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Abstract: The idea of neural networks has emerged in recent times and 

has shown great results in complex and nonlinear systems. Many 

aerospace engineering areas like autonomous systems, adaptive control, 

and flight dynamics modeling can be better handled with neural networks. 

Selecting an orbit that consumes the fewest resources and reduces 

expenditure can broadly be called orbit optimization. In this study, the 

application of neural networks in orbit optimization in various space 

missions and satellite ventures is brought together. 
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Introduction 

The optimization of orbital trajectories is a major 

difficulty in the rapidly developing field of aerospace 

engineering, especially in light of the growing number of 

satellite installations and complex space missions. With 

the emergence of Neural Networks (NN), which offer a 

potent mix of prediction accuracy and computing 

efficiency, revolutionary techniques for Orbit 

Optimization (OO) have arisen. 

For a particular space maneuver the orbit optimization 

may be minimizing fuel consumption maximizing the 

precision of some angle of the trajectory or 

minimizing/maximizing the time of transfer between the 

orbits etc. as required by the mission. This is a broad term 

that encompasses the process of adjusting a spacecraft's 

orbital trajectory (Addis et al., 2011) and parameters to 

effectively accomplish the desired aims and objectives of 

the mission. 

As the field of NN is evolving rapidly, there are new 

modifications getting added to their architecture hence 

changing the old techniques into better ones. Popular 

optimization methods like genetic algorithm, and particle 

swarm optimization have also been modified using NN. 

This manuscript is a first-of-its-kind attempt to bring 

together the investigation done in the vast field of orbit 

determination and optimization combined with NN.  

Artificial Neural Networks 

Artificial Neural Networks (ANN), colloquially called 

Neural Networks (NN) or NNets, can be defined as a 

machine learning model that consists of several 

computational units that are linked to each other in a well-

defined connection (Heaton, 2018; Bishop, 1994; 

Schmidhuber, 2015). The inspiration for this model came 

from the human brain, which is incredibly intricate and 

multitasking, made up of basic unit cells (McCulloch and 

Pitts, 1988) called neurons. In the case of ANN, they are 

called artificial neurons or simply neurons or perceptrons. 

These are the basic units that facilitate the computation 

of data by interlinking to one another. Their mechanism is 

very similar to that of human neuron cells. This biological 

analogy from the human brain is taken due to its ability to 

perform parallel processing and be fast and robust. 
An artificial neuron (Haykin, 1998; Wu and Feng, 

2018) receives input signals, that is, parameters or 

features from other connected neurons. The strength of 

these signals is determined by the Synaptic Weights 

(SW). The product of weights and parameters is summed 

together and a constant (called bias) is added to it. The 

bias is an error term that is added to compensate for the 

simplified assumptions of the model. A transformation is 

then applied to this summation unit using an activation 

function that determines the output by limiting the 

amplification of the summation unit to a finite value. 

Figures (1-2), show a schematic representation of a neuron 

with two parameters/features and its model respectively. 

This schematic representation shows the flow of input 

signals in a neuron. The function is the one that classifies 

the input to give the desired output. Figure (1) is the actual 

model of a neuron, which is apparently McCulloch-Pitts' 

model of a neuron. The authors (McCulloch and Pitts, 
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1988) were the first ones to describe how a perceptron or 

neuron would look like, drawing inspiration from a 

biological neuron. 

Mathematically, the neuron can be described from 

Fig. (1) in the following manner (Fig. 2), where uk represents 

a neuron and o its output which is basically given as: 
 
𝑜  =  𝑢𝑘  =  𝑓 ((𝑝1 𝑤1  +  𝑝2 𝑤2)  +  𝑏) (1) 
 
where, p1 and p2 are the parameters, w1 and w2 are SWs and 

b is a bias. For the 'n' number of parameters, the model of a 

neuron looks like Fig. (3). 

