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Abstract: This study reviews algorithms for battery optimization, focusing 

on estimation methods and State of Charge (SOC) algorithms, which are 

crucial components of Battery Management Systems (BMS) designed to 

reduce power consumption. With the increasing global demand for electricity 

driven by rapid population growth, optimizing energy use has become 

critical. Accurate estimation of battery capacity is essential for extending 

battery lifespan and ensuring efficient power delivery. To monitor, control, 

and deliver the battery's power at its maximum efficiency, the BMS is 

introduced. This systematic review focuses on three key research questions: 

What is the purpose of optimization? What is the type of algorithm estimation 

method? What is the type of algorithm of SOC? Following systematic review 

guidelines, 21 articles were selected from an initial 1721 based on inclusion 

and exclusion criteria. The findings reveal that most algorithms aim to 

minimize battery power consumption. Data-driven methods and hybrid 

algorithms demonstrate superior performance compared to others, although 

further modifications are necessary to enhance their effectiveness. This 

review emphasizes the imperative of advancing those algorithms to improve 

BMS efficiency and satisfy growing demands for optimum energy 

consumption in Internet of Things technologies. 
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Introduction 

This IOT can be interpreted in two ways either as the 

internet or as the things being connected (Reddy 

Maddikunta et al., 2020). The field of information and 

communication technology is fast evolving as advanced 

sensing and communication technologies emerge, allowing 

connectivity at any time, from any place, and between 

anything (Shah et al., 2019). IOT boasts enormous 

possibilities in various use cases, but it also faces 

significant communication issues with technology which 

have become a major concern in recent times (Shah et al., 

2019). Hence, researchers are committing significant time 

and effort to develop effective solutions for these challenges, 

striving to ensure that IOT-based networks can be reliably 

and effectively in a wide range of real-world 

environments and applications. Shah et al. (2019). 
John Goodenough invented the first lithium-ion batteries 

in 1980, using cathodes made of lithium cobalt oxide and 

lithium manganese dioxide (Goodenough and Kim, 2010). It 

is a rechargeable power source that operates by moving ions 

of lithium between the "anode" and "cathode", throughout 

the charge-discharge process (Singh et al., 2024). Because of 

its outstanding effectiveness and capacity of battery, lithium-

ion batteries are extensively utilized in electric and electronic 

devices. The moving of lithium ions is important to ensure 

the devices receive enough power for data transition to the 

cloud server. 

One of the issues in Internet of Things applications is 

inefficient battery consumption power. To monitor, control, 

and deliver the battery's energy at its maximum efficiency, 

this study consists of a comprehensive literature on battery 

consumption optimization algorithms that are studied. 

Energy storage that uses lithium-ion batteries is 

quickly rising across market share and attracting 

significant Research and Development (R&D) activities 

because of their benefits against other battery 

technologies (González et al., 2022). Nowadays, lithium-

ion battery cells are extensively used because of their 

outstanding effectiveness, substantial open-circuit cell 
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power, broad thermal operating range, and extended 

longevity (Zhang et al., 2018). 

A part of lithium-ion batteries is the Battery 

Management Unit (BMU), which is created by the 

manufacturer and is also referred to as the Battery 

Management System (BMS). This system is vital in 

maintaining the battery securely and effectively by 

monitoring essential attributes such as "voltage", 

"current" and "temperature" (Teodorescu and Sui, 2024). 

It also balances the cells and manages the charge and 

discharge operations to ensure that the battery runs 

precisely throughout its lifespan. The manufacturer 

provides the Battery Management Unit (BMU) so that its 

operations and settings are not directly accessible to the 

user, who can only view specific attributes such as 

“current”, “voltage”, “temperature” and “State of Charge 

(SOC)” (González et al., 2022). 

Lithium-ion batteries are lightweight, extremely 

reactive, and supply the highest possible energy density 

(Parameswari and Usha, 2024). Lithium-ion batteries 

have a faster charging and discharging rate compared to 

other battery types. Moreover, lithium-ion batteries must 

be operated within their safe voltage range to avoid issues 

such as chemical reactions, overheating, cell venting, and 

the risk of combustion. Therefore, to ensure that the 

battery runs effectively, a Battery Management System 

(BMS) is implemented (Ravi, 2021). 

Moreover, accurately estimating the State of Charge 

(SOC) is a key function of the BMS in battery packs 

(Zhang et al., 2018). The key elements that affect the 

reliability and efficiency of SOC estimation are the 

features of the lithium-ion battery, the estimation method, 

the battery model, and cell unbalancing (Qahtan et al., 

2022). Generally, the State of Charge (SOC) value serves 

as a foundation for battery estimation and energy 

management control. Improper SOC calculation due to 

over-charge and discharge might degrade the battery life. 

A precise SOC estimate is essential to optimize battery 

capacity and performance. In short, the purpose of this 

research is to carry out a literature analysis on battery 

optimization to determine approaches for optimizing 

battery consumption in IOT technology. 

Background and Related Work 

This section discussed the features of lithium-ion 

batteries, Battery Management Systems (BMS), and energy 

optimization methods. 

Lithium-Ion Battery 

The battery life of IOT devices must be estimated. 

Rechargeable and non-rechargeable batteries have certain 

similarities. However, each type of battery offers its unique 

advantages and disadvantages (Reddy Maddikunta et al., 

2020). When selecting a battery type for IOT, the three 

primary elements to examine include self-discharge, 

electrical discharge implementation, physical battery 

characteristics, and protection, all of which contribute to its 

longevity (Reddy Maddikunta et al., 2020). Advantages of 

lithium-ion batteries include Zhang et al. (2018): 

 

 High energy density 

 High power density 

 Long cycle life 

 Strong environmental adaptability 

 High cell voltage 

 

Based on the study, there are several types of lithium-

ion batteries, each with its benefits and drawbacks, which 

comprise “Lithium Cobalt Oxide (LCO)”, “Lithium 

Nickel Oxide (LNO)”, “Lithium Manganese Oxide 

(LMO)”, “Lithium Nickel Manganese Cobalt Oxide 

(NMC)”, “Lithium Iron Phosphate (LFP)”, “Lithium 

Nickel Cobalt Aluminium Oxide (NCA)” and “Lithium 

Titanate (LTO)” (Biswal, 2023). 

According to Fig. (1) the global market for lithium-ion 

batteries is predicted to reach 185 GWh in 2020 and 950 

GWh in 2026 by Statista's Research and Markets statistics 

(Statista Projected Global Battery Demand from 2020 to 

2030, by Application (in Gigawatt Hours), 2022). The 

statistic overview highlights the significant growth in the 

utilization of lithium-ion batteries, particularly in IOT 

technologies. These batteries have become increasingly 

essential to various industries, powering devices such as 

robotics, Automated Guided Vehicles (AGVs), and a 

broad range of consumer gadgets. 

Lithium-ion batteries will play a vital part in the 

world's transition to a low-carbon economy, providing 

efficient energy storage to enable renewable energy and 

electric vehicles while lowering carbon emissions. 

