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Abstract: The digital age has fundamentally transformed how information
is created and disseminated, raising critical concerns about the authenticity
and trustworthiness of online content. Recent advances in Artificial
Intelligence (AI), particularly deep learning, have given rise to deepfakes:
highly realistic synthetic media generated by manipulating or replacing
faces, voices, and actions in videos. While deepfake technology offers
innovative applications across various industries, its rapid proliferation has
also enabled malicious uses, including fake news, financial fraud, identity
theft, and cyberattacks. Consequently, robust deepfake detection has become
essential to preserving digital integrity and mitigating social and security
risks. This paper presents a comprehensive review of deepfake technology,
examining its creation techniques (e.g., autoencoders, generative adversarial
networks), diverse media types (text, image, audio, video), and evolving
detection methods. It also surveys publicly available datasets and evaluates
the performance of state-of-the-art detection models. Beyond technical
aspects, the review critically discusses the ethical, legal, and societal
implications of deepfakes, including privacy violations, consent,
misinformation, and regulatory challenges. By synthesizing current trends
and identifying research gaps, this study aims to provide a balanced
understanding of both the potential benefits and threats posed by deepfakes,
and to inform future efforts in detection, governance, and responsible use.

Keywords: Manipulation, Deepfake Creation, Deepfake Detection,
Autoencoders, GAN, and LSTM

Introduction
The digital era has fundamentally transformed the

creation, dissemination, and consumption of information,
bringing with it unprecedented challenges to the
authenticity of online content. Among recent
technological advances, Artificial Intelligence (AI)
stands out as one of the most transformative, with
applications spanning virtually every sector. A
particularly concerning manifestation of AI's power is
the emergence of deepfakes, highly realistic synthetic
media generated through deep learning techniques. The
term "deepfake" itself is a portmanteau of "deep
learning" and "fake", and typically refers to the use of
neural networks to swap a target individual's face onto
another person's body in video, creating convincingly
realistic footage of events that never occurred (Aslam &
Santhi, 2019).

Deepfake techniques leverage large image and video
datasets to generate highly realistic media. Celebrities
and politicians, who present a lot of usable content on
social networks or other platforms, are primarily at risk

of deepfakes. For instance, Rana Ayyub, an Indian
journalist, received death threats courtesy of bad actors
by impersonating her in a pornographic video that
circulated on social media platforms such as Twitter and
WhatsApp. At first, deepfakes targeted the switching of
faces of different celebrities or political figures with
those of other actors in pornography. Deepfake videos,
the kind in which a person's image is substituted for
another's, initially surfaced in 2017 with one in which a
star's head was superimposed on an adult film actor's
body. The priority is obvious when Deepfake is used to
portray several world leaders giving faux speeches in
politically motivated falsification pernicious to global
security. Deepfakes pose threats beyond politicians and
celebrities, affecting individuals across various domains.
For instance, a voice deepfake was used in a scam to con
a CEO into releasing $243,000 (Akhtar, 2023): a
demonstration of the use of deepfake in other vices and
immoralities. To avoid such risks, the field of deepfake
detection has received a lot of attention from scholars
and practitioners resulting in the emergence of many
solutions that seek to detect deepfake content.
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Overview of Deepfake Technology

Deepfake technology refers to the use of artificial
intelligence, particularly deep learning algorithms, to
generate synthetic content, such as videos, images, or
audio, that closely mimics real people. The core
technique underpinning most deepfakes is the Generative
Adversarial Network (GAN), which comprises two
competing neural networks: a generator that creates fake
content and a discriminator that attempts to distinguish it
from real content. Through this adversarial process, the
generator iteratively improves, eventually producing
highly convincing forgeries (Cassia et al., 2025). Other
AI techniques, such as autoencoders, are also commonly
employed, especially for face swapping, superimposing
one individual's face onto another's body in video
footage.

Although manipulated images and videos predate
modern AI, deepfake technology proliferated rapidly
during the 2010s with the advent of deep learning.
GANs, first introduced by Goodfellow et al. (2014),
represented a major breakthrough. Soon after, AI-
powered face-swapping applications emerged, enabling
more automated and precise manipulations. By 2017,
deepfakes captured public attention as manipulated
videos of celebrities circulated online, revealing the
technology's dual-use potential: while it offers creative
opportunities in entertainment, it also enables harmful
applications such as misinformation and non-consensual
pornography (Barni et al., 2020). As deep learning
models and computational power continue to advance,
deepfake generation tools have become both more
sophisticated and more accessible, allowing even non-
experts to produce realistic synthetic media.

This study makes several key contributions to the
field of deepfake research. First, it provides a systematic
categorization and in-depth examination of various
deepfake types, elucidating their underlying creation
methods and distinguishing characteristics. By doing so,
it offers readers a clear technical foundation for
understanding how different forgeries are generated.

Second, the paper presents a balanced analysis of
both the beneficial applications and the potential threats
posed by deepfake technology. It explores constructive
uses in domains such as entertainment, education, and
healthcare, while also critically examining risks related
to misinformation, fraud, and privacy violations. This
dual perspective contributes to a more nuanced
understanding of deepfakes as a dual-use technology.

Third, the study surveys current datasets commonly
used for training and evaluating deepfake detection
systems. It assesses their strengths and limitations,
identifies critical gaps, such as lack of diversity, poor
ecological validity, and insufficient multimodal content,
and underscores the need for more robust and
representative benchmarks.

Finally, the paper foregrounds the ethical, legal, and
social implications of deepfake technology. It addresses
pressing concerns including consent, digital identity
manipulation, regulatory responses, and the erosion of
public trust. By synthesizing these dimensions, the study
aims to foster informed discourse and support the
development of responsible innovation, effective
governance, and sustainable countermeasures.

Different Types of Deepfakes

AI technology has advanced, and it is now possible to
create content that is very believable while it is fake.
This manipulation can take formats that can affect all
types of media, whether written, audiovisual, or both. All
of them come with certain difficulties and dangers: from
sharing fake news to phishing or impersonating people.
The different types of deepfakes are explained below and
illustrated in Fig. 1.

Fig. 1: Different Types of Deepfakes

Text: These are forms of text that mimic people's
writing styles because they are created by AI models.
They can be used to create false news, impersonate
individuals in messages or emails, and spread
disinformation. These texts often replicate tone, style,
and context to appear authentic. Their realism poses risks
to trust, security, and online communication.

Image: Deepfake approaches in images mean either
synthesizing another image with the same person to have
an entirely new photo or replacing a person's face in an
image with a fake one. This is usually done with some ill
intention, like opening a fake account or bullying people
online.

Video: Commonly used deepfakes known as face
swap, where someone's face or behaviour is changed to
depict him/her as saying or doing things he/she never
had or said. This type has been employed in positive
uses, including entertainment, as well as negative uses.

Audio: Audio deepfakes mean producing fake audio
based on any human speech, which artificially imitates
that individual's voice to say something they never said.

http://192.168.1.15/data/13630/fig1.png
http://192.168.1.15/data/13630/fig1.png
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It could be used by scammers, impersonators, or anyone
who wants to change public opinion about something.

Importance and Impact of Deepfakes

Deepfakes have profound societal, political, and
economic implications, as their ability to create highly
realistic, fabricated media poses significant risks across
multiple domains. In society, deepfakes can be used to
spread misinformation or fake news, potentially
undermining public trust in media and institutions.
Politically, they can be weaponized to manipulate public
opinion, influence elections, or defame individuals
through the creation of misleading videos of politicians
or public figures. Economically, businesses can be
targeted by deepfake fraud, such as impersonating
executives to authorize fraudulent transactions, which
can lead to financial losses and damaged reputations.
These impacts raise significant ethical and legal concerns
(Schiff et al., 2023). On an ethical level, deepfakes
challenge the integrity of information, creating dilemmas

around consent, privacy, and the potential for harm.
Legally, the rapid evolution of deepfake technology has
outpaced the development of regulations, leading to
difficulties in prosecuting malicious uses, protecting
individuals from defamation, and ensuring accountability
for the creation and distribution of harmful content
(Baltrušaitis et al., 2019). The tension between protecting
free speech and regulating harmful uses of deepfakes
further complicates the legal landscape, requiring
updated laws and international cooperation (Mubarak et
al., 2023).

Deepfake Fraud Progression From 2020 to 2024

Over the past five years, deepfake fraud has
undergone significant evolution, driven by advancements
in AI technology. The increasing accessibility of tools for
creating synthetic media has amplified the use of
deepfakes in cybercrime, misinformation, and fraud (Lee
et al., 2025). Table 1 provides a detailed explanation of
the progression of deepfake fraud over the past five
years.

Table 1: Deepfake Fraud Progression From 2020 to 2024

Year Key Events Key Trends
2020 - Launch of user-friendly deepfake creation tools.

- Voice-based phishing scams emerge.
- Governments begin exploring regulatory responses.

- Democratization of deepfake generation.
- Initial awareness of audio-based fraud.
- Early legal exploration.

2021 - Surge in non-consensual deepfake pornography (approx. 90% of all deepfake
content).
- High-profile scams in finance and politics.
- Pilot deployment of AI-based detection tools.

- Rising ethical and legal concerns.
- Increased public and media attention.
- Early corporate interest in countermeasures.

2022 - CEO voice impersonation attacks exposed.
- Interdisciplinary collaborations (AI ethics + cybersecurity).
- The visual and audio quality of deepfakes significantly improves.

- Biometric systems targeted.
- Cross-domain counter-strategy development.
- Realism challenges traditional detection.

2023 - Detection systems deployed in defense, banking, and media.
- Introduction of the EU AI Act and U.S. DEEPFAKES Accountability Act.
- Public awareness campaigns grow; detection remains difficult for users.
- Deepfake creators use adversarial techniques.

- Institutional and policy-level responses
intensify.
- Consumer uncertainty persists.
- Detection tools face evasive tactics.

2024 - Deepfakes breach biometric authentication systems.
- Global demand for coordinated regulation rises.
- Improved AI-based countermeasures developed.

- Systemic cross-sector threat emerges.
- Calls for global governance grow.
- Regulation and resilience become priorities.

Deepfake Attacks on Biometric Authentication Systems

The use of deepfake generates threats to biometric
authentication because it enables imposters to take on the
unique identity traits of real people. Because of progress
in GANs and neural synthesis, fraudsters now can create
realistic synthetic videos and recordings that can trick
both smartphone and surveillance security systems (Dani
& Mustafa, 2025). AI technology in videos can display
realistic reactions and movements, bypassing features
like liveness checks in face recognition. In another way,
cloned voices can fool voice-recognition systems and
allow people to get access or request that fraudulent
orders be made (Garg et al., 2025). These threats point
out that many biometric systems are unable to tell real
data from simulated information. It is necessary to
improve detection algorithms that spot minor differences
introduced in the manufacturing stage, as well as to use

authentication methods that look at both the biometrics
and how a person behaves. To guard the integrity of
these systems, AI, anomaly detection, and probably
instant verification can be employed.