Hence, in general, the neuron will look like this: 
 

𝑜  =  𝑢𝑘  =  𝑓 ( ∑ 𝑝𝑘  𝑤𝑘   +  𝑏

𝑛

𝑘 = 1

)                                   (2) 

 

 
 
Fig. 1: Schematic diagram of a neuron 
 

 
 
Fig. 2: Model of a neuron when only two parameters are provided 
 

Adding multiple layers between input and output makes 

the NN deep, hence the name Deep Neural Network 

(DNN). NNs are a main subset (Fig. 4) of machine learning 

and artificial intelligence. 

There are various types of neural networks, each 

suitable for different kinds of tasks. The NNs have been 

broadly classified (Cheng and Titterington, 1994; Eva and 

Friedman, 1994; Bishop, 1995; Chen and Aihara, 1999; 

Kenol et al., 2002) as: 
 

 Feed-forward neural networks (information moves in 

only one direction) 

 Convolutional neural networks (specifically for 

processing structured grid data like images) 

 Recurrent neural networks (designed to recognize 

patterns in sequences of data) 

 Generative adversarial networks (consist of two 

neural networks that compete against each other) 

 Radial basis function networks (uses radial basis 

functions as activation functions) 

 Long short-term memory networks (can learn long-

term dependencies) 

 Gated recurrent units (use reset and update units to 

control the flow of information) 

 Autoencoders (designed for unsupervised learning of 

efficient codings) 

 Multilayer perceptrons (consists of at least three 

layers of neurons) 

 Modular neural networks (consists of many 

independent networks collaborating to solve a 

complex problem) etc. 

 

 
 
Fig. 3: Model of a neuron with ’n’ number of parameters 
 

 
 
Fig. 4: Hierarchy of artificial intelligence and its subdivisions 
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The main aim of any type of ANN is to find the optimal 

solution that classifies every feature of the data set. The 

difference between the target value and the output value of 

the model is known as the cost function or the error function. 

The ANN targets reducing this cost function by modifying 

SWs and bias. This process of finding the optimal values of 

weights and biases to minimize the cost function is termed 

learning of the neural network. There are various cost 

functions. It is our task to select a cost function that is suitable 

to our data set. Some of them are Mean Relative Error (MRE) 

and Mean Square Error (MSE): 
 

𝑀𝑅𝐸  =  
1

𝑛
  ∑

|𝑃𝑖   −  𝐴𝑖|

𝐴𝑖

𝑛

𝑖 = 1

 

 

𝑀𝑆𝐸  =  
1

𝑛
  ∑(𝐴𝑖   −  𝑃𝑖)2

𝑛

𝑖 = 1

 

 

where Ai is the ith actual value and Pi is the ith predicted value. 

NN does not require prior information regarding the 

relationship between the data set. Rather it is trained by 

giving experience through a huge number of examples. 

Each of these examples will have many solutions or 

search space out of which only few will provide us with 

the minimum cost function. 

An optimization algorithm is needed to train the NN. 

The choice of cost function and optimization algorithm 

are closely associated with the process of learning. The 

type of cost function chosen affects how the 

optimization algorithm adjusts itself to decrease the cost 

function. Some of these algorithms are gradient-based 

viz. Adaptive gradient algorithm, Adams moment 

estimation, adaptive moment estimation, etc. The 

Gradient Descent (GD) for cost function 𝐶(𝑤), is defined 

as the negative of the gradient of the cost function i.e., 

𝐺𝐷 = −𝜕𝐶∕𝜕𝑤𝑗. 
Here in this equation, the gradient of cost function is 

being taken with respect to the weight, to update the 

weights. This gradient can also be taken with respect to 

bias in order to update it. The updated weight is given 

by: 𝑤𝑗 = 𝑤𝑗 + 𝜂Δ𝑤𝑗, where, Δ𝑤𝑗 = −𝜕𝐶 ∕ 𝜕𝑤𝑗 and 𝜂 is the 

learning rate. The rate of learning is defined as the rate 

at which the gradient reaches the crest of the search 

space or the cost function tends to zero. 

