) algorithm operates at the 

broker's level and balances workload by migrating 

requests to underloaded brokers. It utilized stationary 

agents, decision-making agents, and migration agents to 

provide high flexibility in the request migration process. 

Experimental results showed that DALB achieved 

effective distribution of workload within a federated 
cloud environment. 

Rajeshwari et al. (2021) proposed a two-fold 

hierarchical scheduling approach both at the federated and 

the cloud levels. The Queue Partitioned based Fair Load 

Distribution System (QPFS) was used for load 

distribution among the CSPs at the federation level. At the 

cloud level, it uses the Modified Activity Selection-based 

Task Scheduling by Greedy (MASG) technique to 

distribute tasks to the most appropriate Virtual Machines 

(VMs). Simulation results in CloudSim showed that 

QPFS-MASG achieved fairness in load distribution 

among multiple CSPs. Furthermore, 90% of the tasks 
were completed prior to their deadline with between 31 

and 40% improvement in average response time. 

An inter-cloud load balancer named Closest 

Datacenter (CDC) is used in the CloudAnalyst simulation 

toolkit for managing the routing of traffic between the 

cloud users and the data centers (Menakadevi and 

Devakirubai, 2016; Rani et al., 2015; Shahid et al., 2023). 

The closest data center (CDC) takes the delay in 

transmission into consideration while distributing traffic 

to the closest data center (Sankla, 2015). Optimize 

Response Time (ORT) is another scheme used in 
CloudAnalyst to achieve load balancing. The ORT 

scheme assigns a center to user requests by considering 

the performance of the closest data center in terms of 

response time. It assesses the current response time for 

each datacenter and then looks for the datacenter with the 

shortest estimated response time (Radi, 2015). 

Materials and Methods 

The system architecture of the proposed FedLoBA-1 

is shown in Fig. (3). The architecture comprises Cloud 

Service Consumers, Internet, Cloudlets, Cloud Broker, 

Cloud Exchange (containing FedLoBA-1, the inter-cloud 

load balancer), and the Data Centers (DCs) within the 

federated cloud environment (with the intra-cloud load 

balancer). The Cloud Service Consumers make requests 

through the Internet, the Cloud Broker accommodates all 

the various requests of the cloud service users in the form 

of Cloudlets. In the Cloud Broker, the requests are 
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submitted in a Job Queue and each request is processed 

by the Cloud Information Services (CISs) to identify 

specifically the type of cloud service of the submitted 
requests. The Cloud Exchange serves as a link between the 

Cloud Broker and the DCs that form the federated cloud 

resources. The information of the interconnected data 

centers is registered in the Cloud Exchange. The inter-cloud 

or federated load balancing in this study was implemented 

with Ant Colony Optimization (ACO), which is a meta-

heuristic algorithm. It was incorporated into the Cloud 

Exchange to select the best DCs with respect to cloud users' 

requests and to perform load balancing between the DCs. 

In order to evenly map cloud users' requests with the 

available resources within the DC resources, the intra-load 
balancer scheme was realized with the Throttled algorithm 

(Ramadhan et al., 2018). It was incorporated in each of the 

data centers as shown in Fig. (3).  

Ant Colony Optimization for Inter-Cloud 

(Federated) Load Balancing 

The inter-cloud (federated) load balancer leverages the 
ability of ACO to find the optimum shortest path to food 
source (s). In terms of the federated cloud environment, 
the mapping of the ACO algorithm is done such that the 
Ant, Food, and Pheromone represent the Load, DCs, and 
Communication Link respectively. The balancing of loads 
across the DCs via the shortest path using ACO entails 
three major steps. These include pheromone initialization, 
selection of DCs, and pheromone updating, which are 
hereafter described. 

Pheromone Initialization 

In ACO, the cloud users' requests search for nodes, 

which are contained in DCs, and create a communication 
path known as a pheromone trail. The pheromone trails 
activate an indirect communication behavior between 
requests. This communication path creates distances 

between the users' requests and nodes within the DCs. In 
implementing the ACO algorithm, choosing an optimum 
value as the start or initial value for the pheromone 

contributes either positively or negatively to the overall 
efficiency and convergence process of the algorithm 
(Bellaachia and Alathel, 2014; Tamura et al., 2021).  
 

