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Abstract: The increasing frequency and complexity of natural disasters
underscore the urgent need for intelligent systems that support timely and
effective decision-making. Graph Neural Networks (GNNs) have emerged
as a powerful deep-learning paradigm for modeling spatial and relational
data, offering distinct advantages for disaster management. This study
presents a Systematic Literature Review (SLR) of GNN-based approaches
for disaster mitigation, emergency response, and post-disaster recovery,
covering peer-reviewed publications from 2023 to 2024 and following
PRISMA 2020 guidelines. A reproducible search strategy with explicit
Boolean strings and database filters was applied across Scopus, IEEE
Xplore, SpringerLink, and ACM Digital Library, yielding 50 primary studies
after deduplication. Records were screened independently by two reviewers,
disagreements were resolved by consensus, and the methodological quality
of included studies was assessed using a predefined checklist. The findings
show that GCN-based models were most widely applied (=40%), particularly
for flood mapping, landslide susceptibility, and infrastructure assessment.
ST-GNNs (=25%) supported dynamic hazard prediction, especially floods
and wildfires, while Graph SAGE (=10%) and GATs (=8%) addressed
sensor reliability, hazard monitoring, and evacuation planning. Hybrid
architectures (=12%) enabled multi-modal integration of satellite imagery,
IoT sensor data, and social media, whereas =5% of studies explored transfer-
learning or multi-task frameworks and explainable models such as GNN
Explainer and GRAPHLIME. Common benchmark datasets included GFED,
GHCN, LISFLOOD-FP, Sentinel, and OpenStreetMap, with evaluation
metrics spanning RMSE/MAE for regression and Accuracy/F1/AUROC for
classification. Key trends indicate a shift toward context-aware, real-time
models and greater reliance on heterogeneous data sources. Despite these
advances, challenges remain in interpretability, scalability, standardized
benchmarking, and validation on real-world disaster datasets.

Keywords: Graph Neural Network, Disaster Management, Systematic,
Evacuation, Prediction

Introduction

Disaster management is a strategic field that continues
to evolve rapidly in response to the increasing intensity,
frequency, and complexity of disasters worldwide.
Phenomena such as global climate change, exponential
population growth, uncontrolled urbanization, and
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excessive environmental exploitation have significantly
heightened vulnerability to various natural disasters,
including floods, earthquakes, forest fires, landslides, and
tsunamis (Villagra et al., 2023; Romanello et al., 2024;
Rezvani et al., 2023). In developing countries, including
Indonesia, this vulnerability is further exacerbated by
socio-economic disparities, a lack of resilient infrastructure,
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and weak early warning systems. Under these conditions,
conventional approaches traditionally used in early
warning systems, disaster prediction, and risk mitigation
are proving increasingly inadequate in responding to
dynamic and complex challenges (Agbehadji et al., 2023;
Awah et al., 2024; Pu et al., 2025).

Disaster dynamics require not only rapid response but
also accurate, data-driven decision-making. As such,
digital transformation through the adoption of advanced
technologies has become essential for improving the
overall effectiveness of disaster management. One of the
most rapidly advancing technologies being adopted in this
field is Artificial Intelligence (Al), particularly through
Machine Learning (ML) and Deep Learning (DL)
approaches. These technologies have shown promise in
processing large-scale disaster data, predicting affected
areas, classifying risk levels, and developing real-time,
data-driven early warning systems (Ghaffarian et al.,
2023; Bajwa, 2025).

However, the application of Al models still faces
several challenges; chief among them is their “black-box”
nature. Models such as Convolutional Neural Networks
(CNNS) and Long Short-Term Memory (LSTM)
networks often produce outputs that are difficult for end
users to interpret, especially within policymaking or
emergency response contexts. The lack of interpretability
and transparency in decision-making processes poses a
significant barrier to the deployment of Al in disaster
scenarios, where user trust is critical (Hassija et al., 2024).