As there are different cost functions, there are various 

activation functions (Haykin, 1998) too. The choice of 

these activation functions depends on what exactly the 

problem is. Some examples of activation functions are 

shown in Fig. (5). Apparently, this whole process of 

choosing an activation function, the right optimization 

algorithm, and the cost function in order to reduce the 

cost function, is called backpropagation. In NNs, many 

neurons come together and are connected to each other 

through non-linear mapping. Every ANN has an input 

layer and an output layer. When there are one or more 

hidden layers present between the input and output 

layers, they form a multi-layer perceptron (MLP). These 

neural networks operate in a feedforward manner and are 

also referred to as Deep Neural Networks (DNNs). It is 

used when a data set where different classes cannot be 

separated through just one plane. Hence the presence of 

a hidden layer aids in working with noisy data. 

For an MLP the backpropagation technique is almost 

the same, however the presence of various valleys and 

hills in the model poses a problem. This is where 

momentum comes into the picture. The momentum helps 

accelerate through the converging optimization process. 

In simple words, it helps to navigate through different 

valleys to find the deepest one, which will be considered 

the best optimal solution. It helps in updating the 

velocity and weight vector: 
 

𝑉 (𝑡)  =  𝛼 𝑉 (𝑡  −  1)  +  (1  −  𝛼) 
𝜕𝐶

𝜕𝑤 
 

  
where, V(t) is the velocity at iteration t and 𝛼  is the 

momentum constant that controls the contribution of 

velocity at the previous iteration. 

The weights then can be updated using the learning 

rate as: 
 

𝑤(𝑡)   =  w(t − 1)  −  𝜂 𝑉 (𝑡) 
 

All the research that is happening in NN is mainly 

focused on finding better weights. NN is applied in 

various fields like healthcare and diagnosis, finance, 

predictive analysis, image recognition, etc. In this study, 

its application in orbit optimization is studied. 

 

 
 
Fig. 5: Activation functions 



Pratiksha Devshali Bhavsar and Deepti Pal / Journal of Computer Science 2025, 21 (3): 558.565 

DOI: 10.3844/jcssp.2025.558.565 

 

561 

Orbit Optimization 

In order to comprehend how NN aids in orbit 
optimization, one must first grasp what orbits are and how 
their study has evolved over time. Trajectory or orbit of 
planetary bodies has enchanted humans since time 
immemorial. Many popular physicists and mystics have 
observed space and realized many intricacies of the universe 
especially the planetary motion. Then later on with the 
advancement of science and technology, human-made 
satellites also added to the purview. 

For the commercial usage of satellites, it has to return to 
the same position in the sky, at the same time, every day. In 
other words, the satellite has to be injected into the 
geosynchronous orbit. The process involves intermediary 
transfer orbits, till it settles in its orbital slot. For other non-
similar purposes, different types of orbits may be required. 
The orbits can be classified (Miele et al., 2004; Carter and 
Humi, 2020; Sanjurjo Rivo and Soler, 2021; Ribeiro et al., 
2023; Serra et al., 2021; Sangrà et al., 2021; Savitri et al., 
2017; Song et al., 2018) based upon their altitude (Low earth 
orbit, Medium Earth Orbit, Geostationary Orbit, 
Geosynchronous Earth Orbit, High Earth Orbit); based upon 
inclination (Equatorial Orbit, Polar Orbit, Sun Synchronous 
Orbit); based on shape (Circular Orbit, Elliptic Orbit) etc. 

The requirement of having an optimized orbit has 
become much sought after in recent times to ensure 
cost-effectiveness, mission success, and longevity of 
the spacecraft. 

The goal of orbit optimization is to allow satellites to 
function as efficiently as possible by selecting an orbit that 
consumes the fewest resources and reduces expenditures. It 
comprises creating a strategy and algorithms that will reduce 
fuel consumption, reduce the likelihood of a satellite being 
damaged, and extend the satellite’s lifespan while in orbit. 