 
 
Fig. 3: FedLoBA-1 system architecture  

In order to ensure the effectiveness of the initial 

pheromone value of the connection between DCs, it is 

ideal to set it as close as possible to the average expected 
pheromone value that a task would deposit on that edge 

during a single iteration (Nishant et al., 2012). The initial 

pheromone level in ACO algorithms is often initialized 

using either a fixed value or a value that was pre-

determined by executing a fast incomplete route design 

technique (Nilesh and Patel, 2017). In order to initialize the 

pheromone in this study, the local pheromone initialization 

(Bellaachia and Alathel, 2014) method was adopted, with 

the initial pheromone value represented as Eq. (1): 
 

𝜏𝑥𝑦 =  
1

∑ 𝑑𝑥𝑧𝑧є𝑁𝑥
𝑘

 (1) 

 
The term τ𝑥𝑦 represents the initial pheromone value and 

𝑑𝑥𝑧 is the distance between the connecting datacenter x and 

datacenter z that is associated with the neighborhood 𝑁𝑥
𝑘. 

Selection of Datacenters 

Redistributing requests or loads among the DCs is the 

ACO algorithm's major function. The ACO technique 

redistributes user requests by computing the probability of 

the optimal DC to respond to the requests (Nilesh and 

Patel, 2017). The algorithm moves through the federated 

cloud network, selecting DCs for their subsequent step 

using the probabilistic function formula in Eq. (2):  
 

𝑃𝐾(𝑐, 𝑛) =
 [τ(𝑐,𝑛)][ŋ(𝑐,𝑛)]𝑏

 ∑[τ(𝑐,𝑢)][ŋ(𝑐,𝑢)] 𝑏
 (2) 

 
where:  

Pk  =  Probability of the ACO choosing the nearby DC n 

for the shortest path to the current DC c 

τ  =  Pheromone intensity of the edge 

ŋ =  The desirability of the move by the ant; and  

𝑏 =  Is a factor that represents the relationship between 

pheromone concentration and communication path 
 

Pheromone Table Updating 

The ant (i.e., load or user request) will move by using 

two different types of pheromones. The type of 

pheromone that the ant is updating would indicate the type 
of movements it makes and would reveal the type of DC 

it is looking for. There are two different kinds of 

pheromones known as foraging and trailing pheromones. 

Foraging pheromone: Foraging pheromone involves 

the forward movement of requests in searching for food 

sources. Foraging pheromones would be laid down once 

the requests found the overloaded DCs to search under 

loaded DCs. An ant will therefore use a foraging 

pheromone to try to determine the next path after 

approaching a DC that is not fully filled. The foraging 

pheromone is computed via Eq. (3) (Nilesh and Patel, 
2017; Nishant et al., 2012): 
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τ𝑓𝑝(𝑡) = ( 1−𝑝) τ𝑓𝑝(𝑡) + ∑  ∆𝑛
𝑘=1 τ𝑓𝑝(𝑡)

𝑘   (3) 

 

Given that: 

 

τ𝑓𝑝(𝑡) = Foraging pheromone before the move 

∆τ𝑓𝑝(𝑡) = Change in foraging pheromone; and  

𝑝 = Pheromone evaporation rate 

 

Trailing pheromone: Trailing pheromone is used to 

initiate backward movement of the request upon meeting 

an overloaded DC, the user request finds its way back to 

the DC via trailing pheromone. The requests use this 

pheromone in this algorithm to determine their route to 

the underloaded DC after coming across the overloaded 

DC. The trailing pheromone is computed via Eq. (4) 

(Nilesh and Patel, 2017; Nishant et al., 2012): 

 

 𝜏𝑡𝑝(𝑡) = ( 1−𝑝) 𝜏𝑡𝑝(𝑡) + ∑  ∆𝑛
𝑘=1 𝜏𝑡𝑝(𝑡)  (4)  

 

Given that: 

τ𝑡𝑝(𝑡) = Trailing pheromone before the move 

∆τ𝑡𝑝(𝑡) = Change in trailing pheromone 

𝑝 = Pheromone evaporation rate 

 

Table (1) presents the summary of the parameters 

used for the implementation of ACO in this study. 