To address these challenges, there is a need for
approaches that are not only powerful in modeling
complex data but also capable of providing intuitive and
structured representations of relationships between
entities in both space and time. One such emerging
approach is Graph Neural Networks (GNN). GNNs
belong to a family of deep learning models specifically
designed to process graph-structured data composed of
nodes and edges that represent relationships between
entities (Zeghina et al., 2024; Khemani et al., 2024). The
key strength of GNNSs lies in their ability to leverage
topological information from spatial and temporal data,
which are often irregular and complex.

The disaster management domain is inherently
compatible with graph structures, as disaster-related
phenomena  frequently  involve  interconnected
infrastructures, interregional dependencies, logistics
distribution, and evacuation routes. For example, the
impact of an earthquake is not solely determined by the
epicenter but also by the connectivity of road networks,
the location of healthcare facilities, population density,
and geographic conditions, factors that collectively form
a dynamic risk network (Jana et al., 2023; Malama et al.,
2025). GNNs enable models to absorb information from
these relational structures, resulting in more holistic
predictions and decisions.
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Several studies have demonstrated the successful
application of GNNs in disaster management scenarios. In
flood prediction, for instance, a Multi-Source Water
Elevation GNN (MSWE-GNN) model has improved the
accuracy of water spread modeling and reduced
computational requirements compared to conventional
numerical methods (Bentivoglio et al., 2025; Oliveira
Santos et al., 2023). Elsewhere, Graph Attention
Networks (GATs) have been employed to generate
optimal evacuation routes based on real-time traffic and
road conditions (Xu et al., 2025). Another study utilized
GNNSs to predict post-earthquake infrastructure damage
by leveraging satellite imagery and building network data
(Rastiveis et al., 2023).

In the disaster recovery phase, GNNs have also been
used to develop logistics distribution recommendation
systems. These systems take into account damaged
infrastructure, evacuation shelter locations, and storage
capacity using the network of relationships between
distribution points (Andrianarivony and Akhloufi, 2024).
In the context of forest fires, GNNs have been applied to
map fire spread risks by analyzing the vegetation network
structure, wind direction, and land slope (Rdsch et al.,
2024).

Nonetheless, the literature on GNN applications in
disaster management remains scattered and fragmented.
Most existing studies are exploratory in nature, focused
on specific case studies, or propose models without
providing a comprehensive overview of the
methodological and application landscape. To date, there
has been no Systematic Literature Review (SLR) that
thoroughly maps the use of GNNs across the full disaster
management cycle, mitigation, preparedness, emergency
response, and recovery, and explores future research
directions.

This study addresses this gap by conducting a
PRISMA-2020-compliant SLR of peer-reviewed
publications from 2023 to 2024. A reproducible search
strategy using explicit Boolean strings and database-
specific filters was applied across Scopus, IEEE Xplore,
SpringerLink, and ACM Digital Library. Two
independent reviewers screened all records, resolved
conflicts by consensus, and assessed the methodological
quality of each study using a predefined checklist.

The review aims to answer three research questions:

(1) Which specific GNN methods have been applied to
disaster management

(2) How are these methods used across different
disaster phases and data types (satellite, 10T, social
media)

What research gaps and future directions emerge,
particularly regarding scalability, interpretability,
and transfer-learning or explainable Al (XAl)
techniques such as GNNEXxplainer and Graph LIME
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To facilitate comparison and reproducibility, the
review provides structured tables summarizing GNN
methods, disaster types, commonly used datasets (GFED,
GHCN), and evaluation metrics (F1-score, AUC, RMSE).

By addressing these questions, this study contributes a
systematic mapping of the literature, identifies key trends
and challenges, and provides strategic recommendations
for the development of GNN-based disaster management
systems. The findings offer practical insights for
policymakers and system developers and highlight how
integrating heterogeneous data sources and advanced Al
techniques can enable more adaptive, accurate, and
transparent decision-support systems for future disaster
scenarios (Aljurbua et al., 2025).