 

 

 
Fig. 1: A Global Battery Demand 2020-2026 
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Battery Management System (BMS) 

The Battery Management System (BMS) is a key 

component in the IOT technology areas. BMS is crucial 

to prevent overcharging or over-discharging the batteries 

in electric vehicles to ensure their longevity and optimal 

performance. If such occurs, it can damage the battery, 

rise in temperature, shorten its lifespan and, in some cases, 

pose risks to the users of the device (Ravi, 2021). In this 

case, utilizing the energy that is stored in the vehicle, 

helps to increase the range of the vehicle. It is essential to 

ensure proper maintenance of the BMS for the reliability 

and durability of the battery. Thus, the usage of a BMS 

enables the battery to run within its safety zone. 

Clean energy relies on battery storage systems and 

renewable resources to supply an environmentally 

friendly and innovative solution, meeting future energy 

demands while driving advancements in IOT 

technology (Hananda et al., 2023). Battery energy 

storage systems are essential for supplying sustainable, 

pollution-free energy and enabling the continuous 

transition to renewable resources. As studied, lithium-

ion batteries are currently the leading technology for 

energy optimization. 

Figure (2) depicts the specific construction of a 

Battery Energy Storage System (BESS), which contains 

battery cells, a Power Conversion System (PCS), a 

Battery Management System (BMS), and other 

components (Teodorescu and Sui, 2024). The BMS is part 

of the Battery Energy Storage System (BESS) to make 

sure the cells operate securely. State estimation, 

voltage/temperature monitoring, and problem diagnosis 

and warning are all tasks of a BMS (Teodorescu and Sui, 

2024). One of the components is the battery capacity, 

which defines the maximum amount of charge in Ah the 

battery can deliver at a specified time (Peng et al., 2022). 

 

 

 

Fig. 2: Battery Energy Storage System (BESS) 

A battery's capacity and specific energy depend on the 

number and energy of electrons (Wang et al., 2022). The 

behavior of lithium ions has a significant influence on battery 

performance because almost all electrode materials in 

lithium-ion batteries involve the insertion and removal of 

lithium ions during electron gain and loss (Wang et al., 

2022). For BMS energy management decision-making, the 

battery capacity of a lithium-ion battery is crucial. For 

instance, the State of Charge (SOC) is a measure that 

compares the battery's capacity to its current Ah amount, 

indicating the remaining energy in the battery. 

In the absence of battery capacity, determining the 

accuracy of the State of Charge (SOC) is challenging 

(Meng et al., 2018). After gaining an accurate SOC, 

BMS may decide when to charge or discharge each cell 

(Peng et al., 2022). The lithium-ion battery capacity 

should be clearly stated to prevent overuse. A key factor 

in the secondary use of a lithium-ion battery is its 

capacity. Battery capacity is essential for managing the 

longevity of cells in a BMS (Hossain Lipu et al., 2021). 

Hence, it is anticipated that the rapid growth of IOT will 

enhance the techniques used for estimating BMS capacity. 

The capacity of a battery is commonly viewed as a 

measure of its life expectancy and it is thought to achieve 

its End of Life (EOL) which capacity reaches 80% of its 

initial capacity value. This is because a precise capacity 

can increase the precision of SOC estimates which allows 

users to undertake charging and maintenance of batteries 

as necessary. Only a slight decrease in capacity would 

gradually impair the electrical battery and thermal 

properties, which can cause additional serious safety risks 

(Deyab and Mohsen, 2021). 

Effective temperature control is vital in Battery 

Management Systems (BMS) to improve battery efficiency, 

and maintain reliability and longevity (Selimefendigil et al., 

2024). The performance of a battery management system is 

laboriously dependent on maintaining optimal operating 

temperatures. High temperatures can damage battery 

components, reduce efficiency, and limit lifespan, whereas 

insufficient cooling can lead to overheating and safety issues. 

Hence, enhanced cooling performance can lead to better 

temperature management, which helps in maximizing 

battery efficiency, extending its operational life, and 

improving overall system performance. 

Besides that, one advanced approach using a hybrid 

system that incorporates Phase Change Materials (PCMs) 

along with liquid cooling channels can significantly enhance 

thermal management that crucial in Battery Management 

Systems (BMS). This combination maintains the energy 

source throughout its ideal temperature level, increasing 

reliability, longevity, and safety. This hybrid solution is 

particularly advantageous in high-performance computing 

and other applications where efficient and stable thermal 

management is crucial (Ortiz et al., 2024). 
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Optimization Energy 

Optimizing energy utilization is crucial for improving 

efficiency and minimizing consumption in various 

applications. Energy optimization algorithms such as 

improving Dynamic Programming (DP) techniques to 

enhance real-time performance are critical for effective 

energy management (Lü et al., 2024). Besides, the 

purpose of Model Predictive Control (MPC) in building 

energy management, demonstrates its ability to optimize 

operations through predictive modeling (Hernández et al., 

2021). Additionally, Genetic Algorithms (GA) have been 

increasingly applied to complex energy systems which are 

effective in optimizing configurations for renewable 

energy systems (Gómez et al., 2023). 

However, energy optimization still heavily relies on 

hardware solutions. For instance, smart meters provide 

users and utility providers access to real-time data on 

energy consumption, enabling improved management and 

adjustment of energy use. Recent advances in smart meter 

technology and applications were discussed by 

researchers (Mao and Zhu, 2024), who reviewed 

improvements in these devices and their impact on 

optimization energy management. Energy Storage 

Systems (ESS) have also evolved which reviewing recent 

advancements that enhance Energy Storage Systems 

(ESS) have also evolved which reviewing recent 

advancements that enhance the incorporation of sustainable 

power resources (Álvarez-Arroyo et al., 2024). 

The optimization of the BESS must be built further 

to identify improved materials and compositions for the 

battery (Hananda et al., 2023). Based on the studies, 

the advancement of battery storage systems will 

improve from the optimization of BESS to facilitate the 

power flow with low self-discharge rates, high 

reliability, and quick responses (Hananda et al., 2023). 

Moreover, the reduction of emissions of ozone-

depleting compounds during production is another 

benefit of battery optimization. 

However, some factors including the battery cell life, 

cost-effectiveness, charges and discharges activities, 

energy oscillations, rapid load evolves, transmission 

system problems, and battery energy supply are some of 

the characteristics and aspects that are taken into 

consideration as system limitations of optimizing the 

battery storage system (Deyab and Mohsen, 2021). This 

is because, the battery's lifespan is influenced by its 

energy transmission methods, cell framework, and 

thermal conditions which are also influenced by the 

charges and discharges process that had been studied by 

the researchers (Deyab and Mohsen, 2021). 

Based on Fig. (3) both estimation methods are related 

to the optimization energy process. The capacity 

estimation method is referred to the capacity that 

measures the amount of charge the battery can retain 

which is one of the most vital features of a battery. 

Generally, the three most prevalent units for measuring 

battery capacity are "Watt-hours (Wh)", "kilo Watt-hours 

(kWh)" and "Ampere-hours (Ah)". According to the 

study, battery capacity is usually estimated in Ampere-

hours (Ah), which indicates how long a battery can 

produce a constant current before running out. 

SOC is a measure of how much energy is currently 

available concerning a battery's nominal capacity. The 

SOC plays a key role in how much energy a battery can 

store and provide throughout its longevity. However, the 

energy management system requires particular 

knowledge of the SOC estimation approach of the battery 

to provide optimal and effective operation. 

Related Work 

The optimization of the production method for lithium-

ion batteries is a key factor throughout the research and 

commerce battery industries (Drakopoulos et al., 2021). 