These parameters determine which decision to make in 

order to find the optimum path for load balancing 

among federated data centers. 

Intra-Cloud Load Balancing 

The intra-cloud load balancing within the federated 

cloud infrastructure involves an even balancing of loads 

or requests across the Virtual Machines (VMs). The 

FedLoBA-1 uses existing Throttled algorithms (Panchal 

and Parida, 2018) to create an even distribution of loads 

in the VMs. By establishing a table of VMs and their 

status, the Throttled algorithm distributes the load 

equally. The intra-cloud load balancer picks the first VM 

it finds in the list of available VMs when a request to 

allocate VMs from the data center is made. The request is 

assigned to a VM if one is discovered. The datacenter will 

receive a return value of -1 if no VM is discovered. It will 

then add this request or task to the queue and wait for the 

discovered VM. The benefits of this dynamic intra-cloud 

load balancing approach include good speed and efficient 

resource consumption. The list of VMs is kept up to date 

with their state.  

Figure (4) presents the process flowchart of the ACO-

based inter-cloud (federated) load balancer and the 

Throttled algorithm-based intra-cloud load balancer in 

FedLoBA-1. 

Table 1: Description of ant colony optimization parameters for 
federated load balancing 

ACO Parameters Description 

Number of Ants The number of users ’requests. 

Pheromone 
initialization 

The initial value or strength of the 
communication link 

Threshold  The maximum value of the 
pheromone level to discover an 
overloaded data center 

Pheromone update rate 
(Alpha) 

The rate at which pheromone 
values are deposited or increased. 

Pheromone decay rate 
(Beta) 

The rate at which pheromone 
values are reduced 

Iteration The movement of users' requests 
around the data centers 

 

 
 
Fig. 4: FedLoBA-1 process flowchart  
 

Implementation and Simulation of FedLoBA-1 

In a typical federated cloud environment, the essential 

elements that must be created include the Federal Cloud 

Broker, Cloudlets, Cloud Exchange, Virtual Machines, 

and data centers (CSPs). The CloudAnalyst simulation 

toolkit (developed with Java) was adopted to simulate 

FedLoBA-1. It expands on the core functionality of the 

CloudSim framework to model and analyze the behavior 

of large-scale Internet applications in cloud settings 

(Jena et al., 2020). It contains Java classes that were used 
to simulate the various elements in FedLoBA-1 (Fig. 4) as 

well as the designed inter-cloud and intra-cloud load 

balancers in this study.  

The configurations of the simulation parameters are in 

two parts; (i) The datacenter parameters and (ii) the user 

base parameters. The data center parameters were 

configured based on the specifications of the FEDGEN 

Testbed as shown in Table (2) (Nzanzu et al., 2022). The 

FEDGEN Testbed is a prototype federated cloud 

infrastructure at the Covenant Applied Informatics and 

Communications African Center of Excellence (CApIC-

ACE) (Adetiba et al., 2022). 
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Table 2: Datacenter configuration parameters 

Regi

on ID 

No. of 

Server 

Operating 

system 

Archite

cture 

RAM 

(GB) 

Storage 

(TB) 

Processor 

Speed 

(GHz) 

1 6 Ubuntu X86 8 0.1 2 

2 6 Ubuntu X86 16 3 2.10 

3 6 Ubuntu X86 16 3 2.10 

 
Table 3: Number of Facebook users in April 2023 (Simon, 2023) 

Region 
CloudAnalyst 
Region ID 

Users 
(millions) 

Percentage 
(%) 

North 
America 

0 208.6 9.87 

South 
America 

1 261.2 12.35 

Europe 2 275.4 13.02 

Asia 3 268.4 12.69 

Africa 4 1079.1 51.02 

Australia 5 22.2 1.05 
 

The UserBase is a representation of cloud users and 
requests from the UserBase are processed in a particular 
DC based on FedLoBA-1. In order to have a real-life 

scenario of the cloud users, we carried out the simulation 
using Facebook users' reports, which emulate the 
percentage distribution of users across the regions. This is 
similar to the approach used by the authors 
(Wickremasinghe, 2009). Table (3) shows the summary 
of the total number of Facebook users with respect to 
different regions of the world as reported by DataReportal 
in April 2023 (Simon, 2023). Our simulation in 
CloudAnalyst used a percentage ratio of the Facebook 
user's report to specify the UserBase distribution. The 
assumption for the simulation is that most cloud users use 
the cloud services in the morning between the hours of 8 

and 11 and also that 10% of the registered users will be 
online during the peak time simultaneously and only one-
tenth of that number during the off-peak hours.  