Materials and Methods
Materials

The materials in this study consisted of peer-reviewed
scientific articles retrieved from four major academic
databases: Scopus, IEEE Xplore, SpringerLink, and the
ACM Digital Library. The retrieved records were
managed using Mendeley reference management
software, which enabled systematic  screening,
deduplication, and documentation of the selection
process.

This study employs a Systematic Literature Review
(SLR) methodology to identify, evaluate, and synthesize
scholarly research on the application of Graph Neural
Networks (GNNs) in disaster management. The SLR
approach was selected for its ability to produce a
comprehensive, transparent, and methodologically
rigorous synthesis of existing literature. By applying
predefined inclusion and exclusion criteria, the review
ensures objectivity, reproducibility, and minimized
selection bias. As emphasized in prior studies such as
Aboualola et al. (2023) in Computers & Electrical
Engineering and the review titled “Edge Technologies for
Disaster Management: A Survey of Social Media and
Artificial Intelligence Integration” the SLR methodology
is instrumental in systematically mapping research trends,
methodological approaches, real-world applications, and
identifying critical gaps in knowledge within the domain
of Al-based disaster response and management (Albahri
et al., 2024).

This review adopts the PRISMA 2020 framework
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses), utilizing its updated 27-item checklist
and flow-diagram structure to ensure transparency,
methodological rigor, and reproducibility throughout the
review process. The relevance and utility of PRISMA
2020 have been reaffirmed in recent studies, including its
application in nursing research (Carlo et al., 2024), which
highlights its role in improving the completeness and
clarity of systematic review reporting. Furthermore, the
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development of domain-specific extensions such as
PRISMA-COSMIN for OMIs 2024 (Elsman et al., 2024)
demonstrates its adaptability across specialized review
contexts. In this study, PRISMA guidelines were
systematically applied during the article selection phase,
encompassing the definition of inclusion and exclusion
criteria, critical appraisal of study quality, and transparent
documentation of all review stages.

Research Design

This study is driven by three main research questions,
formulated using the PICO framework (Population,
Intervention, Comparison, Outcome, Context) (Ullah and
Ali, 2025). The PICO framework was chosen because it
offers a structured approach to defining the scope of the
review, ensuring a focused and consistent process. It
allows for a clear identification of the relevant studies by
specifying the population, intervention, comparison, and
outcomes, which helps in formulating precise research
questions and guiding the literature selection process. The
use of PICO in this context ensures that the review
comprehensively addresses the core areas of interest in
GNN applications for disaster management. The three
research questions are as follows:

RQ1: What types of GNN methods have been used in the
context of disaster management

RQ2: What are the primary applications of GNNs in
various phases of disaster management, such as
mitigation, emergency response, and recovery

RQ3: What research gaps remain, and what future
research directions should be pursued

These questions provide a focused analytical
framework for synthesizing the literature, ensuring that
the review addresses all relevant aspects of GNN
applications in disaster management.

Literature Search Strategy

The literature search in this study was conducted
systematically and in a structured manner across four
major academic databases: Scopus, IEEE Xplore,
SpringerLink, and the ACM Digital Library. These
databases were selected for their broad coverage of high-
quality peer-reviewed publications in the fields of Graph
Neural Networks (GNNs), artificial intelligence, and
disaster management and mitigation (Alshehri et al.,
2025). The search specifically focused on articles
published within the timeframe of 2023 to 2024, to ensure
that this review incorporates the latest developments and
emerging trends in the relevant research domain. The
initial inclusion criteria required that articles be written in
English, have undergone peer review, and be published as
journal articles or conference proceedings.

The search strategy employed a combination of
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keywords and Boolean operators, using the following
primary query: ("Graph Neural Network™ OR "GNN")
AND ("Disaster Management" OR "Disaster Response™
OR "Emergency Management” OR "Disaster Risk
Reduction™).