Based on the research studies, there are key points on battery 

SOC estimation through analyzing several existence 

estimation approaches. This is because the features of the 

lithium-ion battery and the approach to estimation method 

are the most vital elements influencing the preciseness and 

robustness of SOC estimation for battery optimization. 

In one of the case studies, (Reddy Maddikunta et al., 

2020) found results validated the proposed approach 

exceeds the performance of current advanced regression 

methods in achieving a 97% predictive by using the 

machine learning-based approach that used the random 

forest regression methods accuracy in terms of 

conserving the battery longevity of IOT devices. In this 

case study, the battery life of the IOT-based network is 

accurately estimated using PCA-based random forest 

regression techniques. 

 

 

 

Fig. 3: Optimization energy estimation method 
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In other case studies by Vasanthkumar et al. (2022), 

the researchers presented a refined wild horse optimizer 

combined with an advanced learning-powered battery 

management system for Hybrid Electric Vehicles 

(HEVs). To accurately evaluate SOC in HEVs, they 

implement an attention-based bidirectional with short-

term memory technique. Hence, the results in a more 

simplified and accurate representation of the input. A 

detailed simulation result showed that the deep learning 

method for the BMS model outperformed the other 

techniques in several measures. 

In addition, the integration of Micro-Electro-Mechanical 

Systems (MEMS) technology has performed a major 

function in advancing the fields of IOE (Internet of 

Everything), IOT (Internet of Things), and 5G 

communication systems. Iannacci (2018) highlights the 

transformative potential of RF-MEMS (Radio Frequency 

MEMS) and energy-harvesting MEMS (EH-MEMS) in 

creating a unified vision that bridges these technologies. The 

importance of MEMS in the continuous growth of connected 

systems is highlighted by the confluence of MEMS 

technology with IOT and 5G, which not only optimizes 

energy utilization but also paves the way for more 

sustainable and scalable communication infrastructures. 

The study by He (2024), provides a detailed 

examination of the periodic motion in Micro-Electro-

Mechanical Systems (MEMS). This research highlights 

the critical importance of understanding the frequency-

amplitude relationship, which can predict when a system 

transitions from stable periodic motion to instability. This 

research provides broader research on MEMS by 

presenting a robust analytical framework that can be 

employed in the design and analysis of advanced MEMS 

devices, ensuring their operational stability and reliability. 

Another case studies by He et al. (2024) discuss a 

piezoelectric biosensor based on a highly sensitive 

MEMS system. The emergence of the SARS-CoV-2 virus 

highlighted the critical need for ultrasensitive biosensors 

to detect pathogens at the earliest stages of a pandemic. 

The study explores a piezoelectric biosensor focused on 

an ultrasensitive MEMS technology using Polyvinyl Li 

Dene Fluoride (PVDF) nanofibers with unsmooth 

surfaces. By incorporating these advanced MEMS 

technologies, IOT systems can provide real-time, accurate 

data for public health responses, offering a comprehensive 

approach to pandemic control and a deeper understanding 

of MEMS applications in healthcare. 
Research studies by Zhao et al. (2024) discuss the 

growing significance of 5G communication technology 

and its associated challenges, particularly in thermal 

management and energy harvesting. The authors propose 

a thermodynamic approach that enhances thermal 

conductivity and this study emphasizes the importance of 

advanced materials such as nanofibers and nanofluids, 

which offer promising solutions for improving the 

thermal efficiency and reliability of 5G systems. This 

research is particularly relevant to the ongoing 

exploration of energy-efficient technologies in high-

density networks and could provide a foundation for 

future developments in 6G and beyond. 

Next, according to Chandran et al. (2021) studies, the use 

of probability distributions rather than point estimates in 

Gaussian Process Regression (GPR) and Artificial Neural 

Network (ANN) approaches leads to impressive 

improvements in State of Charge estimation. The 

optimized properties used in the machine learning 

framework determine the battery state of charge prediction, 

assisting stakeholders and researchers in determining the 

optimal battery for certain applications. Based on SOC 

estimates, GPR and ANN will assist in designing the best 

battery management system for electric vehicles. 

Other than that, (Drakopoulos et al., 2021) used Artificial 

Intelligence (AI) to create graphite-based anode electrodes 

for lithium-ion batteries by connecting production processes 

to final electrochemical and battery life performance data. 

Based on the study, the researcher involves the machine 

learning methodology by determining the possible variables 

in training data and calculating by evaluating the estimated 

values with the data to ensure that the formulation that had 

been created using the algorithm can be proposed to meet the 

required targets. 

Besides, Yang et al. (2021) introduce a SOC estimate 

approach utilizing an enhanced Extended Kalman Filter 

(EKF), known for being accurate and reliable. Hence, in 

the results of the studies, the research findings indicate 

that using the standard EKF methodology, advancements 

have been conducted with noise adaptability, a fading 

filter, and linear-nonlinear filtering. The strong 

mathematical proof was appropriately carried out to 

highlight the importance of the Battery Management 

System (BMS) which performs a variety of functions 

such as calculating residual power, estimating the status 

of power capacity, voltage monitoring, cell balancing, 

and lifespan estimations. 

Other research on the Kalman filter algorithm was 

conducted by Chen et al. (2019) based on an Improved 

Unscented Kalman Filter (IUKF) approach that is 

composed of a model adaptive algorithm and a noise 

adaptive algorithm. Based on the SOC estimation 

analysis, the findings indicate the estimation error of the 

suggested approach is less than 1.79% based on suitable 

robustness and time complexity. 

In other literature findings by Chen et al. (2019), the 

researcher proposes an alternative technique that combines 

the cost-effective Ampere-Hour Integral (AHI) method with 

the high-accuracy Adaptive Extended Kalman Filter 

(AEKF). Based on the investigation, the SOC estimation was 

computed by the time (in second) comparison between both 

methods which the result of the finding concluded that the 

alternate technique almost retains the same SOC accuracy as 
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the AEKF method while reducing the greatest absolute SOC 

error by 50% when compared to the AHI method. In 

comparison to the AEKF approach, the proposed 

approach achieves almost the same estimation accuracy 

at a calculation cost comparable to the AHI approach. 

Methodology 

This section employs a Systematic Literature Review 

(SLR) to examine a research approach to assess and 

analyze the existing literature on the research topic. A 

Systematic Literature Review (SLR) is an alternative to a 

systematic literature analysis. Kitchenhand guidelines are 

more specific to conduct this SLR. These guidelines were 

chosen which offer detailed procedures for each stage of 

the review process, ensuring comprehensiveness and 

reproducibility. The SLR protocol for this research study 

is divided into the following subsections. 

Research Questions 

This study addresses key questions to map and analyze 

research on energy optimization in IOT and battery 

management. This comprehensive review aims to provide 

insights into current trends and advancements in the field. 

The research questions were formulated based on 

gaps identified in the preliminary literature. These 

questions were designed to address specific aspects of 

battery optimization algorithms, focusing on the 

objective of the research, estimation methods, and SOC 

algorithms, as described earlier 

Mapping Question 

Mapping questions are used to categorize and map out 

the landscape of research related to battery optimization 

in BMS, particularly within the context of IOT. These 

questions help in systematically organizing the literature 

and identifying trends, clusters, and gaps. To develop the 

mapping, we proceeded to establish the following questions: 
 
MQ1: How many studies have been published during the 

years 2017 -2023? 