Results and Discussion 

Inter-Cloud and Intra-Cloud Load Balancing 

Simulation Results 

In order to evaluate the inter-cloud and intra-cloud 
load balancing algorithms within FedLoBA-1, we 
simulated a federated cloud environment in CloudAnalyst 
with three data centers based on the FEDGEN Testbed 
configurations in Table (2). The simulation at the initial 
stage considered 6 UserBases spread across 6 continents 
and 3 datacenters named DC1, DC2, and DC3 located in 
North America (Region 0), Europe (Region 2), and Africa 
(Region 4) respectively (Fig. 5). The users’ requests from 
each UserBase are evenly distributed with the cloud 

resources from the three datacenters as shown in Fig. (5). 
Other assumptions for the simulation include 5 requests 
per user, 10 bytes of data size per request and that all the 
cloud users utilize the cloud between the hour of 8-11 in 
the morning. The simulation runtime was set to 10 min. 
The ACO-based inter-cloud load balancing component of 

FedLoBa-1 was implemented as a Java class to select the 
best data center for the UserBases, whereas the Throttled 
algorithm was implemented as a VM load balancer within 
each of the data centers.  

The simulations in this study were carried out under 
different scenarios. These scenarios were created by 
varying the number of available VMs in the data centers. 
Table (4) gives a summary of the number of allocated VMs 
for each scenario with their corresponding overall response 

time and processing time. For instance, in Scenario 1, 2 
VMs, 4 VMs, and 4 VMs were allocated for DC1, DC2 and 
DC3 respectively. As shown in the table, the simulation of 
Scenario 1 shows the overall response time and processing 
time of 92.33 and 42.05 ms respectively. Furthermore, in 
Scenario 2 the allocated VMs for the DC1, DC2, and DC3 
are 5, 10, and 10 respectively with overall response time 
and processing time of 69.07 and 19.44 ms respectively. 
The results for scenarios 3-6 are shown in Table (4). Based 
on the results, it can be deduced that an increase in the 
allocated number of VMs to the data centers resulted in a 
progressive decrease in both the overall average response 

time and processing time of the system.  
 

 
 
Fig. 5: Geographical distribution of data centers and user bases 

in a simulated federated cloud environment 
 
Table 4: FedLoBA-1 simulation results for different configuration scenarios 

Scenario ID Scenario detail 

Overall 

average 

response 

time (ms) 

Overall 

average 

processin

g time 

(ms) 

Scenario 1 2VMs in DC 1, 4VMs in 

each DC 2 and DC 3 

92.33 42.05 

Scenario 2 5VMs in DC 1, 10 VMs 

in each DC 2 and DC 3 

69.07 19.44 

Scenario 3 10VMs in DC 1, 15VMs 

in each DC 2 and DC 3 

59.07 9.43 

Scenario 4 10VMs in DC 1, 20VMs 

in each DC 2 and DC 3 

57.25 7.62 

Scenario 5 20VMs in DC 1, 40VMs 

in each DC 2 and DC 3 

52.00 2.36 

Scenario 6 25VMs in DC 1, 50VMs 

in each DC 2 and DC 3 

51.13 1.49 
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Performance Benchmarking 

The existing inter-cloud load balancers in 

CloudAnalyst include Closest Datacenter (CDC) and the 

Optimize Response Time (ORT) algorithms. The two 

inter-cloud load balancers leverage network latency to 

direct user requests to the data center. In this section, we 

report the performance benchmarking of the CDC and 

ORT algorithms against the proposed FedLoBA-1 in 

terms of response time and processing time. 

Response Time 

The amount of time it takes for a user or application to 

obtain a response after making a request is referred to as 

the response time in cloud computing environments. 