Objectives and Scope of the Study

The primary objective of this review is to provide a
comprehensive and critical analysis of deepfake
technology by exploring its generative mechanisms, real-
world applications, ethical and legal challenges, and the
latest advancements in detection techniques. This paper
aims to bridge the gap between technical understanding
and societal implications by examining both foundational
methods (e.g., GANs and autoencoders) and emerging
paradigms such as Neural Radiance Fields (NeRFs).

To maintain focus and coherence, this study is
organized around a set of clearly defined objectives that
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span the technical, societal, and forward-looking
dimensions of deepfake technology.

The first goal is to systematically categorize and
explain the major types of deepfakes, including image,
video, audio, and text-based forgeries, alongside the
underlying synthesis techniques such as Generative
Adversarial Networks (GANs), autoencoders, and
emerging methods like Neural Radiance Fields (NeRFs).
Building on this foundation, the study further analyzes
the expanding influence of deepfakes across critical
domains, including media and entertainment, politics,
and cybersecurity, illustrating both their innovative
potential and their capacity for harm.

In parallel, the research evaluates state-of-the-art
deepfake detection strategies, benchmarking their
performance across diverse datasets and identifying key
limitations related to generalization, robustness, and real-
world deployment. Beyond technical assessment, the
study also explores the multifaceted ethical, legal, and
psychological challenges posed by deepfakes,
particularly issues of consent, privacy, digital identity,
and the psychological impact of identity manipulation.

Finally, the paper highlights emerging trends and
charts future research directions. These include the rise
of 3D-aware synthetic media, the development of hybrid
and multimodal detection frameworks, and the growing
need for policy interventions and governance
mechanisms. By integrating these objectives, the study
aims to provide a holistic and forward-looking
perspective that informs both researchers and
practitioners working to mitigate the risks of deepfakes
while harnessing their beneficial applications.

Literature Review

Text

Recent advances in large language models (LLMs)
have enabled machines to generate text that closely
mimics human writing across a wide range of domains,
including news articles, storytelling, and even scientific
publications. This rapid progress has blurred the
distinction between human-authored and machine-
generated content, intensifying the need for robust
deepfake text detection methods to mitigate risks such as
misinformation, plagiarism, and fraudulent content.
(Wiseman et al., 2017). The increasing sophistication of
large language models (LLMs) has introduced significant
societal challenges, most notably the proliferation of fake
news and plagiarism. Despite advances in detection
techniques, existing methods are typically evaluated in
constrained settings, limited to specific domains or
generative models, which severely limits their
applicability in real-world environments. In practice,
detection systems must contend with texts generated by
an array of unknown models and drawn from diverse,
often unseen domains, all without prior knowledge of
their provenance. To address this gap, researchers have

proposed "wild testbeds" for deepfake text detection that
aggregate human-written content alongside outputs from
various LLMs. Even under these more realistic
conditions, however, human annotators perform only
marginally above chance when distinguishing synthetic
from authentic text. Automated detection methods, when
evaluated across a broad spectrum of real-world
deepfake content, similarly struggle, particularly when
confronted with out-of-distribution samples that diverge
from their training data (Ackley et al., 1985; Akhtar,
2023). This lack of generalization remains a critical
barrier to deploying reliable detection systems in
practice. Among the approaches assessed, supervised
methods fine-tuned on pre-trained language models
(PLMs) have demonstrated the strongest performance.
Nevertheless, they continue to falter when faced with
texts originating from unseen domains or previously
unencountered generative architectures (Tipper et al.,
2024). Encouragingly, recent work indicates that
optimizing decision boundaries can substantially
enhance out-of-distribution robustness, suggesting that
highly effective deepfake text detection in real-world
contexts remains an attainable goal.

Recent advances in text generation have been driven
in part by increasingly sophisticated decoding strategies.
Techniques such as Top-k sampling and Top-p (nucleus)
sampling modify the token selection process by
reshaping the probability distribution over the
vocabulary. Top-k restricts the candidate pool to the k
most likely tokens, while Top-p selects tokens whose
cumulative probability exceeds a predefined threshold,
both approaches yield less repetitive and more naturally
varied text (Rumelhart et al., 1986). Temperature
sampling further influences generation by scaling the
logit distribution prior to the softmax function: lower
temperatures produce more deterministic, conservative
outputs, whereas higher temperatures increase diversity
and randomness. Before the advent of transformer
architectures, natural language processing (NLP) relied
heavily on recurrent neural networks (RNNs) and long
short-term memory (LSTM) networks. Despite their
contributions, these models suffered from fundamental
limitations, including difficulty in maintaining coherence
over long sequences and an inherent inability to
parallelize training due to their sequential nature
(Hochreiter, 1998; Bengio et al., 1994; Graves, 2012).
The introduction of the Transformer model in 2017
marked a paradigm shift. By leveraging a self-attention
mechanism, Transformers process all tokens in parallel,
dramatically accelerating both training and inference.
This architecture employs bidirectional attention for
tasks like text classification and unidirectional (causal)
attention for autoregressive generation, ensuring
coherent left-to-right flow. Today, Transformers form the
backbone of state-of-the-art NLP systems, including
BERT, GPT-2, and GPT-3, enabling unprecedented
efficiency and power in text generation.
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Image

Recent advances in face swapping and AI-generated
facial imagery have introduced increasingly sophisticated
techniques that raise critical concerns regarding identity
protection and unauthorized system access. These
synthetic artifacts are often visually indistinguishable
from genuine photographs, making it exceedingly
difficult for users to differentiate between authentic
content and forgeries produced by Generative
Adversarial Networks (GANs). Early detection methods
framed the problem as a binary classification task,
predominantly leveraging Convolutional Neural
Networks (CNNs) (Dang et al., 2018). These approaches
focused on extracting spatial features such as
inconsistencies in facial texture, blurring artifacts,
contrast anomalies, and steganalysis-based cues that
capture hidden patterns within images. Subsequent
developments introduced enhanced CNN architectures,
including spatial expectation masking and hierarchical
feature analysis within the Xception Network, to
improve detection accuracy (Hsu et al., 2020). Despite
these advancements, the rapid evolution of GAN-based
generation techniques underscored the need for more
generalized and robust forensic methods. In response,
Paris (2023) proposed the use of preprocessing
techniques such as Gaussian blur and Gaussian noise to
steer models away from low-level pixel artifacts and
toward statistically meaningful image features. Similarly,
Zhou et al. (2017) developed a CNN-based framework
that first extracts facial features and then fine-tunes the
model to discriminate between real and manipulated
faces, further advancing the adaptability of detection
systems.

The challenge of detecting images generated by
increasingly sophisticated GANs has prompted the
development of specialized forensic architectures.
Chollet (2017) introduced a forensic CNN that
incorporates Gaussian preprocessing to facilitate
discrimination between real and manipulated images.
This method exploits a key statistical distinction:
authentic images tend to exhibit low-frequency spectral
artifacts, whereas GAN-generated images often contain
high-frequency pixel-level noise. Despite its
effectiveness, this approach also highlighted persistent
issues such as model overfitting and the need for greater
architectural robustness. In response, pairwise-learning
frameworks have emerged as a promising direction for
generalizing to unseen forgery types (Paris, 2023). Do et
al. (2018), for instance, proposed a two-phase model that
learns feature representations of real and fake images by
projecting real-fake pairs through a shared common
feature network (CFFN). The integration of contrastive
loss enabled the model to detect novel fakes, including
those produced by GANs not encountered during
training, with higher precision and recall than previous
state-of-the-art methods.

A range of hybrid approaches has emerged,
combining multiple detection techniques to improve
forensic performance (Sabir et al., 2019). One notable
framework, proposed by Liu et al. (2019a), integrates
two complementary streams: the first classifies images as
tampered or non-tampered, while the second leverages
steganalysis to extract low-level camera noise and
residual artifacts. This dual-stream design enables the
model to exploit both perceptible and latent traces of
manipulation, significantly enhancing its detection
capability. In parallel, Do et al. (2018) developed a
neural network tailored to detect GAN-generated videos,
emphasizing preprocessing steps that enhance statistical
feature extraction for improved face forgery detection.
Another hybrid strategy combined GAN-generated
imagery with pairwise learning to isolate distinguishing
features between authentic and altered content.
Collectively, these models have demonstrated a
consistent ability to surpass the limitations of earlier
detectors and adapt to the evolving challenges posed by
successive generations of GANs (Liu et al., 2019b).
Despite these advances, a critical limitation persists:
many state-of-the-art detectors struggle to generalize
across diverse datasets and unseen GAN variants, largely
because they are frequently trained and evaluated on data
drawn from similar distributions (Barni et al., 2020).
Addressing this generalization gap is essential for the
development of robust, real-world forensic tools. Future
research must therefore prioritize architectural
adaptability and cross-domain resilience to enable
reliable detection of an ever-expanding landscape
synthetic media.

Audio

Audio manipulation encompasses a combination of
artificial intelligence techniques used in deepfakes and
simpler editing methods, such as adjusting playback
speed, trimming, or altering context, collectively referred
to as "cheap fakes" (Bengio et al., 1994). One effective
tool in detecting deepfake audio is Resemblyzer, an
open-source solution that extracts high-level audio
representations. These representations allow developers
to compare two voice samples to identify inconsistencies
at any point. Some other ways of fake audio detection
include assessing dissimilarities in spectrograms which
are visual representations of particular signals in the
sound area to recognize genuine signals or synthetic ones
(Oord et al., 2016).

Recent innovations in audio deepfake detection have
been bolstered by advanced neural architectures such as
WaveNet, a deep convolutional neural network (CNN)
originally developed for text-to-speech (TTS) and speech
recognition applications (Pfefferkorn, 2019). TTS
systems synthesize speech from text or phoneme inputs,
while voice conversion (VC) systems transform the
vocal characteristics of an audio sample to mimic a
different speaker while preserving the original linguistic
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content. Both technologies, while enabling powerful
generative capabilities, also introduce new vectors for
synthetic speech manipulation. Deep neural network
(DNN)-based approaches have demonstrated marked
superiority in extracting dynamic acoustic features and
assessing the authenticity of audio signals. Unlike
conventional methods such as Gaussian mixture model
(GMM) classifiers, which primarily rely on static feature
representations, DNNs capture temporal dependencies
and subtle spectral variations that are critical for
distinguishing genuine from synthetic speech (Reynolds,
2009). Empirical studies have shown that these DNN-
based detectors consistently outperform their
predecessors, offering greater accuracy and robustness in
identifying AI-generated voice content.