This period is critical as it aligns with significant 

advancements in IOT technology, Battery 

Management Systems (BMS), and optimization 

techniques. By focusing on this timeframe, this 

study can capture the most current research, 

ensuring that the review is relevant and reflects the 

latest developments 

MQ2: What is the geographical distribution of 

publications in optimization energy in IOT? 

The geographical distribution of publications can 

reveal where the most active research communities 

are located and how research on optimization energy 

in IoT varies across different regions 

By mapping the geographical distribution, this 

study can identify potential regional gaps in the 

literature, encouraging more balanced global 

research efforts 

Additionally, it helps to understand how regional 

factors, such as climate, energy infrastructure, and 

industry needs, might shape the research focus and 

methodologies used in different parts of the world. 

MQ3: What are the main benefits of BMS in managing 

and controlling energy in IOT? 

Identifying the primary benefits of BMS in 

managing and controlling energy in IOT systems 

is crucial for understanding the practical impact of 

these technologies 

This mapping question is designed to summarize the 

key advantages reported in the literature, such as 

improved energy efficiency, extended battery life, 

enhanced reliability, and reduced operational costs. 

Moreover, by mapping these benefits, this study 

can highlight areas where BMS has been 

particularly effective, as well as where further 

improvements or innovations might be needed to 

maximize their potential in IOT applications 

 

Research Question 

The choice of research questions was guided by the 

need to synthesize existing knowledge and identify areas 

requiring further investigation. Each research question 

targets a different dimension of the topic to ensure a 

holistic understanding of the subject matter. The 

following three-dimensional research questions were 

developed to create the systematic literature review: 

 

RQ1: What is the purpose of optimization? 

Optimization in battery management, particularly 

within the realm of IOT, is critical for enhancing 

efficiency, extending battery life, and reducing 

energy consumption. By addressing this question, 

this study seeks to clarify the specific objectives 

behind optimization in BMS within IOT, 

helping to align research and development 

efforts with the most pressing needs in the field. 

RQ2: What is the type of algorithm estimation method? 

Estimation methods are essential for accurately 

predicting battery state parameters and evaluating 

these methods to understand which are most 

effective in different scenarios. By exploring the 

types of algorithms used in estimation, this study 

can provide their strengths and weaknesses and 

also provide valuable recommendations for future 

research and development. 

RQ3: What is the type of algorithm of SOC? 

This research question addresses the need to 

identify and evaluate the different algorithms used 

for SOC estimation, particularly in the context of 

IOT, where factors like varying load conditions 

and intermittent power sources can complicate 
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SOC estimation. Accurate SOC estimation is 

fundamental for battery systems to operate safely 

and effectively, particularly in IOT applications 

where power management is crucial. 

 

Search Strategy 

In this section, we explore search terms, electronic 

resources, reference management tools, and the 

approach to conducting searches. Further steps are 

provided in the following subsections. 

Search Keywords 

The research questions served as the basis for the 

search keywords and strings. Synonyms keywords were 

added from relevant literature on energy optimization in 

IOT technology. 

We show the following keywords in the following. 

“Battery optimization”, “Estimation method”, “State of 

Charge (SOC)”, “Battery Consumption Power” and 

“Battery Management System for Internet of Things”. 

Electronic Source 

The most significant digital libraries were utilized 

in searching for papers. These repositories are ACM, 

IEEE Explore, Science Direct, and Scopus. These 

digital libraries serve as the main repositories for 

publications related to the field of computer science. 

Reference Management 

By using various search terms, we uncovered 

numerous studies from the electronic sources 

mentioned earlier. To organize and manage the 

gathered materials efficiently, we utilized Endnote X9, 

which allows for the easy addition and removal of 

studies as needed. 

Search Process 

A comprehensive search was conducted in digital 

libraries to collect literature from conferences, 

journals, and e-books, which yielded over 77 studies. 

Endnote was subsequently used to organize the PDF 

documents with their references, making the papers 

more accessible. Afterward, we implemented a 

selection process to exclude irrelevant studies. 

Studies Inclusion and Exclusion Criteria 

To address varied questions raised, five Inclusion 

Criteria (IC) alongside five Exclusion Criteria (EC) 

have been defined, as outlined in Table (1). 

Quality Assessment Criteria (QAC) 

As the requirement of this study, the QAC criteria 

were applied to ensure the quality and reliability of 

primary studies. A checklist, designed to address domain-

specific issues, was used to evaluate the research quality. 

As shown in Table (2), these questions guided the 

selection of relevant studies for the Systematic Literature 

Review (SLR). The quality assessment criteria were 

crucial in identifying key studies that provided evidence 

on optimizing energy in IOT technology. Studies were 

analyzed based on these questions, with "Yes" earning 2 

points, "No" earning 0 points, and "Partially" earning 1 

point. After collecting 77 research studies, the QAC 

criteria were applied to filter those that addressed the 

research questions. Following this process, 21 studies 

were selected for review and mapping, representing 5% of 

the total studies, and were considered suitable for 

inclusion in the systematic literature review. 

Data Extraction and Synthesis 

During this phase, different folders were set up in 

EndNote to categorize publications from each 

database. Thus, search attributes were conducted in the 

chosen databases using the following filters: 

 

 The author (s) details 

 The topic area 

 Year of publication 

 Institution 

 Type of document (Revision) 

 The type of publication (Open Access) 

 Language 
 
Table 1: Inclusion and exclusion criteria 

Inclusion criteria Exclusion criteria 

IC1 – Type of document: 

scientific research, 

 book chapters 

EC1 – Informative 

articles, news, papers, 

conference proceedings, 

specialized blogs, and 

book review 

IC2 – Type of access: Open EC2 – No open access  

IC3 – Timing publication: 2017 

- 2023 

EC3 – Published before 

2017  

IC4 – Language: English EC4 – Language other 

than English  

IC5 - Keywords:  

“Battery optimization”, 

“Estimation method”, “State of 

Charge (SOC)”, “Battery 

Consumption Power”, and 

“Battery Management System 

for Internet of Things” 

EC5 – Any reference that 

does not include 

keywords 

 
Table 2: Quality assessment criteria 

ID Quality Assessment Criteria Feedback Score 

Q1 Optimization techniques 42 

Q2 Scalability 21 

Q3 Resource utilization 21 

Q4 Robustness and reliability 42 



Nur Yasmin Salleh et al. / Journal of Computer Science 2025, 21 (3): 685.703 

DOI: 10.3844/jcssp.2025.685.703 

 

692 

Depending on the unique characteristics of each 

academic database, the search and filtering processes 

were adapted accordingly. Figure (4) illustrates the 

distribution of publications retrieved from the databases. 

Using the PRISMA flow chart, which is frequently used 

for presenting systematic reviews, specific information 

on the total number of publications included in the study 

was provided: 

 

MQ1: How many studies have been published during the 

years 2017 -2023? 

MQ2: What is the geographical distribution of 

publications in optimization energy in IOT? 

MQ3: What are the main benefits of BMS in managing 

and controlling energy in IOT? 