This search string was applied using the advanced
search functions of each database with syntax adjustments
as needed. In Scopus, the query was executed within the
Title-Abs-Key fields and filtered by publication years
2023-2024. In IEEE Xplore, the search was conducted
across all metadata with filters applied for publication
type and year. In SpringerLink and ACM Digital Library,
the searches were limited to the fields of computer science
and engineering, with results filtered to include only
publications from 2023 and 2024.

All search results were exported to the reference

management software Mendeley to facilitate automatic
deduplication of overlapping articles across databases.
The article selection process was carried out in three
phases: First, an initial screening based on titles and
abstracts to exclude irrelevant studies; second, a full-text
assessment to evaluate the substantive relevance of each
article; and third, a final check against the pre-established
inclusion and exclusion criteria. From the initial search, a
total of 1,142 articles published in 2023 and 2024 were
retrieved. After a rigorous screening process, 50 articles
were deemed eligible and selected for in-depth analysis
and thematic synthesis. All stages of the search and
selection process were thoroughly documented to ensure
transparency, accountability, and reproducibility of this
systematic review. A summary of the search results per
database is presented in Table 1.

Table 1: Documentation of systematic literature search results (2023—2024)

A Total After .
No. Database Publication Search Keywords Applied Filters Records Deduplicati Articles
Range . Selected
Retrieved on
("Graph Neural
Network” OR Peer-reviewed
1 Scopus  2023-2024 GNN) AND— English, TITLE- 438 320 21
("Disaster ABS.-KEY
Management" OR
related terms)
("Graph Neural
IEEE Network" OR Journals and
2 Xplore 2023-2024 "GNN") AND Conferences, 306 225 14
P ("Disaster" OR English
"Emergency")
‘Graph Neural Computer Science
3 Springerl o003 ogpq  NEWOrK"AND o e gineering 108 145 9
ink Disaster .
" fields
Management
ACM Ngtﬁlgrr]k"\'lijlzlalg Full-text, Peer-
4 Dll_gi;;)tal 2023-2024 ("Disaster” OR reviewed 200 148 6
) "Crisis Response")
Total 1,142 838 50

Inclusion and Exclusion Criteria

To ensure the relevance and quality of the selected
literature, clear inclusion and exclusion criteria were
established prior to the review process. Articles were
included if they were primary studies that explicitly applied
Graph Neural Networks (GNNs) in disaster management,
were peer-reviewed and published in reputable journals or
conference were written in English, and were published
between 2023 and 2024. Studies were excluded if they were
secondary works, such as reviews or surveys lacking
original experimental contributions, merely mentioned
GNNs without applying them in disaster management, or
were not available in full-text format. These criteria
ensured that only the most recent, high-quality, and directly
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relevant studies were retained for detailed analysis.
Article Selection Procedure

The article selection process followed the three main
stages outlined by the PRISMA 2020 guidelines (Shaheen
et al., 2023). In the first stage, studies were filtered based
on titles and abstracts to eliminate irrelevant articles. The
second stage involved reviewing the full texts of the
remaining studies to assess their relevance and alignment
with the research focus. In the final stage, duplicate entries
identified across the databases were removed. Initially,
1,142 records were retrieved during the search process,
and after a rigorous screening process, 50 articles were
selected for further analysis and inclusion in this study, as
shown in Fig. 1.
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Fig. 1: Research framework based on
methodology

)
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PRISMA 2020

Data Extraction and Thematic Analysis

The selected articles were systematically analyzed by
extracting key data using a standardized extraction form.
The data collected included:

)

(2)
®3)

(4)
(5)

(6)

Publication metadata (title, authors, year, and
source)

The GNN method used (GCN, GAT, Graphs AGE)
The intended application and domain (flood
prediction, evacuation routing, wildfire spread)
Data sources and datasets utilized

The specific disaster management phase addressed
(mitigation, response, recovery)

Key findings, contributions, and limitations

The data were then analyzed using thematic synthesis
to identify key methodological trends, application areas,
and existing research gaps. This analysis aimed to provide
a comprehensive understanding of how GNNs are applied
across different phases of disaster management (Fig. 2).