Moreover, OO depends upon the mission analysis. It 
includes determining the desired orbit, the payload 
requirement, the vehicle capabilities, mission duration, 
communication coverage, etc. The OO experience can be 
enhanced with a better understanding of the orbital 
mechanics. Kepler's laws of planetary motion serve as the 
base and other basic principles of orbital mechanics involve 
the orbital transfers, gravitational assists, and effect of 
perturbations as in atmospheric drag, solar radiation 
pressure, etc. 

The OO may involve optimization of the parameters that 
define the shape and orientation of the orbit, fuel usage, 
mission duration, transfer trajectory, launch time, energy, 
payload delivery, coverage and revisit time for earth 
observation satellites, workable life of the spacecraft, cost, 
etc. It is usually a multi-objective optimization where a trade-
off may be required amongst various objectives before 
deciding upon the final most appropriate orbit in accordance 
with the mission's priorities. 

Many optimization techniques have been directly 

used so far for OO. Some of them are Hohmann transfer 
(Miele et al., 2004), BiElliptical transfer (Carter and 
Humi, 2020), Low Thrust Trajectory Optimization 

(Sanjurjo Rivo and Soler, 2021), Gravity-Assist 
Maneuvres (Ribeiro et al., 2023), Optimal Control Theory 
(Serra et al., 2021), Lambert’s Problem (Sangrà et al., 
2021), Genetic Algorithm (Savitri et al., 2017) and Multi 
Objective Optimization (Song et al., 2018). 

The mission’s integration of technical advancements will 
determine how OO develops. For instance, using 
sophisticated propulsion systems can provide precise control 
over the spaceship, resulting in reduced fuel consumption 
and shorter journey times. Particularly in the fields of 
astrodynamics, celestial mechanics, and orbital dynamics, 
mathematical models can be created that offer a theoretical 
basis for comprehending how an object behaves in space and, 
consequently, for optimizing its orbit. An outline of the 
general flow of an OO process is given in Fig. (6). In the next 
section the focus is on, NN-based OO, and its general outline 
is shown in Fig. (7). 
 

 
 
Fig. 6: General flowchart for OO 
 

 
 
Fig. 7: General flowchart for OO with NN 
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OO Using NN 

A few classic research papers were considered for this 
study on the OO with NN. Table (1) shows the main 
parameter that has been optimized as well as the kind of 
network chosen in the study. 

In Kenol and Paul P (2002), ANN was used in the design 
and optimization of aircraft/engine propulsion systems to 
shorten the overall design cycle. Using types of algorithms 
that produce approximate solutions to unsolvable high-level 
problems, a universal design tool was developed which can 
be used for most design optimization processes. Key areas of 
analysis included aircraft noise and emission, engine cycle 
analysis, aircraft sizing, aircraft mission analysis system 
weight prediction, and engine economics analysis. Taguchi 
techniques and fuzzy logic were used along with NN. 

In order to forecast satellite thruster force and regulate 
osculating orbital elements during maneuvers, an adaptive 
neural network predictor controller was created by Aly et al. 
(2003). A time-delayed multi-layer feed-forward neural 
network was employed. 

In Ampatzis and Izzo (2009) the authors have shown 
how trajectory optimization problems can profit from the 
introduction of approximate models. They used an MLP 
with two hidden layers. They hybridized the algorithms 
evolving at times with the original objective function and at 
times with the approximate objective function due to ANN. 

The paper (Meier et al., 2012) reports the usage of two 
NNs for orbit correction in the Australian Synchrotron 
Storage Ring. The actor neural network learns to take 
appropriate control actions in order to minimize a long-
term cost function modeled by a critical neural network. 

In Adrian (2012), a new optimization technique using 
the direct and inverse kinematics with the Fourier 
spectrum; for the space trajectory of the tool center point 
was discussed. They designed a NN, Bipolar Sigmoid 
Hyperbolic Tangent with Time Delay and Recurrent 
Links. LabVIEW VI-s was used to verify the results. 