Video

Deepfake technologies, which manipulate facial
features in video content, pose a significant threat to
digital authenticity. Manipulations such as face-swapping
or expression synthesis often introduce inconsistencies in
lighting, head pose, and geometric alignment. These
irregularities leave behind "digital footprints" in the form
of residual signals, which serve as critical markers for
forensic detection. Notably, Afchar et al. (2018)
proposed a method tailored to detecting these artifacts,
specifically focusing on face-warping disparities. Unlike
traditional approaches that rely on computationally
intensive image processing to generate negative datasets,
this method significantly reduces algorithmic complexity
while maintaining detection efficacy.

Current deepfake algorithms often struggle to
simulate physiological signals, most notably natural
blinking patterns. Because many models lack sufficient
training data for closed-eye states, they frequently
produce unnatural or infrequent blinking. Early research
by Soukupová & Cech (2016) and Bansal et al. (2018)
utilized contour circle fitting for pupil detection and
blink-rate estimation with high precision. Building on
these foundations, Wu et al. (2020) introduced a hybrid
CNN-RNN architecture to capture the temporal
dynamics of blinking. This approach outperformed
traditional methods reliant on facial landmarks and static
classifiers like Support Vector Machines (SVM) or
Hidden Markov Models (HMM). Furthermore, Li et al.
(2018) refined this detection by distinguishing between
complete, partial, and non-blinking states, leading to
superior performance on specialized forensic datasets.

Biological signals serve as powerful indicators for
deepfake detection because they capture physiological
nuances that traditional spatial-based forensic methods
often overlook. For instance, Wu et al. (2020) utilized a
CNN-RNN architecture to monitor temporal eye
movements and blinking patterns, achieving high
sensitivity by focusing on the transition between open
and closed eye states. Beyond ocular cues, researchers
have leveraged cardiac activity. Li et al. (2018) explored

a method utilizing Photoplethysmography (PPG) to
detect facial color dynamics synchronized with the
heartbeat. This model, which identifies subtle "blood
flow" signals, attained over 97% accuracy across
multiple datasets. Furthermore, recent advancements
have shifted toward multimodal analysis. Lima et al.
(2020) developed a framework that evaluates the
synchronicity between audio and visual streams. By
extracting parallel representations and employing a
triplet loss function, their model identifies discrepancies
between speech and lip movement. This multimodal
approach demonstrated high reliability, reaching an
average accuracy of 96.6% on the DeepfakeTIMIT
dataset and 84.4% on the more challenging DFDC
dataset.

Beyond single-frame analysis, examining temporal
inconsistencies across video sequences has proven to be
a powerful strategy for improving deepfake detection. Li
and Lyu (2018) introduced a temporal feature analysis
method that employs a convolutional Long Short-Term
Memory (LSTM) network to capture sequential
irregularities in videos, enabling more effective
identification of manipulated content. Building on this
concept, the SSTNet framework (Afchar et al., 2018)
integrates spatial, temporal, and steganalysis features
within an LSTM-based architecture, demonstrating
robust performance on benchmark datasets such as
FaceForensics++ (Tiwari, 2024). The importance of
temporal analysis is further underscored by the
limitations of image-based approaches when applied to
video. Video compression often introduces frame-level
information loss, which can degrade the performance of
methods designed for static images (Fogelton &
Benesova, 2018). While many detection systems focus
on individual frames, integrating sequential analysis
significantly enhances their ability to identify subtle
manipulations that unfold over time. Graves and
Schmidhuber (2005) proposed a hybrid model that first
extracts frame-level features using a CNN and then
processes the resulting feature sequences through an
LSTM network. Evaluated on a dataset of 600 videos,
this approach demonstrated strong detection
performance, highlighting the value of frame-sequence
modeling. Zhu et al. (2017) extended the Cycle-GAN
framework to develop Recycle-GAN, which incorporates
both spatial and temporal constraints to improve
detection outcomes. More recently, Kietzmann et al.
(2020) proposed a two-stage pipeline: the first stage
performs face cropping and alignment using a Spatial
Transformer Network (STN), while the second stage
analyzes temporal inconsistencies via recurrent
convolutional networks. By combining spatial alignment
with temporal modeling, this method effectively detects
manipulated content across a range of deepfake videos.

Our literature review identifies several critical
research gaps that impede the progress of deepfake
detection and limit its real-world applicability.
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Domain generalization in text-based deepfake
detection remains a significant challenge. Current
detection methods are predominantly evaluated within
narrow contexts, trained and tested on specific domains
or particular language models. This restricted scope
undermines their effectiveness in real-world
environments, where textual content originates from
diverse, often unseen sources and exhibits considerable
stylistic and structural variation. There is an urgent need
for detection frameworks capable of robust
generalization across domains, languages, and out-of-
distribution inputs, particularly as large language models
continue to proliferate.

A second major gap lies in the detection of imagery
generated by evolving GAN architectures. Although
considerable progress has been made in identifying
GAN-generated faces and synthetic images, many
existing detectors exhibit poor generalization when
exposed to datasets or generative models not encountered
during training. As GAN variants and hybrid generative
methods rapidly advance, detection systems must evolve
accordingly, not merely to recognize known artifacts, but
to adapt to novel, unseen manipulation techniques.
Research must therefore prioritize model robustness,
domain-agnostic feature learning, and resilience against
adversarial evasion.

Multimodal deepfake detection remains significantly
underexplored. While unimodal approaches for detecting
fake audio, images, or video have each advanced
independently, the integration of multiple modalities,
such as joint audio-visual analysis, has received
comparatively little attention. Deepfakes often introduce
subtle cross-modal inconsistencies, such as mismatched
lip movements or incongruent emotional tone between
speech and facial expression. Frameworks that leverage
such discrepancies could substantially improve detection
accuracy and robustness, yet the development of
scalable, aligned multimodal architectures remains in its
infancy.

Finally, the use of temporal and biological signals for
video forensics requires further refinement. Features
such as irregular eye blinking, inconsistent head
movement, and heartbeat-derived
photoplethysmographic signals offer promising, hard-to-
spoof cues for deepfake detection. However, current
approaches are highly sensitive to variations in video
quality, compression artifacts, frame rate, and recording
conditions. To transition from controlled benchmarks to
practical deployment, these methods must be made more
reliable and invariant to such distortions. Broader and
more diverse datasets capturing naturalistic physiological
and behavioral patterns are also urgently needed.

Fig. 2: Autoencoder-Based Face-Swapping Framework

Technical Aspects of Deepfake Creation

Autoencoders

Autoencoders, a specialized type of neural network,
were among the first technologies used in the creation of
deepfakes. They work by learning efficient
representations of input data through unsupervised
learning, consisting of two main components: the
encoder and the decoder. The encoder compresses the
input pixels into a smaller, more manageable size,

encoding essential features such as skin texture, color,
facial expressions, and head pose. After that, this
compressed data is transmitted to the latent space where
the model searches for patterns and structural
correlations in the input information. In this case, the
learning process is most important when the network
focuses on the more important features of the input; for
example, recognition of more significant facial features -
though less important features are also discarded. After
this compressed representation has been found, the
decoder tries the best it can, to reconstruct as close to the

http://192.168.1.15/data/13630/fig2.png
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input as it can, all while trying to minimize the
differences between a compressed image and the
reconstructed image. In this way, the autoencoder is
trained to generate realistic outputs to become a suitable
application of deepfake generation by replicating the
unique features that are requirement to form a realistic
fake (Nguyen et al., 2022).

Figure 2 illustrates the use of autoencoders for face-
swapping, specifically demonstrating how one face can
be replaced with another. In this process, both faces are
reconstructed along the paths indicated by the red
arrows, with Face B being transformed to resemble Face
A. A distinctive feature of this architecture is that both
faces are encoded by the same encoder network, enabling
it to learn and represent the general facial features
common to both subjects. This shared encoding ensures
that the latent representations of the two faces are
positioned as closely as possible within the lower-
dimensional embedding space. Consequently, the
decoder associated with Face B can leverage the latent
representation of Face A to reconstruct Face B while
incorporating the characteristic features of Face A. This
mechanism forms the foundation of several prominent
deepfake frameworks, including DeepFaceLab, DFaker,
and TensorFlow-based implementations, demonstrating
the efficacy of autoencoders for high-quality face-
swapping applications (Luttrell et al., 2018).

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) have
emerged as the foundational technology underpinning
modern deepfake generation, owing to their unique
architecture comprising two competing neural networks.
Introduced by Usukhbayar and Homer (2020), GANs
consist of a generator that synthesizes new data samples
and a discriminator that evaluates whether these samples
are real or fake, as illustrated in Figure 3. This
adversarial process drives both networks to iteratively

improve: the generator strives to produce increasingly
realistic outputs capable of fooling the discriminator,
while the discriminator becomes more adept at
identifying synthetic content. Over time, this competitive
dynamic enables the generator to produce highly
convincing fake data.

In the context of deepfakes, GANs are central to
generating realistic synthetic media, including videos,
images, and audio. For example, GANs can synthesize
facial expressions, movements, or vocal inflections that,
when incorporated into forged videos, create compelling
illusions of authenticity (Mirza & Osindero, 2014).
Trained on large-scale datasets, the generator learns to
produce outputs that closely mimic real data, while the
discriminator continuously assesses their quality. The
training process reaches equilibrium when the
discriminator classifies generated content as authentic
approximately 50% of the time, indicating that the
generator has successfully produced examples
indistinguishable from genuine data.

While GANs enable remarkable applications across
entertainment, education, and creative industries, they
also raise profound ethical concerns. The same
capabilities that make GANs powerful tools for
innovation render them susceptible to misuse, including
the creation of misinformation, privacy violations, and
malicious impersonation.

A notable deepfake-specific architecture is VGGFace,
which builds upon the standard GAN framework by
incorporating two additional loss functions: adversarial
loss and perceptual loss. The adversarial loss encourages
the generator to produce outputs that closely resemble
real data, enhancing visual realism, while the perceptual
loss ensures structural and semantic alignment with the
target face. These enhancements enable VGGFace to
generate highly convincing face-swapped outputs,
making it a prominent method in deepfake creation (Pan
et al., 2020).

Fig. 3: Creation of Deepfakes using GAN
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Neural Radiance Fields and Emerging Deepfake
Generation Techniques

The recent emergence of Neural Radiance Fields
(NeRFs) marks a significant advancement in generative
modeling, offering a powerful approach for creating
photorealistic 3D environments and facial
reconstructions. Unlike GANs and autoencoders, which
primarily operate on 2D image data, NeRFs employ
differentiable rendering techniques to model a
continuous 5D function that describes light interactions
at every point in three-dimensional space. This
volumetric representation enables NeRFs to generate
highly consistent and lifelike images of a subject from
arbitrary viewpoints, preserving accurate lighting,
geometry, and depth information.