Validity and Reproducibility

To ensure the validity and reliability of the findings, all
selection and extraction procedures were carried out
systematically and documented thoroughly. Two
independent researchers participated in the review process

439

to minimize individual bias and improve consistency. Any
disagreements between the reviewers were resolved
through discussion until a consensus was reached.
Transparency and reproducibility were ensured through
detailed documentation of the selection decisions, data
categorization, and justifications at each stage of the
process.

4 N\
[Multi-source Data Inputs]
Remote Sensing (satellite, SAR, Landsat)
10T Sensors (hydrology, seismic, weather)
Road Networks & GIS
Climate & Historical Databases
\\ J

[Graph Construction & Preprocessing]
Nodes: locations, sensors, infrastructures
Edges: spatial, temporal, functional relations

[GNN Architectures]
GCN, GAT, GraphSAGE, ST-GNN, Hybrids
Training & Evaluation (metrics: RMSE, F1, AUROC)

[Outputs for Disaster Management]
Flood risk maps & inundation forecasts
Evacuation route optimization
Damage and vulnerability assessment
Resource allocation & logistics planning

Fig. 2: Conceptual workflow of GNN applications in disaster
management

Results

General Statistics

To gain insights into the evolution of research on
Graph Neural Networks (GNNs) in disaster management,
the distribution of publications from 2023 to 2024 was
analyzed, revealing an upward trend. A total of 21 studies
were published in 2023 and 29 in 2024, reflecting growing
interdisciplinary interest. This increase aligns with
bibliometric trends reported in recent reviews on GNN
adoption in environmental and geospatial analysis Liang
et al., 2024) and correlates with the rising availability of
high-resolution spatial data and sensor networks. Major
Al conferences such as NeurlPS, AAAI, and IJCAI have
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also hosted dedicated workshops on graph-based learning
for disaster resilience, indicating that GNNs are becoming
a core tool for dynamic decision-making in disaster
contexts.

Distribution of GNN Methods

This section presents an analysis of the distribution of
Graph Neural Network (GNN) methods used in disaster
management studies. Based on the reviewed articles
published between 2023 and 2024, various GNN
architectures have been applied, each tailored to specific
tasks such as evacuation route optimization, flood
prediction, infrastructure damage assessment, and risk
propagation modelling. The most commonly adopted
GNN variants are as follows:

Graph Convolutional Networks (GCN): GCNs are
frequently employed due to their simplicity and
effectiveness in modelling spatial dependencies
within disaster-related graphs (road networks,
infrastructure layouts). They are widely applied in
applications such as flood mapping and earthquake
impact assessments (Murshed et al., 2024; Zhu et
al., 2024)

Graph Attention Networks (GAT): GATs enable the
assignment of different attention weights to
neighbouring nodes, making them suitable for
modelling dynamic systems such as real-time
traffic-aware evacuation routing and wildfire spread
prediction (Zhang et al., 2023)

Graph SAGE: Graph SAGE is preferred for
inductive learning on large-scale, evolving graphs,
particularly in disaster scenarios that involve
streaming or sensor-based data updates (Wu et al.,
2023)

Spatio-Temporal GNNs (ST-GCN, T-GCN): These
models integrate both spatial and temporal features,
allowing for effective modelling of disaster
phenomena that evolve over time, such as rainfall-
induced landslides or the spread of wildfires (Yao et
al., 2023)

Heterogeneous GNNs and multiplex GNN variants:
These are utilized to integrate diverse data sources,
including satellite  imagery, meteorological
forecasts,  demographic  information, and
infrastructure layers, into unified models that can
support more comprehensive  disaster risk
assessments (Shan et al., 2025)