In Sánchez-Sánchez and Izzo (2018), the authors chose a 
feed-forward deep NN to solve the landing problems. They 

trained separate networks for each of the control variables in 
all their models. With the help of this interesting aerospace 
study, real-time optimal control structures for planetary 
landing might be designed, directly driving the state-action 
selection with a DNN. The authors of Mereta et al. (2017) 
noted that the machine learning technique outperforms the 
impulsive Lambert estimate by a significant margin when it 
comes to multi-revolution transfers between near-Earth 
objects. Following the best possible low-thrust transfer 
between two Near Earth Objects, they calculated the final 
mass of the spacecraft. 

Three NN was trained to determine the ideal time, 
starting costates, and optimal control law of time-optimal 
low-thrust indirect trajectory optimization by Li et al. 
(2019a). According to their findings, NN was able to predict 
the initial optimal time and costates with accuracy. In Li et al. 
(2019b), the authors focused on autonomous orbit raising 
during the orbit transfer. They generated the datasets by 
solving the low thrust optimization problem using the indirect 
method with modified orbital state elements and thrust 
homotopy. Then NN was applied for "autonomous time-
optimal many-revolution low-thrust orbit raising problems." 

The authors (Han and Wang, 2021) solved the problem 
of low orbit transfer time while using electric thrusters, 
using bidirectional stochastic gradient descent method. 
The authors (Song and Gong, 2019) resolved the 
challenge of repeated near-earth asteroid rendezvous with 
a predetermined sequence length. In order to map the 
relationship between the orbital properties and the 
transfer time, they established DNN. The goal of the 
paper (Cheng et al., 2020) was to quickly and reliably 
generate the best landing trajectories for powered descent 
and landing on an asteroid’s surface. The authors created 
and improved DNN to provide an accurate approximation 
of the 2-D transfer’s costates and an optimum landing 
trajectory for asteroids. Previously, they used model 
continuation and state transformation approaches to show 
that the original asteroid landing challenges are related to 
2-D asteroid-free transfer problems. 

 
Table 1: Literature overview on OO with NN 

Year Reference The optimized parameter Type of NN 

2002 Kenol and Paul P (2002) Engine propulsion system Artificial neural network 

2002 Aly et al. (2003) Orbit estimation Neural network 

2009 Ampatzis and Izzo (2009) Trajectory optimization Artificial neural network 

2012 Meier et al. (2012) Orbit correction Actor-Critic control scheme 

2012 Adrian (2012) Space trajectory Artificial neural network 

2016 Sánchez-Sánchez and Izzo (2018) Landing Deep neural network 

2017 Mereta et al. (2017) Low thrust transfers and Spacecraft mass Machine learning 

2019 Li et al. (2019a) Time and costates Deep neural network 

2019 Li et al. (2019b) Orbit raising Artificial neural network 

2019 Song and Gong (2019) Transfer time Deep neural network 

2020 Cheng et al. (2020) Asteroid landing trajectory Deep neural network 

2020 Chai et al. (2020) Trajectory Deep neural network 

2020 Li et al. (2020) Transfer cost Deep neural network 

2021 Zhifei et al. (2021) Trajectory Radial basis function NN 

2022 Schiassi et al. (2022) Orbit transfers Physics-informed neural networks 

2022 Xie and Dempster (2022) Trajectory Deep neural network 

2023 Tang and Gong (2023) Trajectory Artificial neural network 

2024 D’Ambrosio and Furfaro (2024) Propellant consumption Pontryagin neural networks 
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A bi-level control method with improved trajectory 

optimization and DNNs was created by Chai et al. (2020) 

to guide Hypersonic Vehicle (HV) reentry flight. By 

taking into account the rotational effects, during the 

trajectory optimization phase, the HV model with three 

degrees of freedom was expanded to six degrees of 

freedom. DNNs were designed to simulate optimal state-

control actions and provide real-time feedback. 