 

 

 

Fig. 4: PRISMA flowchart diagram 

Results 

Mapping Results 

As a result, a total of 21 papers were carefully 

analyzed during the systematic literature review using 

predefined questions. Some articles were classified as two 

dimensions as they addressed two of the three research 

terms. Figure (5) demonstrates that the bulk of the papers 

linking the search criteria and available through open 

access are distributed by the following databases, listed 

from highest to lowest: ACM, Science Direct, IEEE 

Explore, and Scopus: 
 
MQ1: How many studies have been published during the 

years 2017 -2023? 

MQ2: What is the geographical distribution of 

publications in optimization energy in IOT? 

MQ3: What are the main benefits of BMS in managing 

and controlling energy in IOT? 
 

Battery Management Systems (BMS) are crucial parts 

of energy management and control in Internet of Things 

applications, particularly in battery-powered devices. The 

following are a few of the key advantages of BMS for IOT 

energy management and control. 

Optimize Battery Performance 

BMS continuously checks the condition and health of 

batteries to make sure they are operating within safe 

parameters. Battery management systems (BMS) can 

enhance battery performance, increasing longevity and 

efficiency, through the inclusion of algorithms for 

charging and discharging. 

Prevention of Overcharging and Over-Discharging 

BMS prevents overcharging, which can cause damage 

or pose a safety risk. Similarly, it prevents over-

discharging, which can also cause damage to batteries. 

Battery management systems (BMS) regulate charging 

and discharging cycles to keep batteries operating within 

safe voltage and current limits. 
 

 
 
Fig. 5: Distribution of scientific production according to databases 

Number of Publication

ACM Science Direct

IEEE Xplore Scopus
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Figure (6) show publication numbers between 2017 

and 2023. Four different type of databases publication has 

been reviewed which are ACM, Science Direct, IEEE 

Xplore and Scopus. Publication from Scopus database is 

the highest compared to others. 

Meanwhile, Fig. (7) shows the comparison 

publications about optimization energy in IoT among 

North Amerika, Europe, and Asia. The result indicates 

total publication for North Amerika is 50, followed by 

Europe with 40 and Asia 30. 

Improved Safety 

BMS has safety measures to protect against any 

possible risks like thermal runaway or fire incidents, 

like temperature monitoring, short circuit protection, 

and cell balancing. These safety features ensure that 

batteries operate safely, particularly in vital Internet of 

Things applications. 

Improved Reliability 

BMS assists in determining possible issues or 

anomalies immediately by continuously monitoring 

battery features like voltage, current, and temperature. 
 

  
 

Fig. 6: Years of publications studies 2017-2023 
 

 
 
Fig. 7: Geographical distribution of publications 

The dependability of battery-powered IOT devices is 

increased by this proactive monitoring, which makes 

preventative maintenance possible and minimizes the 

possibility of unexpected failures. 

Optimized Energy Consumption 

BMS controls the power transmission between 

batteries and linked devices to optimize energy 

consumption. BMS ensures efficient battery capacity 

usage, prolonging device uptime and cutting down on 

energy waste by effectively controlling charging and 

discharging processes. 

Remote Monitoring and Control 

BMS solutions offer remote monitoring and control 

capabilities, allowing users to obtain real-time battery 

data and adjust settings remotely. This functionality 

makes it possible to manage the battery and IOT devices 

proactively, makes troubleshooting easier, and even helps 

optimize energy usage from a distance. 

Analytics and Insights Data 

BMS gathers and examines information about battery 

life and consumption trends over time. Through the use of 

this data, users can anticipate maintenance requirements, 

learn more about the health of their batteries, and improve 

energy management techniques to reduce costs and 

increase efficiency. 

Scalability and Flexibility 

BMS solutions can be easily expanded to support 

various battery types, sizes, and configurations, which 

makes them compatible with a broad range of Internet of 

Things applications. BMS can be adapted to fulfill 

individual energy management requirements, regardless 

of the size of the sensors or industrial equipment. 

Thus, Battery Management Systems (BMSs) are 

essential for managing and controlling energy in the 

Internet of Things (IOT) applications. They provide 

advantages including data analytics, scalability, safety, 

reliability, and optimized battery performance. These 

advantages are crucial for maintaining the efficient 

operation and durability of battery-operated Internet of 

Things devices across a range of sectors and uses. 

Results of The Systematic Literature Review 

RQ1: What is the purpose of optimization? 

In the context of the Internet of Things (IOT), energy 

optimization is employed to manage and improve the 

usage of energy resources. The primary goals of 

optimization in IOT systems are to increase overall 

performance, ensure sustainability, and improve 

efficiency. By optimizing energy consumption, IOT 

systems can operate more effectively, with reduced power 

usage leading to extended device lifespans, lower 

0

20

40

60

North America Europe Asia

Geographical Distribution of Publications in 

Optimization Energy in IoT

Number of Publications



Nur Yasmin Salleh et al. / Journal of Computer Science 2025, 21 (3): 685.703 

DOI: 10.3844/jcssp.2025.685.703 

 

694 

operational costs, and minimal environmental impact. 

This is crucial for the scalability and long-term viability 

of IOT deployments, particularly in scenarios where devices 

must function autonomously over extended periods or in 

energy-constrained environments. IOT energy optimization 

has various important uses, including. 

Energy Efficiency 

Enhancing energy efficiency is one of the main 

goals of energy optimization in IOT technology. 

Through the optimization of energy consumption in 

IOT devices, energy consumption can be reduced 

resulting in longer battery life, lower energy costs, and 

improved energy efficiency within Internet of Things 

devices, networks, and systems. 

Optimizing Battery Life 

A lot of IOT devices run on batteries and are 

frequently set up in inaccessible locations. By 

optimizing battery life, energy efficiency ensures that 

Internet of Things devices can operate for longer periods 

without frequently requiring to be recharged or replaced 

with new batteries. 

Improving Sustainability 

Minimizing energy waste and encouraging 

sustainability is enhanced by the utilization of renewable 

energy sources and Internet of Things energy 

optimization approaches. Optimization energy helps 

reduce the environmental effect of IOT deployments and 

supports eco-friendly activities by consuming less energy. 

Enhancing Performance 

Reliability and enhanced performance of Internet of 

Things systems can also be attained by effective energy 

management. Optimization energy approaches can 

improve the overall functioning, stability, and 

responsiveness of Internet of Things devices and 

networks by ensuring that energy is used efficiently. 

Reduce Cost 

Optimizing energy usage in IOT can result in cost 

savings for organizations deploying IOT solutions. 

Optimization energy techniques can reduce the operating 

costs involved with powering and maintaining Internet of 

Things (IOT) deployments by extending device lifespans 

and reducing energy usage. 

Hence, the primary objective of energy optimization 

in the Internet of Things is to develop smarter, cost-

effective, and environmentally conscious IOT solutions 

that can satisfy the growing demands of connected 

devices and applications while reducing their adverse 

impact on the environment. 
RQ2: What is the type of algorithm estimation method? 

Battery capacity is a measure of the total amount of 

charge extracted from a fully charged battery before it 

reaches its optimal discharge rate. Thus, the amount of 

battery capacity is not a fixed value and varies throughout 

its lifespan due to the continuous aging process of the 

battery. Charging and discharge current, operating 

temperature, battery Depth of Discharge (DOD), number 

of charging and discharge cycles, and other variables all 

have an impact on how quickly batteries age. 

Unfortunately, there is not a clear definition of battery 

capacity either. 