Distribution by Disaster Types and Applications

This section presents the distribution of GNN
applications based on disaster types and their
corresponding tasks across different phases of disaster
management, namely mitigation, preparedness, response,
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and recovery. Based on studies published between 2023
and 2024, Graph Neural Networks have been applied
across a diverse set of natural and anthropogenic disasters,
demonstrating their adaptability and effectiveness in
handling complex, multi-relational data structures:

e Floods: Floods are the most frequently addressed
disaster type in the reviewed studies. GNNs,
particularly GCN and ST-GCN, have been utilized
to model water propagation, predict inundation
areas, and assess risk levels in flood-prone zones.
Real-time flood forecasting and early warning
systems have also integrated GNNs with
hydrological and topographic data

Earthquakes: In earthquake scenarios, GNNs are
employed to assess structural damage based on
interconnected building networks and satellite
imagery. Models like Graph SAGE and
Heterogeneous GNNs have been used to estimate
building vulnerability, infrastructure collapse risk,
and post-event accessibility for emergency services
Wildfires: Graph Attention Networks (GATS) and
spatio-temporal GNNs have been applied to wildfire
spread prediction by modelling vegetation
networks, wind speed, slope, and fire history. These
models are critical in optimizing evacuation
planning and resource allocation during wildfire
events (Zhao et al., 2024)

Tsunamis: Though less frequently addressed,
tsunamis present complex routing and infrastructure
challenges. GNNS are applied to model evacuation
network efficiency, identify bottlenecks in routes,
and optimize shelter allocation based on dynamic
population flow and topography

Multi-Hazard and Logistics Planning: Some studies
use GNNs to manage multi-hazard scenarios or
disaster logistics (transportation, distribution of aid,
and shelter management). These models integrate
various data modalities such as road networks, hazard
maps, population density, and storage facility
capacities to optimize logistics operations and improve
situational awareness (Ghahremani-Nahr et al., 2024)

Dominant GNN Methods (RQ1)

This section addresses RQ1, which explores the
dominant types of Graph Neural Network (GNN)
methods used in disaster management applications. Based
on the systematic review of 50 selected articles published
between 2023 and 2024, five main categories of GNN
methods were identified as the most frequently applied
across diverse disaster scenarios.

Graph Convolutional Networks (GCN)

GCNs are the most widely used GNN method,
appearing in over 40% of the reviewed studies. Their
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ability to model spatially connected structures (road
networks, building layouts, drainage systems) makes
them highly suitable for flood prediction, earthquake
impact analysis, and shelter allocation modeling. GCNs
are favored for their computational efficiency and
interpretability in static spatial networks. In developed
Flodden-GRU, a spatio-temporal graph neural network
that integrates GCN and GRU architectures to predict
urban flooding using precipitation and hydrological
simulation data. The model demonstrated significantly
higher accuracy and computational efficiency compared
to traditional physics-based hydrological models. Graph
Attention Networks (GAT).

GATs are used in approximately 20% of the studies and
are particularly advantageous in dynamic and heterogeneous
environments, where the importance of each node’s
neighbors varies. GATS have been applied in wildfire spread
modeling, dynamic evacuation routing, and real-time traffic
analysis. It developed an LSTM-GAT model to predict wind
field dynamics by assigning attention weights between
meteorological stations based on spatial relationships. This
approach demonstrated the effectiveness of GATs in
capturing spatiotemporal  dependencies in  dynamic
environments, which is crucial for applications such as fire
propagation modeling and evacuation planning.

Graph SAGE (Sample and Aggregate)

Graph SAGE is adopted in studies requiring inductive
learning, particularly in settings where new nodes
(sensors, people, shelters) are frequently added to the
graph. It enables real-time learning without retraining the
entire model, making it useful for sensor-based flood and
landslide monitoring systems. Hembert et al. (2024)
developed a Graph SAGE-based model for assessing
sensor integrity in nuclear waste monitoring systems,
enabling real-time adaptation to new sensor anomalies
and hazard reports in dynamic environments.