The authors of Li et al. (2020) employed feed-forward 

DNNs to estimate optimal transfer costs for three different 

kinds of optimization problems: Minimum velocity 

change in j2 perturbed multi-impulse transfers, fuel-

optimal and time-optimal low-thrust transfers. 

The authors of Zhifei et al. (2021) integrated trajectory 

features with temporal continuity to create a phase space 

reconstruction-based target maneuver trajectory prediction 

model known as radial basis function NN (RBFNN). 

A recent Physics-Informed NN-based approach was 

presented by the authors of Schiassi et al. (2022) to solve 

optimal planar orbit transfer issues through the indirect 

technique. Using the state-costate pair that is the solution 

to the Two-Point Boundary Value Problem resulting from 

the application of the Pontryagin Minimum Principle, this 

method seeks to model an NN representation of the 

optimal control. 

In Xie and Dempster (2022), the authors gave the 

construction, training, and optimization of a DNN-

classifier that can identify feasible low thrust transfer, 

prior to the optimization process. 

The article (Tang and Gong, 2023) analyzed the power 

recovery of the rocket's first stage. It takes into account 

the entire trajectory optimization process, beginning with 

the separation of the first and second phases and ending 

with the landing. The authors employed an NN to turn the 

problem into a parameter optimization problem, which 

was then solved using a genetic algorithm. 

Pontryagin NNs (PoNNs) are used in the paper 

(D’Ambrosio and Furfaro, 2024) to obtain control 

techniques for reaching fuel-optimal trajectories. The new 

Extreme Theory of Functional Connections was the main 

tool that the authors used in the Physics Informed NN 

architecture. The suggested method was used for both a 

landing trajectory on Mars and a fixed-time fuel-optimal 

trajectory with low thrust propulsion from Earth to Mars, 

where the number of switches is unknown beforehand. 

PoNNs can identify discontinuities in the Hamiltonian 

that lead to discontinuous control in linear control issues. 

The outcomes showed a high degree of accuracy. 

Discussion and Conclusion 

The major concerns related to any aircraft maneuver 

vary from shortening the design cycle to the low-thrust 

adjustments to the minimal fuel consumption etc. All 

these requirements can be brought under one term called 

'orbit optimization.' Various numerical methods like the 

shooting method, collocation method, etc. have been 

used to solve the boundary value problems arising in 

finding the most efficient trajectory that meets the 

mission requirements. Moreover, Pontryagin’s 

maximum principle and Bellman’s dynamic 

programming are the popular approaches under optimal 

control theory, for optimization. 

The introduction of NN in the initial phase converts 

the problem into a parameter optimization problem which 

can then be solved by direct and indirect methods, particle 

swarm optimization, genetic algorithm, etc. using the NN-

trained data. The Deep NN has been proven to be highly 

accurate in predicting low thrust transfers in comparison 

to the Ensemble learning model, K-Nearest Neighbors 

model, Support Vector Machine, etc. The software used 

for NN has evolved from Merlin to MATLAB to Python 

and so on. The NN architecture has also been extended in 

the last twenty years from NN → DNN → RBFNN → 

PINN → PoNN especially for OO. Although the NN 

version was used for a specific problem its validity and 

accuracy have been established well in the literature. 

In conclusion, it is anticipated that the discovery of 

Physics informed NN (Schiassi et al., 2022; D’Ambrosio 

and Furfaro, 2024) brings in greater possibilities for OO 

with NN, providing new avenues for pattern 

identification, prediction, and optimization. The 

inclusion of a split domain can be used to effectively 

address complicated multi-revolution situations. 

Improvised optimization methods (Zuo et al., 2024; 

Reyad et al., 2023) like Nesterov accelerated gradient, 

Adam, Nadam, AdaMax, AMSGrad, etc. can be 

incorporated with NN for OO problems. 
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