In the literature, various battery capacity definitions 

are provided. However, they are frequently ambiguous 

and inconsistent. This section proposes standardized 

battery capacity definitions, which are frequently cited in 

existing study literature Farmann et al. (2015): 

 

 Nominal Capacity (𝐶𝑁𝑜𝑚𝑖𝑛𝑎𝑙) 

It is described as the capacity of the battery in the 

datasheet by the manufacturer for use under standard 

operating factors such as nominal discharge current, 

nominal temperature, and nominal capacity of the 

battery from the fully charged condition. In other 

words, the manufacturer's stated capacity is known as 

the nominal capacity 

 Available Capacity (𝐶𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒) 

This represents the maximum capacity that can be 

drawn from a fully charged battery, taking its current 

age into account. This means that the new nominal 

capacity of a battery is equivalent to its usable power 

when a battery is operating under nominal conditions. 

 Dynamic Capacity (𝐶𝑑𝑦𝑛𝑎𝑚𝑖𝑐) 

Dynamic capacity refers to the amount of charge 

sustained consistently over time. The energy stored in 

the battery changes as it varies between charging and 

discharging rates 

 

Despite the complexities of battery degradation 
accurately estimating the battery capacity onboard 

remains a difficult task for the Battery Management 

System (BMS) prompting researchers to make substantial 

attempts to tackle this issue. This phase will provide a 

quick overview of the methods used to estimate battery 

capacity in the literature. The approaches are broadly 

classified as follows. 

Direct Measurement Methods 

Direct measurement methods are one of the simplest 

techniques to obtain battery capacity that builds charge 

during its cycle phase. These methods require the battery to 

be either fully charged or discharged under specific 

conditions. However, it is impractical to consistently meet 

the criteria of a battery's characteristics, especially since 

these evaluation techniques are limited to laboratory tests 
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and cannot fully replicate real-world conditions. 

A further issue is that the BESS cannot always be fully 

charged or discharged due to varying load conditions. 

Direct measurement techniques are ineffective when the 

battery is slightly charged or depleted, a scenario that 

frequently arises during practical use. 

Analysis-Based Methods 

In the case of indirect approaches, sensors can record 

voltage, current, and temperature which may then be 

utilized to determine the capacity. Researchers primarily 

offer five types of analysis-based methodologies in the 

study which include the Incremental Curve (IC), the 

Differential Thermal curve (DT), the Differential Voltage 

curve (DV), mechanical stress, and Electrochemical 

Impedance Spectroscopy (EIS). For instance, one of the 

analysis-based methods includes the IC curve analysis 

technique which is concerned with the variations of 

capacity with voltage, which is denoted as: 

 

𝐼𝐶 =
𝑑𝑄

𝑑𝑉
 (1) 

 

Equation (1) shows the 𝑑𝑄 of the IC curve may be 

simply calculated by Coulomb counting the current while 

𝑑𝑉 is denoted as the voltage of the current. Based on the 

studies, since noise in current and voltage readings is 

constantly present, a filter is frequently necessary to reduce 

the IC curve (Farmann et al., 2015) commonly Kalman 

Filter is one of the filtering methods that usually be used to 

enhance the extraction of the IC curve. Incremental 

Capacity Analysis (ICA) is commonly utilized in battery 

degradation mechanism studies because the characteristics 

of battery Incremental Capacity (IC) curves are directly 

connected to battery degradation and maximum usable 

capacity. However, the standard ICA approach for 

estimating battery capacity relies on a single charging 

circumstance (Farmann et al., 2015). 

SOC-Based Methods 

State of Charge-based methods is the famous literature 

among researchers to study the estimation of battery 

capacity. Recent studies often focus on estimating 

capacity along with other battery conditions, like State 

of Charge (SOC), in a process called joint estimation 

(Yu et al., 2019). 

Capacity is a dynamic element, regarded as an 

advanced stage in the combined estimation of SOC and 

SOH, and then parametric filtering is conducted. 

Moreover, filters consist of two primary variables: 

Prediction and correction. Both conduct the state of 

estimation from the previous value and then correct based 

on the observances of measurement. The prediction and 

correction steps are iterative, continuously refining the 

state estimation. 

 
 
Fig. 8: Kalman filtering process 

 

For instance, a schematic figure of the Kalman filter 

filtering approach is presented in Fig. (8) above (Xu et al., 

2012), with the equations for a stochastic linear discrete 

system provided as essential for understanding the filter 

operation and performance are denoted as follows: 

 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘 (2) 

 

𝑦𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (3) 

 

Equations (2-3) show where 𝑥 denotes the state vector, 

𝐴 the state transfer matrix, 𝑢 the state control vector, 𝐵 

the control variable matrix, 𝑦 the measurement vector, 𝐻 

the transformation matrix from the state vector to the 

measurement vector, 𝑤, and 𝑣 are both Gaussian noises 

and 𝑃 the covariance matrix. 

Various case studies were implemented using the 

Kalman filter which uses the SOC-based technique. As a 

result, for the SOC-based technique, the capacity 

identification estimator is completely independent of the 

SOC state estimator. To increase the accuracy of the 

outcome, several time scales are used. 

The precise SOC is a vital requirement for the battery 

capacity estimation. However, accurately measuring SOC 

is challenging for lithium-ion batteries, which restricts the 

practical use of SOC-based approaches. 

Data-Driven Methods 

The data-driven method is distinguished by its 

dependence on a huge dataset to make decisions and is not 

dependent on the use of a specific battery model. For 

example, considering the explosive development of 

artificial intelligence and IOT, the daily performance data 

of the battery system can be effortlessly uploaded for edge 

computing estimates. With a sufficiently representative 

sample, a model can map data using a data-driven 

approach, eliminating the need for a predefined model. 

Examples of existing data-driven methods include 

Neural Networks (NN), Support Vector Machines (SVM), 

Convolutional Neural Networks (CNN), and others. 

Hence, the accuracy of the data and an intensive training 
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procedure are required for the deployment of data-driven 

approaches. The benefit lies in training the model to 

respond to the data, although this requires a large sample 

and training dataset to ensure precise estimation. 

RQ3: What is the type of algorithm of SOC? 
SOC acts as a vital indicator of a battery's current 

energy level in comparison to its total capacity. SOC 

provides a real-time estimate of how much charge remains 

in the battery, indicating to users the duration a battery 

will last before requiring a recharge. To accurately 

estimate SOC, various algorithms are employed, each 

with its strengths and limitations. The preference of the 

SOC algorithm is based on specifications that include 

required efficiency, computing intricacy, and application 

settings inside the Battery Management System (BMS). 

In most cases, the State of Charge (SOC) is a 

percentage representation of the amount of energy 

supplied in a battery at a given point in time (Brush, 2019). 

The main equation of SOC is described as: 
 

𝑆𝑂𝐶(𝑡) =
𝑄(𝑡)

𝑄𝑛
 (4) 

 
Equation (4) above defines the SOC of a battery which 

is described as the ratio of its current capacity (𝑄(𝑡)) to the 

nominal capacity (𝑄𝑛). The nominal capacity is to 

represent the maximum amount of charge that can be kept 

in the battery z (Chang, 2013). 