In the context of deepfake generation, NeRFs
facilitate the creation of sophisticated synthetic content
with enhanced realism and spatial coherence. They
support dynamic manipulations such as altering facial
expressions, animating digital avatars, and rendering
novel views of a subject within video sequences,
capabilities that exceed those of traditional 2D-based
methods. Advanced variants including pi-GAN, NeRF-
W, and hybrid GAN-NeRF architectures further refine
output quality by integrating volumetric rendering with
adversarial learning, pushing the boundaries of synthetic
media realism.

However, the very characteristics that make NeRFs
powerful generative tools also introduce new challenges
for deepfake detection. Unlike 2D-generated forgeries,
which often leave detectable artifacts such as blending
inconsistencies or frequency-domain anomalies, NeRF-
generated content is largely free of such telltale signs.
Their outputs maintain spatial and temporal coherence
across viewpoints, enabling them to evade conventional
2D-based detection models that rely on frame-level
analysis.

Consequently, identifying NeRF-based deepfakes
necessitates a paradigm shift in forensic methodology.
Detection systems must move beyond 2D analysis and
adopt approaches that operate natively in three-
dimensional space, extracting multi-view features,
analyzing volumetric inconsistencies, and examining
cross-frame geometric coherence. The rise of NeRFs
underscores a critical evolution in deepfake technology
and highlights the urgent need for detection frameworks
capable of addressing synthetic media beyond the two-
dimensional domain.

Technical Aspects of Deepfake Detection
Deepfake detection has gained significant attention

due to the rising use of Artificial Intelligence (AI) to
create hyper-realistic synthetic content. Deepfakes are
created using deep learning techniques, particularly
generative models like Generative Adversarial Networks
(GANs) and autoencoders, to manipulate text, images,

videos, or audio convincingly. The detection of
deepfakes requires an understanding of various technical
aspects, including machine learning, signal processing,
and computer vision (Bahdanau et al., 2014; Tariq et al.,
2018; Wang et al., 2017). The deepfake detection
pipeline, as illustrated in Fig. 4, consists of six key
stages: data collection, face detection, feature extraction,
feature selection, model selection, and model validation.
These interconnected steps enable the systematic
identification of manipulated content by progressively
refining data and selecting optimal models for accurate
detection.

Fig. 4: Steps of Deepfake Detection on Media Files

Deep Learning

Deep learning is an approach similar to neural
networks, utilizing multiple hidden units within its
architecture (Rossler et al., 2019). Its structure, inspired
by artificial neural networks, includes a potentially
unlimited number of hidden units of fixed size, designed
to extract additional information from input data. The
number of hidden layers required depends on the
complexity of the data being trained; more complex
datasets demand deeper architectures to produce accurate
results (Hopfield, 1982; Marra et al., 2019). In recent
years, deep learning has been successfully applied across
numerous fields and is expected to remain a vital tool in
advancing various technologies.

Convolutional Neural Network (CNN)

CNN is a widely used deep neural network
architecture consisting of an input layer, an output layer,
and one or more hidden layers, similar to other neural
networks. In CNNs, the hidden layers process input data
from the first layer by performing convolution
operations, which involve applying mathematical filters
to extract important features from the data (Schuster &
Paliwal, 1997). Another important thing regarding CNNs
is that they also include matrix multiplication, whereas
non-linear activation functions are ReLU and others
including pooling layers. Local connections, for
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example, average pooling, diminish the intricacy of the
data by providing a representation of the features, which
makes the work of the network lighter and more efficient
(Wang & Dantcheva, 2020).

In the context of deepfakes, CNNs are employed to
identify subtle artifacts such as blending inconsistencies,
unnatural textures, or warping at facial boundaries,
signatures that often arise during synthetic media
generation. Models like XceptionNet and EfficientNet
have shown high accuracy on deepfake datasets like

FaceForensics++, demonstrating CNNs' effectiveness in
capturing pixel-level anomalies. The architecture of the
CNN network that is used for detecting deepfakes is
shown in Fig. 5. Here, multiple convolutional and
pooling layers are used to find out the structure of
images, and afterwards, fully connected layers sort the
information as either real or false. It depends on an
activation function called Leaky ReLU to add some
curves to the model's responses and improve its detection
of minor details in changed content.

Fig. 5: CNN Architecture

Recurrent Neural Network (RNN)

RNN is an artificial neural network designed to
identify patterns from data that is sequential or temporal.
It is made of many concealed layers each of which
contains its specific bias and weight. The two most
important characteristics of RNNs relate to the
connections between nodes where there is a direct loop
since the input and output of the information being
passed are cyclic (Karras et al., 2017). This architecture
has a recurrent hidden state a capability that allows
RNNs to process from and learn from temporal
sequences as or time series and language data.

In deepfake detection, RNNs help identify
inconsistencies in facial expressions or blinking patterns
that may not align naturally over time. These
inconsistencies are often introduced during frame-by-
frame manipulation in deepfakes. RNNs can detect
unnatural head movements or speech-lip sync
mismatches that flag temporal forgery. In RNNs, as
shown in Fig. 6, sequential processing occurs along with
layers for storing the relationships among frames or
segments of the audio data. Because the hidden layers
hold intermediate outputs, the model spots changes that
seem inconsistent, for example, unrealistic blinking in a
video or lip movements that don't relate to the audio.

Fig. 6: RNN Architecture

Long Short-Term Memory (LSTM)

LSTM is a particular kind of Recurrent Neural
Network (RNN) that's specifically built for long-term
dependency problems. In contrast with normal RNNs,
LSTMs provide feedback connections to learn from the
whole sequence. The core architecture of LSTM consists
of three gates: These are normally referred to as the input
gate, the forget gate, and the output gate. From the
current and the previous states, the cell state retains

information from previous time steps. The input gate
controls which values will be written to the cell state
while the forget gate uses a sigmoid function to decide
which parts of that state need to be forgotten. The output
gate provides a control signal of what information from
the current time step should be passed to the next stage.
This structure enables LSTMs to control long-term
dependency and pass important information for a very
long time (Khatri & Gupta, 2023).
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Fig. 7: LSTM Architecture

In deepfake detection, LSTMs are utilized to model
longer sequences of video or audio data, enabling
detection of contextual abnormalities. For example,
LSTMs have been applied to detect mismatched
emotional tones between facial expressions and vocal
intonation in deepfake videos, an area where simple
frame-level detectors may fall short. Fig. 7 represents the
LSTM architecture, in which there are memory cells with
gating systems and it works with flattened inputs to trace
long-term patterns over time. When changing sequential
data into flattened vectors, the model understands
contextual features such as mismatch in emotions or the
way people speak, improving the ability to spot
deepfakes.

Traditional Feature-Based Methods

In a similar spirit to the traditional paradigm of
feature engineering, traditional methods of deepfake
detection aim to detect indications of manipulation
through the utilisation of handcrafted features and
statistical natures over architectures that are
fundamentally neural (Baltrušaitis et al., 2019). These
methods use knowledge of the domain to reveal
discrepancies and features that were incorporated into the
generation process. Major techniques comprise
frequency domain analysis, biological signal
measurement, head pose and Landmark measurement,
and synchronization of Audiovisual sound and vision.

Frequency Domain Analysis

In frequency domain analysis inputs are looking for
irregular patterns in the frequency elements of pictures
and motion pictures. Using Fourier Transform and
wavelet analysis, and the like, it points out compression
artifacts, texture inhomogeneities or any other spatial
discrepancies originated in the synthesis procedure. Such
methods are the most efficient for the detection of
distortions that are not educed in the spatial domain
(Nguyen et al., 2022; Mittal et al., 2020).

Biological Signal Analysis

Biological signal analysis takes advantage of signals
that are somewhat difficult to mimic by deepfake
algorithms. For instance, normal eye blinking patterns
can hardly be observed or are random in fake videos
because generative models hardly learn (Shan et al.,
2007). Likewise, the PPG signals that record the
variation in the skin color due to the blood flow resulting
from heartbeat extensively distort deep fakes. These cues
present a noninvasive approach for monitoring the
irregularity of activity in the facial structures (Ciftci et
al., 2024).

Head Pose and Facial Landmark Analysis

Head pose and facial landmark analysis focus on
detecting inconsistencies in the spatial configuration and
movement of key facial features, offering a valuable cue
for identifying manipulated content (Fogelton &
Benesova, 2018). By tracking the position, angle, and
trajectory of head movements, these methods can reveal
unnatural patterns often present in deepfake videos, such
as abrupt changes in orientation, jerky motion, or
physically implausible rotations. Additionally, anomalies
in eye gaze direction or asymmetries in facial features,
such as misaligned or poorly rendered side profiles, are
common artifacts in tampered images. These
irregularities arise because generative models often
struggle to maintain coherent three-dimensional
geometry and temporal continuity across frames. Thus,
analyzing head pose dynamics and landmark consistency
provides a robust, complementary approach to
conventional artifact-based detection methods.

Audio-Nisual Synchronization Analysis

Audio-visual synchronization analysis automatically
assesses the synchronization between a speaker's voice
and lips visible on screen. Some of the common
problems identified when creating deepfake videos
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include temporal synchronization issues identified as
temporal discrepancy or wrong pronunciation of words
which is articulated as temporal incoherence (Bengesi et
al., 2024). This technique is most effective when
identifying fake videos where speech is not synchronized
with the movements of the mouth and jaw.

Hybrid Approaches

Hybrid approaches that integrate deep learning with
traditional feature-based methods have demonstrated
significant improvements in the accuracy and robustness
of deepfake detection. These solutions leverage the
complementary strengths of both paradigms: deep neural
networks excel at learning hierarchical representations
and identifying complex patterns directly from data,
while feature-based techniques contribute domain-
specific forensic cues that target known artifacts of
synthetic media.

In hybrid architectures, Convolutional Neural
Networks (CNNs) are commonly employed for spatial
analysis, enabling the extraction of multi-scale feature
pyramids from image and video data (Bao et al., 2023).
Trained on large datasets, these networks learn to detect
subtle distortions in facial regions, irregular textures, and
generative artifacts that may elude hand-crafted feature
extractors. Moreover, CNNs are capable of identifying
non-linear manipulation indicators, such as inconsistent
gaze direction, unnatural illumination patterns, or
implausible head poses, that are difficult to encode
through explicit rules (Graves & Schmidhuber, 2005).
By combining the representational power of deep
learning with the interpretability and specificity of
forensic features, hybrid systems offer a more resilient
and generalizable framework for detecting increasingly
sophisticated deepfakes.

Recurrent Neural Networks (RNNs), particularly
advanced variants such as Long Short-Term Memory
(LSTM) networks, play a critical role in analyzing
temporal consistency for deepfake detection. By design,
RNNs are inherently well-suited for sequential data,
making them highly effective for video analysis where
the temporal relationships between frames carry essential
forensic information (Chollet, 2017). These networks can
track how facial shape, motion, and spatial positioning
evolve over time, revealing artifacts such as unnatural
transitions, jitter, or mismatched facial landmarks that
betray the presence of manipulation.