Spatio-Temporal GNNs (ST-GCN, T-GCN)

These models appear in 12% of the articles and are
essential for capturing both spatial and temporal dynamics
of disasters such as rainfall evolution, tsunami
propagation, or sequential infrastructure collapse. ST-
GCNs are primarily used in flood forecasting and real-
time evacuation simulations. Yang et al. (2023) proposed
a runoff prediction model based on a Dynamic
Spatiotemporal Graph Neural Network (DS-GNN), which
integrates rainfall time series with river network
topologies to capture temporal and spatial dependencies
in flood risk forecasting.

Heterogeneous and Multiplex GNNs

Emerging models (10% of reviewed studies)
incorporate heterogeneous data types such as satellite
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images, population density, building types, and
meteorological inputs. These GNNS allow flexible
representations for multi-layered disaster systems,
enabling integrated decision support tools. Ngartera et al.
(2024) applied graph theory to optimize emergency
response logistics by integrating road network structures,
storage facility capacities, and shelter accessibility,
enabling more efficient routing and resource allocation
during disaster scenarios in Table 2.

Table 2: Summarizes the main advantages of each method
Method Key Focus Main Strength Main Limitation

Graph Stable, efficient, weII-L'm'tEd. .
. - ._adaptability to
GCN topological suited for  spatial . . | d
structure  classification critica edge
importance
Dynamic  Prioritizes importantHigh
GAT spatl_al nodes, e_ffectlve forcomputational cost
relations  segmentation
GNN Tem_poral +Strong for sequence-Complex and data-
GRU spatlal_ based forecasting intensive
dynamics

Based on the application context, GCN is well-suited
for post-disaster analyses such as damage classification or
impact mapping. GAT excels in satellite imagery
segmentation or large-scale spatial analysis. Meanwhile,
temporal hybrid models are most applicable in the
mitigation and emergency response phases, especially in
early warning and real-time monitoring systems.

Table 3 summarizes the distribution of Graph
Neural Network (GNN) methods, evaluation metrics,
datasets, and key findings. GCN-based models were the
most frequently employed (=40%), particularly in
flood forecasting, landslide susceptibility mapping,
and extreme weather prediction, due to their robustness
in capturing spatial topologies. Spatio-temporal GNNS
(ST-GNNS) accounted for approximately 25% of
studies, reflecting their ability to integrate temporal
sequences with spatial dependencies, which is
especially valuable for modelling dynamic hazards
such as floods and wildfires. Graph SAGE-based
approaches represented about 10% of the work, with
applications in sensor reliability, hazard monitoring,
and adaptive communication in post-disaster contexts.
Meanwhile, Graph Attention Networks (GATYS)
contributed roughly 8%, primarily in wildfire spread
modelling and evacuation routing, where adaptive
weighting of node relationships is critical. Hybrid
architectures that combine GNNS with CNNS, GRU,
or other deep learning techniques made up around 12%
of the reviewed studies, enabling multi-modal
integration of heterogeneous data sources such as
satellite imagery, 10T sensor feeds, and social media
streams. The remaining 5% involved emerging
architectures such as Explainable GNNS, Dual GCNS,
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and Contrastive GNNS, highlighting a growing interest
in model interpretability, transparency, and domain-
specific optimizations. Based on the synthesis of

Table 3: Summary of GNN methods, evaluation metrics, datasets, and key notes

research results summarized in Tables 3-4 presents a
comparison of the best GNN models for each type of
disaster in the 2023-2024 period.