The SOC is one of the most significant characteristics 
of batteries, however, describing it tends to involve a 
variety of issues. Since the SOC is a key metric that 
indicates battery performance, precise SOC estimation 

can help prevent over-discharge, extend battery life, and 
enable applications to implement efficient energy 
conservation strategies (Chang, 2013). 

Existing SOC estimate approaches can be divided 

into five categories. The several mathematical 

estimating approaches are categorized based on 

methodology. The categorization of these SOC 

estimating methods varies throughout the literature. 

Nonetheless, certain literature allows classification into 

the following categories that comprise conventional 

technique, adaptive filter technique, machine learning 

technique, nonlinear observer, and hybrid technique. 

These approaches are listed below. 

Conventional Method 

Conventional methods are traditional methods of the 

standard techniques for estimating SOC including 

“ampere-hour counting”, “the Open Circuit Voltage 

(OCV) method”, “impedance and internal resistance 

measurements”, “the electrochemical method” and “the 

model-based method” (Zhang et al., 2018). 

Ampere-Hour Counting Method 

Besides commonly known as coulomb counting, the 
ampere-hour method is utilized to estimate the amount of 

charge in a battery (Baccouche et al., 2016) useful for 
estimating the State of Charge (SOC) of lithium-ion 
batteries with high charging and discharging efficiency 
(Baccouche et al., 2016). It is used to determine how much 
charge is left in a battery by integrating the discharging or 
charging current as shown below (Zhang et al., 2018): 
 

𝑆𝑂𝐶(𝑘) = 𝑆𝑂𝐶(0) −
𝑇

𝐶𝑛
∫ (𝜂 ∙ Ι(𝑡) − 𝑆𝑑)𝑑𝑡

𝑘

0
 (5) 

 
Equation (5) shows the ratio of a battery's remaining 

capacity to its nominal capacity is indicated where 

𝑆𝑂𝐶(0) is the initial SOC of the battery, 𝐼(𝑡) is denoted 

as the current time, 𝑇 is the sampling period over the 𝐶𝑛 

is the nominal capacity of the battery, η is the coulombic 

efficiency, 𝐼(𝑡) is the current of time and 𝑆𝑑 is the 

discharging-rate. According to the research, a self-

discharge rate undergoes approximately 5% each month 

for a battery of η >0.994 at room temperature. 

According to Zheng et al. (2018), despite its lower power 

computation cost, the ampere-hour counting method is 

commonly employed for battery SOC optimization. On the 

other hand, it also has the problem of not being very precise 

over lengthy periods. The ampere-hour counting method's 

error causes are an uncertain starting of the SOC, the ability 

diminishing, self-discharge proportion, and current detection 

faults. To increase the exactness of the technique, the 

initial capacity and the value of SOC of a battery, as well 

as the current detection deviation may rectified and 

modified frequently. 

Open Circuit Voltage (OCV) Method 

The OCV of a battery cell defines the potential 

difference between the positive and negative electrodes 

when no current flows and the electrode potentials are in 

a state of equilibrium. The SOC-OCV relationship is 

obtained in this manner by measuring OCV sequentially 

for different SOC values. For SOC estimation, the OCV 

method offers high accuracy and is easier to implement 

(Baccouche et al., 2016). 

However, while there is a clear and established linear 

relationship, it varies amongst batteries and is dependent 

on the battery's capacity. Although the SOC-OCV 

relationship of lithium-ion batteries is mainly stable, it can 

differ depending on the surrounding temperature and the 

battery's life cycle. Hence, to determine an accurate SOC-

OCV relationship, researchers may need to undertake 

large-scale investigations at various temperatures and 

battery cycle lifetimes (Baccouche et al., 2016). 

Therefore, reliable OCV modeling is vital for 

controlling lithium-ion batteries. It is stated to determine 

the OCV value at corresponding SOC levels between 

two adjacent measuring points (Quanqing et al., 2021) 

where the OCV technique for estimate is based on fitting 

the OCV relaxation model parameters. Hence, the OCV 

approach is utilized to determine the SOC, which has 

minimal power use and high precision. However, its 
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relevancy is inflexible because of the absence of 

specified requirements. 

Impedance and Internal Resistance Methods 

The impedance and internal resistance of the lithium-

ion battery represent their inherent electricity under any 

current level, assuming that temperature, SOC, and SOH 

remain constant. However, measuring real-time 

Electrical Impedance Spectroscopy (EIS) is challenging 

since the sinusoidal Alternating Current (AC) may be 

needed, the SOC and impedance connection is unstable 

and it consumes high cost. (Baccouche et al., 2016) 

while measuring internal resistance, Direct Current (DC) 

as well as voltage and current readings over a short 

period of time are necessary. 

Battery heat studies are primarily concerned with the 

irreversible heat generated by the internal resistance and 

the reversible heat produced by the electrochemical 

process. In general, reversible reaction heat is low and 

may be resisted at room temperature. As a result, the heat 

generated by the internal resistance is the primary source 

of the battery's heat (Chen et al., 2021). Hence, the 

thermal analysis of batteries and the design of thermal 

management systems depend on precise internal 

resistance modeling. Chen et al. (2021). 

The higher the internal resistance, it increases the 

losses when charging and discharging, particularly at 

higher currents. It is challenging to determine the internal 

resistance for SOC estimation since it may differ 

gradually. Based on the research, SOC estimates based on 

impedance and internal resistance are not suitable for 

implementation in IOT technology. 

Electrochemical Methods 

Electrochemical Impedance Spectroscopy (EIS) is a 

very effective and extensively used non-invasive 

diagnostic technique for characterizing lithium-ion 

batteries (Barai et al., 2019). As a non-destructive 

technique, EIS can be utilized as a diagnostic or 

prognostic tool: For the characterization of second-life 

applications and quality assurance for state estimates, 

including SOC, SOH, and SOF for internal temperature 

monitoring. (Meddings et al., 2020). 

Estimating the number of lithium-ion batteries and the 

average level in the positive or negative electrodes is 

essential for determining SOC using an electrochemical 

model based on partial differential equations. The SOC 

may be estimated simply from the quantity identification 

in the electrochemical model's negative or positive 

electrodes. On the other hand, partial differential equation 

solutions are usually too complicated for online 

applications (Baccouche et al., 2016). 

In general, the electrochemical method can potentially 

deliver highly precise SOC estimation. However, this 

method is only suitable for offline development and 

functional research on lithium-ion batteries, which require 

obtaining the impedance spectrum, a process that is time-

consuming. However, because of the intricacy of the 

electrochemical method and the hundreds of battery 

model parameters, this approach is very complex to use 

for online SOC estimation (Baccouche et al., 2016) and 

the chemical parameters of the battery are difficult to 

figure out. As a result, they are challenging to apply in 

real-time applications. 

Model-Based Methods 

The previous approaches are not adequate for online 

SOC estimation using traditional methods. Accurate online 

SOC values require the development of battery models. 

The electrochemical model and Equivalent Circuit Model 

(ECM) are the two most often utilized in battery models 

(Zhang et al., 2018). 

ECMs primarily utilize resistances and RC circuits to 

model the power conduct of lithium-ion batteries. For an 

ECM to be effective, it must accurately simulate the actual 

battery voltage under varying current conditions. However, 

some characteristics of lithium-ion batteries cannot be 

adequately represented using circuit components. 

Therefore, pure mathematical models with persistence are 

used to significantly improve the precision of voltage 

simulations (Baccouche et al., 2016). 