When combined, CNNs for spatial feature extraction
and RNNs for temporal modeling form a robust
foundation for deepfake detection frameworks. This
hybrid architecture enables the system to assess video
content not only at the level of individual frames but also
across the motion dynamics that connect them. As a
result, the model becomes better equipped to identify
even intricately manipulated videos where per-frame
analysis alone may fall short (Al-Dhabi & Zhang, 2021).

Hybrid models offer significant practical advantages
due to their flexibility in integrating conventional
feature-based methods during preprocessing or feature
extraction stages. Techniques such as frequency domain
analysis, biological signal detection, and audio-visual
synchronization can be applied upstream to extract
forensic cues, which are then fed into deep learning
architectures for further refinement. This layered
approach helps guide the learning process by focusing
the model on features known to be indicative of
manipulation, thereby enhancing both efficiency and
detection accuracy (Dehghani & Saberi, 2025).

By combining hand-crafted features with the
representational power of deep neural networks, hybrid
systems address a wide spectrum of deepfake generation
techniques more effectively than either paradigm alone.
They consistently demonstrate higher detection rates
across diverse scenarios, outperforming purely feature-
based or purely deep learning-based counterparts. This
superiority stems from their ability to capture both
explicit forensic traces and subtle, learned patterns of
manipulation.

Such approaches are particularly valuable in real-
world settings, where deepfakes are often high-quality
and exhibit only subtle inconsistencies across spatial and
temporal dimensions. Hybrid frameworks, by design, are
better equipped to detect these nuanced artifacts, offering
improved robustness and generalization in the face of
evolving generative methods.

Advances in Forensics

Emerging frontiers in deepfake forensics are
characterized by the integration of innovative
technologies aimed at developing more robust, scalable,
and resilient countermeasures against synthetic media
manipulation. Notable among these advances are
blockchain-based systems for content provenance and
video verification, which provide immutable records of
media authenticity, and adversarial training techniques
designed to proactively identify and adapt to novel
deepfake generation tactics. Together, these approaches
seek to fortify forensic pipelines against increasingly
sophisticated forgeries, enhancing both detection
reliability and operational scalability in real-world
contexts.

Blockchain Technology in Deepfake Detection

Blockchain helps address the issue of deepfake
detection since it improves the proof and origin of
content. Blockchain secures the content origin and makes
it resistant to change by saving digital hashes and
historical data on a secure ledger, which can be accessed
anytime (Chang et al., 2020). Such a single record allows
anyone to find any unreal or altered information by
comparing it with the authentic one included in the end-
of-year report. Blockchain works alongside AI-based
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systems by providing the reliability and accountability of
media items used on different platforms. Still, there are
several technical problems that hold it back, such as
making the network big enough, keeping metadata
private, and hooking up in real-time with current
detection systems. Therefore, current systems are
becoming stronger by combining blockchain with
machine learning, so they can identify and verify the
authenticity of data in an efficient and decentralized way
(Jbara & Soud, 2024).

Adversarial Training to Preemptively Detect New
Deepfake Techniques

As deepfake technology advances, adversarial
training has been developed to target brand new forms of
deepfakes proactively. Adversarial training is simply the
deliberate training of deep learning capability with the
exact intention of identifying and avoiding adversarial
attacks, these are slight modifications that are introduced
to fool machine learning systems. When it comes to
deepfake detection, adversarial training is employed to
help the model be safe from new deepfake-generating
techniques that may not have been used previously in the
creation of the training set (Black et al., 2022). This

approach operates by training deepfake detection models
with synthetic data created by advancing deepfake
approaches, a fresh manipulation technique, or even
other kinds of video synthesis. The model is then used to
detect such new techniques by training the distinction
between real and fake news while fakes become even
more real or complex. However, this boosts efficiency
during the evaluation of unknown or new categories of
deep fake since, during the training of the model, various
adversarial instances are introduced to the model.

The impact of these advancements, both blockchains
for video authentication and adversarial training, are
making way for authentic deepfake detection.
Blockchain offers means for maintaining enduring
protection of digital media, and adversarial training
assists detection models in staying cautious of new and
sophisticated deepfakes (Chen et al., 2021). Combined,
all these developments improve the capacity of forensic
solutions to preserve the integrity of the video material
and offset the threats inherent in ever-more elaborate
deepfakes. They are critical in fields such as media, law
enforcement, and security, where the trustworthiness of
video evidence is paramount. Table 2 explains the
comparative analysis of Deepfake Detection methods
and their performances.

Table 2: Comparative Analysis of Deepfake Detection Methods

Method Type Representative
Models

Detection Domain Dataset(s) Reported
Accuracy

Strengths Limitations

CNN-based XceptionNet,
MesoNet

Spatial
(image/video
frames)

FaceForensics++,
DeepfakeTIMIT

95-99% Good feature
extraction; widely
tested

Sensitive to
compression; may
overfit

RNN-based LSTM-CNN
hybrids

Temporal (video
sequences)

FaceForensics++ ~93% Captures temporal
inconsistencies

Computationally
expensive

Transformer-
based

ViT, Swin
Transformer

Spatial +
Temporal

Celeb-DF v2, DFDC 95-97% Global and contextual
info

Needs large data;
longer training

Frequency-
domain

FFT+CNN,
Steganalysis

Frequency FaceForensics++,
Celeb-DF v2

90-96% Robust to visual post-
processing

Sensitive to image
resolution

Biological
signal-based

DeepRhythm,
EyeBlinkNet

Physiological
signals

Custom +
FaceForensics++

85-92% Exploits natural
human cues

Dataset limitations;
user-dependent

Multi-modal
approaches

Audio-visual
models, lip-sync

Visual + Audio DFDC, TIMIT 88-94% Effective for talking
head videos

Difficult to generalize

Applications of Deepfakes

Media and Entertainment

Deepfake technology has profoundly influenced the
media and entertainment industries by enabling
innovative storytelling and enhanced audience
engagement (Bengio et al., 1994). One major application
is in enhanced visual effects and CGI, where deepfakes
complement traditional CGI by creating more realistic
facial animations and character renderings. This allows
filmmakers to map actors' facial expressions onto digital
characters, preserving emotional nuances and fostering
stronger viewer connections in films and video games
(Hopfield, 1982). Another important use is digital de-
aging and actor resurrection, where extensive archival
footage is analyzed to create convincing younger

versions of actors or digitally revive deceased
performers. This opens new creative possibilities but also
raises ethical questions regarding consent and the legacy
of actors.

Social Media and Misinformation

Deepfake technology poses profound challenges to
social media integrity and public trust, particularly
through the creation of manipulated videos aimed at
political and social manipulation. By superimposing the
faces of public figures onto fabricated footage, malicious
actors can influence public opinion, incite discord, and
undermine democratic processes. The 2019 alteration of
a video featuring Nancy Pelosi demonstrated how even
relatively simple manipulations can mislead viewers and
amplify false political narratives. Similarly, the release of
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a deepfake video depicting Mark Zuckerberg sparked
widespread debate on the ethical boundaries of synthetic
media and the responsibilities of platforms hosting such
content. Beyond the political sphere, deepfakes are
increasingly weaponized to exploit public trust for
malicious purposes, including identity theft, phishing
scams, and the dissemination of divisive falsehoods
intended to inflame social tensions. A particularly
alarming trend is the rise of non-consensual deepfake
pornography, which constitutes a grave violation of
individual privacy and has prompted urgent calls for
comprehensive legal protections. In the commercial
domain, the posthumous use of deepfake technology in
advertising, exemplified by the unauthorized digital
recreation of Arnold Schwarzenegger, has ignited
discussions about dignity, consent, and the respectful
treatment of individuals after death (Krishna et al., 2024;
Zhang et al., 2023). Collectively, these developments
underscore the urgent need for enhanced media literacy,
the establishment of robust ethical guidelines, and the
continued advancement of deepfake detection
technologies to safeguard information integrity and
protect individuals from harm.

Education and Training

One of the most promising short-term impacts of
deepfake technology lies in its application to education
and training. By enabling highly realistic and interactive
simulations, deepfakes can significantly enhance
learning experiences across a wide range of professional
domains, including medical, military, and legal
education. Trainees can engage with lifelike scenarios,
practice complex procedures, and develop critical
decision-making skills in controlled, risk-free
environments. This capacity for immersive simulation
not only improves knowledge retention and skill
acquisition but also offers scalable, cost-effective
alternatives to traditional training methods, positioning
deepfakes as a transformative tool for pedagogical and
professional development.

Medical Education

In terms of medical learning, deepfake technology
has a progressive solution through developing artificial
and realistic visual scenarios where students and medical
practitioners perform various operations and make
decisions without harming an actual patient. For
example, deepfake can synthesize patient models that
realistically simulate wide spectrums of medical illnesses
and facial and voice responses in the simulations. This
makes it possible for trainees to communicate with such
avatars actively, reacting to particular simulation cases in
real time, thus, simulating actual patient meetings (Yu et
al., 2018). When identifying and managing such virtual
clients, medical students sharpen their clinical
competencies as well as the communication skills that
are critical determinants of patient advocacy. The high-

fidelity of these simulations is particularly useful in
training hands-on tasks such as compassionate
communication skills which are part of the curriculum.
They are able, for example, to rehearse how to convey
bad news, how to steer a conversation, how to form
relationships with patients, and so on, while a trainer can
correct trainees in case something goes wrong, although
no one's life would be at risk. Apart from that, it creates a
better and more empathetic healthcare system since the
application of this new deep-fake technology prepares
students for the real world before they have to interact
with real patients (Rombach et al., 2022).

Military Training

The military stands to benefit significantly from
deepfake technology, particularly through the
development of highly realistic, immersive simulations
for training personnel in combat scenarios. By leveraging
deepfake-generated environments, training programs can
recreate dynamic situations, such as firefights, airstrikes,
ambushes, and sabotage missions, allowing soldiers to
practice tactical responses without exposure to the
physical dangers of live exercises. These simulations can
incorporate deepfake-generated avatars that function as
adversaries or allied forces, adapting their behavior in
real time based on trainee actions to provide a diverse
range of combat experiences (Kirchenbauer et al., 2023).
For instance, soldiers can rehearse maneuvers such as
navigating complex terrain, coordinating team
movements, or responding to sudden ambushes within a
controlled yet highly realistic virtual setting. This
approach enhances operational readiness by exposing
personnel to unpredictable, combat-like situations that
develop adaptive decision-making and flexibility (Wang
et al., 2023). Moreover, the ability to replay and review
training sessions after completion allows for detailed
debriefing and performance analysis, fostering
improvements in both individual judgment and team
coordination. By offering repeatable, scalable, and risk-
free exposure to a wide spectrum of tactical challenges,
deepfake-based simulations provide military personnel
with experiential learning that surpasses traditional mock
exercises, ultimately strengthening preparedness for the
complexities and uncertainties of real-world operations.