Cloud load balancer routes requests to data centers that 

can process them more effectively by using response time 

as a metric.  

The CloudAnalyst CDC and ORT were evaluated 

against the load balancing algorithms in FedLoBA-1 by 

varying the number of allocated VMs from 10-125 for 

each of the 3 data centers. All the simulation parameters 

were also the same for these algorithms. Figure (6) shows 

the plot of the average response time against the number 

of VMs. As shown in the figure, FedLoBA-1 gave the 

lowest response time as compared with CDC and ORT. 

FedLoBA-1 has a maximum overall average response 

time of 92.13 ms while CDC has a maximum overall 

average response time of 328.40 ms and ORT has a 

maximum overall average response time of 176.55 ms. 

Processing Time 

The amount of time it takes for a data center to 

process and complete a user's request is referred to as the 

data center processing time. The processing time can be 

used as a metric by load balancers to redirect requests to 

data centers with shorter processing times. Simulations 

were carried out in this study to compare the processing 

times among CDC, ORT, and FedLoBA-1 using VMs 

from 10-125. Figure (7) shows that FedLoBA-1 

produced the lowest average processing time as 

compared with CDC and ORT. The maximum average 

processing time for FedLoBA-1, CDC, and ORT are 

42.05, 278.80 and 126.94 ms respectively whereas the 

minimum average processing time for FedLoBA-1, 

CDC, and ORT are 1.49, 17.00, and 6.68 ms 

respectively. These evidently show the superior 

performance of FedLoBA-1 (within the simulated 

federated cloud infrastructure) over the other two 

CloudAnalyst load-balancing algorithms. 

The FedLoBA-1 achieving a faster response time (and 

lower processing time) across all the experimented VMs 

implies that it effectively distributes the workload across 

the DCs in the simulated federated cloud environment. 

 
 
Fig. 6: Relationship between the average response time of 

FedLoBA-1, CDC, and ORT 

 

 
 
Fig. 7: Relationship between overall average processing time of 

FedLoBA-1, CDC, and, ORT 

 

The results also show that FedLoBA-1 handles peak loads 
more efficiently thereby providing better mitigation of 

overloading (than CDC and ORT) during periods of high 

demands. The efficacy of the FedLoBA-1 is hinged on the 

capability of ACO to find the optimum shortest path 

between users' requests and underloaded data centers as 

well as dynamically distribute loads among the data 

centers. The capability of the Throttled algorithm to 

effectively distribute traffic among VMs within a data 

center is also demonstrated in the results of the response 

time and processing time. 

Conclusion 

In this study, we have presented the design and 

simulation of Federated Load Balancing Architecture 

version 1 (FedLoBA-1). We adopted the Ant Colony 

Optimization (ACO) algorithm to realize inter-cloud 

(federated) load balancing for optimal traffic distribution 

among federated data centers. The Throttled algorithm 

was further adopted to realize intra-cloud load balancing 

in order to evenly distribute users' requests among VMs 
within a data center. CloudAnalyst, which is a Java-based 

simulation toolkit was employed to simulate a federated 

cloud infrastructure and implement all the components of 
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FedLoBA-1. Furthermore, various simulations were 

carried out within CloudAnalyst for performance 

evaluation. The simulation results showed that both the 
response time and the processing time decreased as the 

number of allocated VMs per data center increased. This is 

proof that FedLoBA-1 is capable of mitigating resource 

overloading in federated cloud infrastructures. Moreover, 

benchmarking results also showed that FedLoBA-1 gave 

improved performance over CDC and ORT, which are the 

existing load-balancing algorithms in CloudAnalyst. In 

order to establish the performance of FedLoBA-1 in real-

life scenarios, it will be deployed on live cloud testbeds 

such as the FEDGEN Testbed and similar platforms. In the 

future, we hope to improve the performance of FedLoBA-
1 by exploring a hybrid of metaheuristic algorithms for 

inter-cloud load balancing. We also hope to develop a 

cloud-native web application for FedLoBA-1 so that CSPs 

can carry out real-time monitoring of workloads (across 

data centers and VMs) in a federated cloud environment. 
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