Model-based approaches focus on precisely estimating 

the SOC by simulating battery performance through 

complex mathematical equations that combine various 

components. These methods require the simulation of a 

battery’s electrical, chemical, or combined properties, 

relying on principles outlined in porous electrode theory 

(How et al., 2019). 

Adaptive Filter Algorithm 

The adaptive filter algorithm is an advanced technique 

in current control theory designed to enhance the 

estimation of the State of Charge (SOC) of batteries. This 

adaptability enhances the precision of SOC estimation by 

continuously refining the filter's variables to better match 

the battery’s actual performance. It provides more precise 

and reliable SOC estimates, which are crucial for effective 

battery management in various operational environments. 

Machine Learning Algorithm 

Machine learning algorithms have significantly 

advanced the estimation of State of Charge (SOC) in 

battery management systems. These algorithms leverage 

large datasets and sophisticated computational 

techniques to improve the precision and dependability of 

SOC estimates. Among the various machine learning 

methods, “Genetic Algorithms (GA)”, “Fuzzy Logic 

(FL)”, “Artificial Neural Networks (ANN)” and are 

commonly employed. 
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Non-Linear Observer 

The SOC of lithium-ion batteries is determined with 

simple implementation studies to estimate the efficiency 

and precision using the “Proportional-Integral Observer 

(PIO)”, “Non-linear Observer (NLO)” and “Sliding Mode 

Observer (SMO) approaches”. 

Hybrid Algorithm 

The hybrid algorithm approach combines two 

additional algorithms. Hybrid approaches achieve 

globally optimal estimation performance by integrating 

the advantages of various SOC estimation techniques. 

According to the research, hybrid approaches create better 

estimates of SOC than individual techniques. 

Estimating SOC, a key challenge in battery usage, 

indicates the remaining capacity and serves as a vital 

metric for control strategies (He et al., 2012). 

Discussion 

In this section, the research findings are discussed 

while also providing an extensive analysis. Based on this 

research, the specific difficulties encountered by BMS 

and their solutions were laid out as an outline for future 

study. Different approaches can be applied based on the 

circumstances to optimize BMS performance in IOT 

systems. The literature review discussed that the 

estimation method carried out by the researchers proved 

each of the algorithm that can be conducted to optimize 

the energy consumption of battery. 

According to the previous overview, there have been 

several researches on battery capacity estimation. From 

the studies, we understand that certain techniques need 

special particular conditions. This study addresses current 

approaches for estimating battery capacity for Battery 

Management System (BMS) implementation which are 

grouped into four categories which are direct 

measurement methods, analysis-based methods, SOC-

based methods, and data-driven methods. 

Based on Table (3) presents the analysis of each 

algorithm that is used in estimating the battery capacity 

studies. The findings show that some techniques rely on 

their capacity characteristics to be estimated in tandem 

with the battery condition. For instance, from the analysis 

on measuring internal resistances of the capacity battery, 

it is vital as the main factor for each method to record the 

voltage, current, and temperature which may be utilized 

to determine the capacity. 

Besides, the comprehensive discussion had been 

stated in other analyses that represent the comparative 

the state of charge estimation method. The findings show 

the characteristics that rely on the algorithms which 

include high charging and discharging efficiency, real-

time adaptability, minimized interference, enhanced 

voltage monitoring, cell balancing, monitoring internal 

temperature, noise adaptive, efficient computing 

method, high precision and accuracy, and cost-

effectiveness. The analysis of the studies is represented 

in the form of Table (4). 

Thus, according to the outcomes of this discussion, 

the future framework for onboard capacity estimation 

will integrate data-driven methodologies with other 

advanced techniques. For example, the analysis-based 

method provides health insights for data-driven models 

and simplifies data processing, reducing the need for 

expert knowledge of lithium-ion battery degradation. In 

the BMS terminal, a SOC-based method can function 

alongside a data-driven approach while collaborating 

through a fusion mechanism. 
 
Table 3: Comparative of capacity estimation method 
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Table 4: Comparative of state of charge estimation method 
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Ampere-hour counting method х х х √ √ √ х √ х √ 

OCV method х х х √ √ х х х √ √ 

Impedance and internal 

resistance method 
√ х х √ х √ х х х Х 

Electrochemical method x х х √ √ √ х х √ х 

Model-based method √ √ √ х х √ х √ √ х 

Adaptive filter algorithm √ √ √ √ √ √ √ √ √ √ 

Machine learning algorithm x √ √ √ х √ √ √ √ √ 

Non-linear algorithm √ х х √ √ √ х √ √ √  

Hybrid algorithm √ √ √ √ √ √ √ х √ х 

 

Additionally, this study also discussed deeply various 

SOC estimation family algorithms which are classified 

into five distinct types including conventional method, 

adaptive filter algorithm, machine learning algorithm, 

non-linear observer, and hybrid algorithm. Based on the 

research, the conventional methods of estimating SOC 

also can include ampere-hour counting, the Open Circuit 

Voltage (OCV) approach, the impedance and internal 

resistance method, the electrochemical method, and the 

model-based method. 

Based on comparison observations, some 

approaches work well with a constant discharging 

current, while others are more effective with changing 

discharging current. However, comparing the 

performance of different methods is difficult due to the 

use of varying battery sizes and varying discharging 

conditions in existing implementations. 

With the knowledge obtained from the literature 

review conducted as part of this research study, the 

estimation method will be used in the following phase of 

the studies. This method should have a reasonable level of 

computational complexity, be easy to implement, and 

guarantee good precision over a range of battery longevity 

and operating conditions. 

Conclusion and Future Research 

In conclusion, this systematic review paper has 

critically analyzed the current state of algorithms for 

battery optimization, with a particular focus on estimation 

methods and State of Charge (SOC) algorithms within 

Battery Management Systems (BMS). The review 

highlights that the primary objective of these algorithms 

is to minimize power consumption, which is increasingly 

vital given the growing global energy demand driven by 

population growth and the expanding deployment of 

Internet of Things (IOT) technology. 

The findings indicate that data-driven methods and 

hybrid algorithms are particularly effective, offering 

superior performance in optimizing battery usage and 

extending battery lifespan. However, despite these 

advancements, there is a clear need for further refinement 

of these algorithms to enhance their accuracy and 

efficiency. The study underscores the critical role of BMS 

in ensuring the optimal use of battery power, which is 

essential for supporting the sustained growth of IoT 

applications and addressing the challenges of modern 

energy consumption. 

Future research should focus on several key areas to 

advance the effectiveness of battery optimization 

algorithms in BMS. First, there is a need for the 

development of more sophisticated data-driven techniques 

that can better handle the complexities and variabilities in 

battery performance, particularly in diverse IOT 

environments. This could involve the integration of 

machine learning techniques with traditional estimation 

methods to create more adaptive and predictive models. 

Additionally, further exploration into hybrid 

algorithms that combine the strengths of different 

approaches could result in greater durability and efficient 

approaches. Research should also explore real-time 

implementation and validation of these algorithms in 

practical IOT applications to assess their performance in 
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dynamic, real-world conditions. Finally, considering the 

rapid evolution of IOT technology, future studies should 

investigate the scalability and adaptability of these 

algorithms to ensure they remain effective as IOT 

networks expand and evolve. 
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