Legal Education

Deepfake technology opens new and innovative
possibilities for legal education, particularly through its
application in mock trials and courtroom simulations. By
generating realistic, AI-driven avatars of witnesses,
defendants, or jurors, law students can engage in
immersive exercises that closely replicate the
complexities of actual court proceedings (Ciftci et al.,
2020). These simulations provide a dynamic
environment in which students can practice essential
professional skills, including cross-examination, witness
questioning, argument construction, and courtroom
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etiquette, within a controlled, risk-free setting. The
interactivity of deepfake-generated avatars allows
students to respond in real time to virtual testimony,
adapting their strategies based on the immediate
reactions of simulated participants. This real-time
engagement sharpens critical thinking and fosters the
ability to pivot effectively during trial advocacy
(Ramluckan, 2024). Furthermore, students can
experiment with different legal approaches and observe
the consequences of their choices, gaining insight into
both strategic decision-making and the ethical dilemmas
that may arise in practice, all without real-world
repercussions. Through iterative practice and feedback,
students deepen their understanding of legal procedures,
courtroom dynamics, and effective communication with
judges and jurors. These experiences not only build
confidence but also better prepare future lawyers for the
demands of actual legal practice. As such, the integration
of deepfake technology into legal pedagogy represents a
significant advance in experiential learning, equipping
students with the practical competencies essential for
professional success (Meskys et al., 2020).

Marketing and Advertising

Deepfake technology is rapidly emerging as a
transformative force in marketing and advertising,
offering brands the ability to launch highly targeted
campaigns through the use of virtual influencers and AI-
generated avatars. By creating realistic digital
representatives that embody brand values and messaging,
companies can engage consumers in novel and
personalized ways. These avatars can be tailored to
resonate with specific demographic segments, appearing
in advertisements, product demonstrations, or interactive
video content that aligns with the interests and
preferences of target audiences. This level of
personalization significantly enhances viewer
engagement and fosters brand loyalty, as consumers are
more likely to connect with content that feels customized
to their needs. Moreover, because deepfake avatars are
fully animated and interactive, users can engage in real-
time dialogue, asking questions or seeking product
recommendations, thereby increasing the shareability of
content and providing brands with valuable insights into
customer sentiment and behavior. However, the adoption
of deepfake technology in marketing also raises
important ethical considerations. The use of hyper-
realistic avatars blurs the line between authentic and
synthetic representation, necessitating clear disclosure to
prevent consumer deception. Brands must navigate this
terrain carefully, ensuring that audiences are aware when
they are interacting with AI-generated rather than human
figures (Dvoskin, 2022). Transparency is essential to
maintaining trust and avoiding the erosion of credibility
that could result from undisclosed synthetic media.
While deepfake technology offers unprecedented
opportunities for interactive, personalized marketing, its
deployment must be preceded by thorough ethical

scrutiny. Balancing innovation with honesty will be
critical to harnessing its potential without compromising
the integrity of consumer relationships.

Security and Surveillance

Deepfake technology is increasingly being explored
for applications in security and surveillance, particularly
within the domains of defense, counterintelligence, and
policing. Proponents argue that deepfake-generated
simulations can be leveraged to prepare armed forces
personnel for a range of threat scenarios, enabling them
to rehearse responses to adversarial tactics without
engaging in actual conflict (Bethu et al., 2024). These
simulations offer a safe yet realistic environment for
training, allowing military units to refine strategies and
improve operational readiness. In counterintelligence,
deepfake technology presents novel opportunities for
developing decoys or disseminating disinformation to
mislead potential adversaries, thereby protecting
sensitive information and disrupting hostile activities.
Law enforcement agencies may also benefit from
deepfake applications, such as reconstructing crime
scenes, generating synthetic eyewitness accounts for
investigative purposes, or creating simulated
environments to aid in clue identification and case
reconstruction. While these applications illustrate the
innovative potential of deepfakes to enhance security and
surveillance capabilities, they also introduce significant
challenges. Chief among these is the risk of misuse, the
same tools that enable beneficial simulations can be
exploited for fraudulent or malicious purposes. This
dual-use nature underscores the urgent need for robust
risk management strategies, clear governance
frameworks, and safeguards to prevent the abuse of
deepfake technologies in security contexts. In sum, the
integration of deepfakes into security and surveillance
offers promising avenues for training, deception, and
investigation. However, realizing these benefits requires
careful consideration of the associated risks and a
commitment to ethical oversight to ensure that such
powerful tools are used responsibly (Lundberg &
Mozelius, 2024).

Datasets and Evaluation Matrices of
Deepfakes

Available Datasets

Face Forensics ++

FaceForensics++ is a widely used benchmark dataset
for detecting manipulated facial images, comprising over
1,000 original YouTube videos altered using multiple
face manipulation techniques. Each video in the dataset
is accompanied by ground-truth masks and pixel-level
annotations indicating tampered regions, enabling high-
quality training and evaluation of deepfake detection
models. Its comprehensive design and realistic
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manipulations have made it a foundational resource for
developing and benchmarking forensic methods targeting
fraudulent face imagery.

Eye-Blink

The Eye-Blink dataset is a collection of 80 videos of
20 people blinking, each lasting a few seconds, and
filmed under different lighting circumstances and camera
positions. The Talking Face Dataset includes
approximately 5,000 video clips of people speaking, each
lasting 25 frames and with an image size of 720x576
pixels. The mEBAL Dataset comprises more than
340,000 eye blink photos from 3,000 people, each with a
unique head posture and lighting circumstances. The
UDF Dataset comprises 98 movies of genuine and
artificial faces, each lasting 11 seconds.

WildDeepfake

WildDeepfake is a deepfake detection dataset that
combines real and deepfake internet samples. Unlike
prior datasets, which solely comprised synthesised facial
pictures, this one contains a variety of body kinds.
However, a larger dataset is required to construct full-
body deepfakes and enhance deepfake detection
algorithms.

DFDC

Facebook's DFDC dataset, a massive collection of
face swap films, is the most extensive and accessible,
with over 100,000 movies from 3426 paid actors of all
genders, ages, and races.

Deeper Forensic-1.0

Deeper Forensic-1.0 is a large dataset, which contains
50,000 authentic and 10,000 counterfeit videos. It is an
important tool for spotting deepfakes. DF-VAE, a
conditional automatic encoder, produces modified videos
that properly replicate real-world settings using a
combination of modifications and disturbances such as
compression, blurred vision, noise, and visual
abnormalities.

DeepfakeTIMIT

The DeepfakeTIMIT dataset, developed by the Idiap
Research Institute using an open-source GAN-based
approach, contains over 1,000 video samples. It includes
both real and fake videos of 16 individuals, generated
using two different face-swapping models with output
resolutions of 64×64 and 128×128 pixels. The fake video
collection comprises 32 subjects, each contributing ten
manipulated videos, providing a valuable resource for
evaluating deepfake detection algorithms across varying
quality levels.

UADFV

The UADFV dataset, created by the University at
Albany, is designed to support deepfake detection by

leveraging physiological cues such as eye blinking
patterns. It comprises 49 authentic YouTube videos and
49 corresponding fake videos generated using the
FakeApp smartphone application. In addition to the
video content, the dataset includes 17,300 combined real
and fake images for evaluation purposes. This resource is
particularly valuable for researchers developing facial
recognition systems and practitioners seeking robust
tools for deepfake video detection. Each video sequence
has a duration of approximately 11.14 seconds and a
resolution of 294 × 500 pixels.

ASVspoof

The ASVspoof (Automatic Speaker Verification)
dataset is meant to evaluate the vulnerability of speaker
verification systems to various spoofing attacks. It
consists of audio clips with mimic voices, replay attacks,
or other tricks that aim to deceive the system. Datasets
like these are used by researchers in the development and
testing of ASV systems' capacity to enhance their
security against fraud.

Wave Fake

The WaveFake dataset, is designed to support
research in audio deepfake detection and promote AI
safety. It comprises 104,885 synthesized audio clips,
generated using multiple speech synthesis architectures.
This collection provides a robust foundation for
developing and evaluating detection methods targeting
synthetic speech across different languages and
generative models.

Forgery Net

ForgeryNet hosts a large face forgery dataset with
unified annotations for both picture and video streams. It
consists of four different tasks, spatial forgery
localization, image forgery classification, temporal
forgery localization, and finally video forgery
classification. With 2.9m photos and 221k videos, it is
the largest openly available dataset of deep face forgery.
The dataset has been thoroughly benchmarked and
analyzed for face forensics algorithms.

Celeb-Deepfake

The Celeb-DF dataset includes real and fake
deepfake videos that were obtained from YouTube. It
includes 590 raw videos of people of different ages,
races, and genders, and 5639 corresponding deepfake
videos created from the public domains of 59 famous
personalities through YouTube videos. The dataset has
grown from its first iteration, which included 795
deepfake videos.

LAV-DF

The Localized Audio Visual Deepfake dataset (LAV-
DF) is a huge-scale public dataset for temporal forgery
detection and localization. It contains both real and fake
audio-visual content.
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(1)

(2)

(3)

(4)

(5)

Table 3: List of available Datasets

Dataset Name Modality Strengths Weaknesses Best Use Cases
FaceForensic++ Video/Image High-quality face manipulations; well-

annotated
Mostly frontal faces; lacks
diversity

General-purpose
detection

Celeb Deepfake Video/Image Diverse celebrity faces Biased towards celebrities Benchmarking
DFDC Video Large-scale, diverse, includes audio Heavily compressed; labeling

complex
Real-world simulation

DeeperForensics-
1.0

Image Robustness testing; synthetic perturbations Controlled settings Robustness evaluation

Deepfake-TIMIT Video Includes audio; lip-sync analysis Limited size Audio-visual fusion
UADFV Video Early benchmark Low resolution; few identities Proof-of-concept
WildDeepfake Text In-the-wild conditions Small scale Domain adaptation
Wave Fake Image Synthetic audio detection Narrow scope Audio-only spoof

detection
ASVspoof Audio Large-scale voice spoofing No video Speaker verification
Eye-Blink Video/Image Physiological cues Low sample size Liveness-based detection
ForgeryNet Audio/Video Broad manipulation techniques Limited use Technique-specific

testing
LAV-DF Video/Audio Language-specific; linguistic cues Not widely used Multilingual detection

Fig. 8: Usage of Deepfake Datasets

Evaluation Matrices

This section outlines key assessment measures for
deepfake detection algorithms in various media formats
like text, images, videos, and audio. It stresses the
importance of the complex assessment approach, leaving
aside not only the global measures but the specific
measures associated with the media as well. Evaluating
the last aspects of the algorithm's capability for the
identification of fake content, we consider such factors as
accuracy, rate, and dependability. Key metrics used to
assess the performance and reliability of detection
algorithms include.

Accuracy

Accuracy corresponds to the average percentage of
the correct detection of an object or a face. It was defined
as the fraction of instances that were classified correctly,
including true positives and true negatives on the total
shape.

Recall

Recall measures the number of truly positive items
identified as such and is also called true positive or
sensitivity

Precision

Precision (also known as positive predictive value)
measures the proportion of correctly identified positive
instances out of the total instances identified as positive.

F1-Score

The F1-score is the harmonic mean of precision and
recall, providing a balance between the two. It is
particularly useful when the class distribution is
imbalanced.

False Acceptance Rate (FAR)

The False Acceptance Rate (FAR) quantifies the
proportion of fake or unauthorized instances that are
incorrectly accepted as genuine by a detection or
authentication system. It is also commonly referred to as
the false positive rate. A high FAR indicates a system's
vulnerability to security breaches, as it measures how
often impostor attempts are mistakenly granted access.

False Rejection Rate (FRR)

FRR measures the percentage of genuine instances
that are incorrectly rejected by the detection system. It is
also known as the false negative rate.Accuracy = ​

TP+TN+FP+FN
TP+TN

Recall = ​

TP+FN
TP

Precision =
​

TP+FP
TP

F1 − Score = 2 × ​

Precision+Recall
Precision×Recall

FAR = ​

TP+TN
FP

http://192.168.1.15/data/13630/fig8.png
http://192.168.1.15/data/13630/fig8.png
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(6)

(7)

(8)

(9)

(10)

Equal Error Rate (ERR)

The Equal Error Rate (EER) is a performance metric
commonly used in biometric verification systems to
provide a single summary measure of accuracy. It
represents the point at which the False Acceptance Rate
(FAR), the proportion of unauthorized users incorrectly
accepted, and the False Rejection Rate (FRR), the
proportion of authorized users incorrectly denied, are
equal. A lower EER indicates higher overall system
accuracy and better balance between security and
usability.

Error Rate (ER)

The error rate is the total volume of false-negative
and false-positive detections in the total number of
decisions made.

Mean Absolute Error (MAE)

MAE is a measure of the average absolute deviations
obtained when estimating the errors without reference to
their sign. They are the mean of the absolute difference
between the prediction and actual observation made over
the test sample with each of the individual differences
being given an equal importance.

True Class Score (TCS)

TCS is less commonly used but can refer to the
proportion of instances correctly classified within a
particular class. It is similar to class-specific accuracy.

These evaluation metrics provide a comprehensive
toolkit for assessing the performance and reliability of
deepfake detection systems. Each metric captures a
distinct aspect of model behavior, ranging from overall
accuracy and error rates to more nuanced measures such
as precision, recall, and the trade-off between false
positives and false negatives. A thorough understanding
of these metrics is essential for developing robust
detection methods capable of countering the growing
threat of realistic synthetic media.

Ethical, Legal, and Societal Implications

Ethical Concerns

Privacy Violations and Consent Issues

Deepfakes raise one of the most urgent ethical
questions regarding the violation of personal privacy and

the contempt for informed consent. Deepfake technology
allows one to use a person's likeness, face-wise, voice-
wise, or manneristically, without their knowledge or
permission. Given the explosion of non-consensual
deepfake pornography, which frequently targets
celebrities or people without public profiles, this is
particularly troublesome. Significant psychological
trauma, reputational harm, and long-term mental health
effects including anxiety, depression, and social
disengagement can all follow from such exploitation
(Ray, 2021).

Real-world examples of the emotional toll of having
one's identity altered for public consumption include the
ongoing victimizing of female celebrities via AI-
generated pornographic deepfakes. Due to antiquated
definitions of privacy and consent, victims frequently
report feelings of helplessness and shame combined with
legal systems that slow down addressing of these
offenses. Deepfake victims have little recourse in
countries where digital likeness rights are not fully
protected, so highlighting a moral and legal void.
Moreover, deepfakes blur the boundaries between real
and created identities, so undermining confidence in
digital communication and posing existential concerns
about autonomy over one's digital self (Nnamdi et al.,
2023).

Manipulation of Personal Data

Deepfakes generate major questions about the
manipulation of personal data outside of illegal image
use. More advanced generative models can copy not only
appearance but also voice patterns, behavioral signals,
and emotional expressions. This realism has made new
kinds of identity theft possible, including voice phishing
campaigns or impersonation in video conferences
whereby victims unwittingly trust and interact with
synthetic versions of people they know (Durall et al.,
2020). For instance, there have been documented cases
where criminals used AI-generated voices to fool
business staff members into sending money under the
impression they were speaking to their CEOs. These
clever frauds take advantage of digital confidence and
expose how deeply fakes could compromise
organisational integrity as well as personal relationships.

Deepfake creators also frequently obtain training data
from public venues such as social media, gathering
enormous volumes of personal images and videos
without permission. Metadata and unique identifiers can
still be obtained even when people try to reduce their
digital footprints, so posing questions about surveillance
and exploitation. For instance, there have been
documented cases where individuals have experienced
profound psychological distress upon discovering that
their appearance, voice, or likeness has been
appropriated and manipulated without consent. This
violation underscores a growing concern: the ease with
which personal identity can be digitally altered

FRR =
​

TP+FN
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2
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undermines an individual's sense of autonomy and
security in the digital age (Verma, 2023). Victims
frequently report experiencing "identity dissonance", a
disconnection between their true personality and the
phony digital version that others see. This adds an
additional layer of emotional distress that technical
solutions alone cannot address, emphasizing the
importance of ethical frameworks based on
psychological well-being and human dignity.

Legal Framework

Legal and Regulatory Responses to Deepfakes

Currently, several legislative initiatives have emerged
to address the challenges posed by deepfake technology,
though these efforts remain fragmented across different
jurisdictions. Various countries and regions have enacted
laws targeting the malicious use of synthetic media in
contexts involving consent, electoral integrity, and
defamation. For instance, California and Texas have
introduced legislation specifically prohibiting the use of
deepfakes in sexually explicit content and political
campaigns, particularly during election periods. At the
federal level, the proposed Deepfakes Accountability Act
is pending approval, aiming to establish a national
framework for regulating manipulated video content
(Brundage et al., 2018). The bill would impose penalties
on individuals who create or distribute deceptive
deepfakes with the intent to undermine public trust,
influence voting behavior, or manipulate perceptions of
individuals in electoral and public affairs contexts.

At the international level, the adoption of the
European Union's AI Act in 2024 represents a significant
milestone in the governance of deepfake technology.
Classifying deepfakes as high-risk applications, the
legislation mandates that systems be transparent,
accountable, and subject to human oversight. Under this
framework, individuals who generate or disseminate
synthetic media are required to clearly disclose its
artificial origin. Complementing the AI Act, the EU's
General Data Protection Regulation (GDPR) provides
legal recourse against the unauthorized use of an
individual's likeness and grants individuals greater
control over their biometric data (Shan et al., 2007).

Meanwhile, China has implemented one of the
world's most stringent regulatory regimes for deepfakes,
requiring that all AI-generated content, particularly
synthetic videos and images, bear clear and visible labels
indicating their non-authentic nature. These national and
regional initiatives represent critical steps toward
addressing the ethical and security challenges posed by
deepfakes.

Despite these efforts, a cohesive international legal
framework governing deepfakes has yet to emerge.
Many countries still lack comprehensive regulations,
leaving a patchwork of rules that complicates

enforcement and fails to keep pace with the rapid
evolution of the technology. Striking an appropriate
balance between fostering innovation and ensuring
accountability remains a significant challenge (Chesney
& Citron, 2018). Addressing the global risks of
deepfakes while preserving the beneficial applications of
artificial intelligence will require coordinated
international cooperation and the development of shared
standards.

Landmark Legal Cases And Their Legislative Impact

Several notable legal cases have begun to shape the
evolving legal landscape surrounding deepfake
technology. A prominent example is the case involving
actress Scarlett Johansson, whose face was superimposed
onto another individual's body in a pornographic video
without her consent. Although Johansson ultimately
chose not to pursue legal action, citing the difficulty of
identifying and prosecuting the anonymous creators, the
incident starkly illustrated the challenges of applying
traditional defamation and privacy laws to digitally
manipulated content (Nnamdi et al., 2023). The case
underscored the inadequacy of existing legal frameworks
in addressing the harms caused by deepfakes and
highlighted the urgent need for enhanced penalties
targeting malicious synthetic media that threaten
individual identity and personal security.

A similar incident occurred in the United States in
2020, when a mother from Pennsylvania was charged
with creating manipulated images of her daughter's
cheerleading competitors, depicting them in
compromising positions in an attempt to secure their
removal from the team. This case established an
important legal precedent by demonstrating that criminal
charges could be pursued for the distribution of
deepfakes, particularly in contexts involving harassment
and defamation. It also illustrated how deepfake
technology can be weaponized in interpersonal conflicts,
extending its legal and societal implications beyond
high-profile celebrities and political figures to ordinary
individuals.

Together with emerging legislative efforts, these
cases underscore the critical need for future legal
frameworks that clearly define deepfake-related offenses,
establish proportionate penalties, and provide accessible
avenues for victims to seek recourse. As synthetic media
technologies continue to evolve, lawmakers will face
mounting pressure to enact comprehensive regulations
that address the multifaceted harms of deepfakes, from
personal privacy violations to the broader erosion of
democratic discourse through misinformation (Verma,
2023).

Impact on Public Trust

Deepfake content has become a significant source of
public distrust, fueling widespread anxiety over the
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authenticity of digital media (Schiff et al. 2023). As
synthetic manipulations grow increasingly difficult to
distinguish from genuine content, individuals and
institutions alike face mounting uncertainty about the
veracity of news and information. The following areas
highlight key public concerns regarding the proliferation
of deepfake technology.

Influence on Political Discourse

Deepfakes can be used to create misleading or
fabricated content that appears to come from credible
sources, potentially distorting political narratives and
influencing public opinion. For example, deepfake
videos of politicians making controversial statements or
engaging in unethical behavior can be used to manipulate
voters or incite political unrest. This misuse can distort
democracy by spreading and distorting the messages of
politics with fake information (Tipper et al., 2024).

Impact on Journalism

In journalism, deepfakes can cause an issue with the
authenticity of the news story being produced.
Considering the case when news organizations tend to
integrate more visual and audio content into their flows,
the availability of complex deep fakes increases the risk
of fakes passing through the checkpoints. This raises
questions on the idea of the job of journalism in
presenting good, credible information to the public and
questions the trustworthiness of the media in society.
(Korshunov & Marcel, 2018).

Effect on Social Media

Moreover, social media groups are susceptible to the
circulation of deepfake content. In this regard, deepfakes
spread the information pretty fast, and it may take some
time until the fake news is detected, so deepfakes have a
great potential for virality. The looming problem of
deepfakes poses a significant threat of increasing
misinformation and politically dividing the community
while also undermining the credibility of social media.

Erosion of Trust in Visual and Audio Media

Deepfakes in turn affect the basic trust in video and
audio information as such. With deepfakes getting more
life-like, people may be put off by what their eyes and
ears are telling them, probably a scenario where nobody
is guilt-free. Such an approach can cause wider doubts
about the reality of all video and audio material, not only
deepfakes, which indeed raises the problem of trust in
media as a whole and makes it impossible to distinguish
between fake news and actual events (Korshunov &
Marcel, 2018; Lima et al., 2020).

Recommended Countermeasures and Best Practices

Mitigating the multifaceted risks posed by deepfake
technology requires a coordinated strategy that integrates

robust policy measures, technological innovation, public
education, and responsible design practices. The
following countermeasures and best practices are
proposed to address the growing challenge of synthetic
media manipulation.

Regulatory Frameworks

Governments and regulatory bodies must enact
comprehensive legislation to address the misuse of
synthetic media. Effective legal frameworks should
include provisions that criminalize the creation and
distribution of deepfakes intended to deceive individuals
or appropriate their likeness without consent. Equally
important is the establishment of clear accountability
mechanisms, ensuring that those whose deepfake-related
actions result in fraud, reputational harm, or other
damages can be held legally responsible. Transparency
mandates are also essential, requiring content creators to
clearly label AI-generated material to inform audiences
of its synthetic origin.

Recent legislative developments, such as the
European Union's AI Act and the proposed Deepfakes
Accountability Act in the United States, represent
important initial steps toward formalizing these
principles. However, given the borderless nature of
digital media, broader international cooperation is
necessary to harmonize standards, facilitate cross-border
enforcement, and effectively combat the global
proliferation of malicious deepfakes.

Digital Watermarking and Provenance

Platforms and content creators should adopt
imperceptible watermarking or cryptographic signatures
to ensure content authenticity. Tools such as the C2PA
standard (Coalition for Content Provenance and
Authenticity) provide technical pathways to verify
source integrity and detect tampering.

Public Awareness Campaigns

Public awareness campaigns are essential for
mitigating the societal impact of deepfakes by equipping
individuals with the knowledge and critical thinking
skills needed to navigate an increasingly complex media
landscape. Governments, media platforms, and non-
governmental organizations can play a pivotal role by
launching media literacy initiatives that serve multiple
objectives. Such campaigns should aim to raise
awareness about how deepfakes are created and
distributed, helping the public understand the technical
capabilities and limitations of synthetic media. They
must also teach users how to recognize common signs of
manipulation, such as unnatural facial movements,
inconsistent lighting, or audio-visual mismatches, that
may indicate tampering. Furthermore, these initiatives
should encourage healthy skepticism toward sensational
or unverified content, fostering a culture of verification
before sharing. By empowering citizens with these
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competencies, societies can build collective resilience
against the deceptive use of deepfakes.

Collaborative Detection Platforms

Collaborative detection platforms represent another
critical pillar in the fight against synthetic media fraud.
Cross-industry collaboration can significantly accelerate
both threat detection and response times. Open-source
forensic frameworks, such as Deepware and
FakeCatcher, can serve as shared foundations upon
which researchers and practitioners build and refine
detection tools. Equally important is the establishment of
intelligence-sharing networks that connect academic
institutions, online platforms, and cybersecurity firms.
Such networks facilitate the rapid dissemination of
information about emerging deepfake techniques and
enable coordinated updates to detection systems,
ensuring that defenses remain effective against evolving
threats.

Ethical AI Development

Ethical AI development must be a guiding principle
for both creators of generative models and designers of
detection tools. Developers should prioritize fairness by
rigorously testing models to ensure they do not
disproportionately fail on specific demographic groups,
which could introduce bias and exacerbate harm.
Accountability mechanisms, including comprehensive
audit trails for training data and model outputs, are
essential for tracing errors and ensuring responsible use.
Finally, transparency must be embedded into system
design through explainable outputs that clarify how
decisions are made, fostering user trust and enabling
meaningful legal and regulatory oversight. Together,
these ethical commitments help ensure that AI
technologies serve the public interest while minimizing
unintended consequences.

Deepfake Detection Challenges and Future
Directions

Deepfake Detection Challenges

Figure 9 illustrates the multifaceted nature of
deepfake detection challenges, emphasizing that these
obstacles collectively compound the difficulty of
identifying synthetic media. Technical limitations, such
as the rapid evolution of generative models and the
absence of universal forensic artifacts, are compounded
by data-related issues including insufficient high-quality
datasets and inadequate labeling practices. Legal and
ethical complexities further complicate the landscape,
while the susceptibility of detection systems to
adversarial attacks adds an additional layer of
vulnerability. Together, these interconnected hurdles
underscore the formidable task of preventing deepfake
proliferation. Addressing them requires a coordinated
effort encompassing advances in AI architectures,

development of more diverse and representative datasets,
implementation of rigorous annotation standards, and
deployment of resilient detection technologies capable of
adapting to emerging threats.

Fig. 9: Different Types of Challenges in Deepfake Detection

Lack of Datasets

Detecting deepfakes remains a formidable challenge,
largely due to the absence of consensus on standardized
image databases and the inherent difficulty of generating
realistic synthetic fake images. While previous research
has leveraged Generative Adversarial Networks (GANs)
to create fictitious image datasets for training and
evaluation, the authenticity of such generated samples
often remains questionable, and no universally accepted
benchmark dataset currently exists. The availability of
publicly accessible, high-quality GAN-generated datasets
containing realistic counterfeit photos is essential for
enabling consistent and comparable evaluation of
detection approaches, ultimately improving both the
accuracy and reliability of forensic systems.

Robustness and Capability

To develop deepfake detectors capable of reliable
operation in real-world scenarios, it is imperative to
enhance their robustness against malicious attacks and
their resilience to various modifications of fake content.
This requires not only improving resistance to
adversarial evasion but also ensuring that detection
decisions are interpretable and transparent. To the best of
the authors' knowledge, few existing studies have
comprehensively evaluated their approaches from both
of these critical perspectives, as highlighted by recent
research. Consequently, significant attention must be
directed toward achieving optimal performance and
reliability in deepfake detection systems, balancing
accuracy with explainability and robustness against
evolving threats.

http://192.168.1.15/data/13630/fig9.png
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Unlabelled Data

Developing reliable deepfake detection models is
particularly challenging when working with small or
unlabeled datasets, a common constraint in domains such
as law enforcement and media where data availability is
limited. Most state-of-the-art detection systems rely on
deep learning architectures trained on large-scale
annotated datasets, yet their black-box nature poses
significant difficulties for interpretability and trust. The
inherently opaque decision-making processes of these
models obscure the subtle cues that inform their
judgments, making it harder to understand why certain
detections succeed or fail. This lack of transparency
undermines confidence in their utility for high-stakes
applications and highlights the need for more explainable
and data-efficient approaches tailored to real-world
operational constraints.

Temporal Aggregation

Current deepfake detection algorithms often fail to
account for interframe temporal consistency, leaving
them vulnerable to temporal anomalies and the presence
of mixed real and fake frames across video sequences.
Additionally, many approaches require an extra
computational step to compute a video quality score for
each individual frame, adding complexity and reducing
efficiency. These limitations underscore the urgent need
for more sophisticated algorithms capable of accurately
and consistently assessing temporal dynamics inherent in
video data.

Generalization

No single universal feature can reliably identify all
fake videos, prompting researchers to pursue more
generalized detection approaches. However, a significant
limitation of existing work is the reliance on relatively
simple datasets such as FaceForensics++. To further
enhance the reliability and accuracy of deepfake
detection systems, future research must prioritize the use
of more complex and diverse datasets that better reflect
real-world conditions. Studying challenging and varied
data will be essential for developing robust algorithms
capable of generalizing across different manipulation
techniques and maintaining high performance in
practical applications.

Future Directions

As deepfake generation techniques grow increasingly
sophisticated, the line between authentic and synthetic
content continues to blur, making reliable detection ever
more challenging. To keep pace with the rapid evolution
of AI-generated media, future detection systems must
adopt domain-agnostic models capable of generalizing
across diverse and unseen scenarios. Techniques such as
transfer learning and training on large-scale,
heterogeneous datasets will be essential for building

adaptable and robust detectors. Additionally,
incorporating continual learning mechanisms will enable
models to dynamically adapt to emerging generative
architectures and novel manipulation strategies.
Multimodal approaches that integrate visual, auditory,
and textual cues offer particular promise, as they can
uncover subtle inconsistencies, such as mismatches
between lip movements and speech or incongruent facial
expressions, that unimodal systems may overlook. By
embracing these strategies, next-generation detection
frameworks can better address the evolving threat
landscape and maintain effectiveness in real-world
conditions.

Future research will focus on strengthening the
analysis of subtle visual signals, such as micro-
expressions, eye blink patterns, and heart rate dynamics,
across video clips of varying quality. The integration of
explainable artificial intelligence (XAI) will be
particularly valuable in sensitive domains like law
enforcement and media, where transparency in detection
decisions can foster greater trust and acceptance among
users. Additionally, blockchain-based systems offer a
promising avenue for enhancing detection pipelines by
providing immutable verification of content origin and
authenticity. Ultimately, ensuring that detection tools are
deployed responsibly and with due regard for privacy
requires the simultaneous development of robust ethical
guidelines and regulatory frameworks. Adhering to these
principles will enable more reliable and trustworthy
identification of deepfakes while safeguarding individual
rights.

Conclusion
The pervasive influence of digital technologies has

fundamentally reshaped the creation and exchange of
information, raising critical questions about the
credibility and authenticity of online content. In this
landscape, artificial intelligence, and deepfake
technology in particular, has emerged as a powerful dual-
use tool, offering both significant benefits and substantial
risks. While deepfakes enable innovative applications
across entertainment, education, and other fields, their
potential for misuse poses serious ethical and security
challenges that demand urgent attention.

This survey has provided a comprehensive overview
of deepfake technology, systematically examining its
various types, underlying generation techniques,
available datasets, and real-world applications. In
parallel, the review has explored the evolving landscape
of detection methods and highlighted persistent gaps in
generalizability, robustness, and multimodal integration.
Beyond technical considerations, the paper has critically
discussed the ethical, legal, and societal implications of
deepfakes, underscoring the need for responsible
innovation, informed policy, and international
cooperation.
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By synthesizing current knowledge and identifying
directions for future research, this work aims to
contribute to a growing research agenda focused on
mitigating the threats posed by malicious deepfakes
while harnessing their constructive potential. Continued
advances in detection methodologies, coupled with
robust governance frameworks and public awareness,
will be essential to preserving trust in digital media and
safeguarding the integrity of information in the years
ahead.
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