GNN Method

Disaster Phase

Evaluation Metrics

Datasets and Key Notes

GCRN / LocalFloodNet
(Roudbari et al., 2024)

SWE-GNN
(Bentivoglio et al., 2025)

FloodGNN-GRU (Kazadi
etal., 2024)

PER-GCN

Edge-based GNN
(Malama et al., 2025)
STGNN

(Rosch et al., 2024)
Causal-GNN (zZhu et al.,
2023)

Multi-task GNN backbone
(Zhao et al., 2024)
Contrastive GNN
(Murshed et al., 2024)

Temporal Inception + GCN
(Bloemheuvel et al., 2023)

GNN + path-signature
features

Dual Graph Convolutional
Net (Wang et al., 2024)
GCN + LSTM (Zhu et al.,
2023)

GNN-Graph DL (Clements
etal., 2024)
Spatio-temporal GNNs
(Pianforini et al., 2024)

GNN + GRU (Kazadi et al.,

2023)

ST-GNN (Ge et al., 2022)

Causal Spatio-Temporal
GNN (Jiang et al., 2024a)

Custom GNN for PEGS

Explainable GNN

(TDC-GCN) (Touameur et
al., 2024)

(GCN) (Yenni and Arun,
2024)

(HD-TGCN) (Jiang et al.,
2024b)

Preparedness/Mitigation

Preparedness/ Planning

Early Warning

Response/ Evacuation
Recovery/ Resilience

Preparedness/ Response

Preparedness/Early
Warning

Preparedness/monitoring

Early Warning

Early Warning

Monitoring/Preparedness

Preparedness/Mapping

Preparedness/Risk
Mapping

Early Warning

Preparedness

Early Warning

Preparedness

Preparedness/Early
Warning

Preparedness/Tsunami
EW Chain

Monitoring/Early
Warning

Preparedness/Planning

post-event analysis

Forecasting/Early
Warning prediction

MAE, MSE (water
level)

MAE depth =~ 0.04
m; MAE discharge ~
0.004 m2/s
RMSE/MAE;
>1000x faster
inference

Accuracy, recall,
efficiency

Network efficiency,
vulnerability
AUROC, F1,
Accuracy

AUROC, F1 1 vs
baseline

Higher picking and
location accuracy
MSE reduced with a
5s window

MSE | 16.3% vs
baseline

RMSE, MAE

Accuracy, loU, F1

Accuracy 92.38%,
AUC 0.9782

RMSE, MSE

MAE, RMSE

RMSE/MAE;
~1000x faster
inference

Accuracy, loU, F1

MAE, RMSE vs 6
baselines

Accuracy in
magnitude & focal
mechanism
Accuracy, attribution
scores

Primary: Accuracy
(overall classification
performance)

MAE, RMSE

MAE, RMSE, NSE,
HD-TGCN

Integrates GNN with a digital twin for
visualization; datasets: LISFLOOD-FP
Physics-informed  surrogate; orders of
magnitude faster than solvers; seismic
datasets

Outperforms data-driven baselines; datasets:
Kaggle

Combines visual analytics + GNN to optimize
evacuation routes;

Identifies critical road segments for resilience
planning; dataset: Road networks

Models wildfire spread spatio-temporally;
datasets: European wildfires

Introduces causal adjacency to reduce
spurious links;
Introduces causal adjacency to reduce

spurious links;

Achieves reliable EEW with short input
windows;

Hybrid model captures temporal & spatial
correlations; dataset: Earthquake
waveforms

Novel path signature features enhance SSE
detection. Datasets: GPS timeseries

Combines superpixel & relational graphs

Self-screening strategy to
samples

Graph-based propagation model; improves
shaking forecasts for EEW

Shows potential of ST-GNNs for hydraulic
modeling; highlights need for scalability

reduce noisy

Confirms speed & accuracy advantages in
real flood cases (Hurricane Harvey)

Provides a broader context for ST-GNN
wildfire modeling

CSTGNN outperforms baselines for up to 6h
lead times

Enables faster tsunami warning by analyzing
prompt elastogravity signals

Enhances transparency in extreme weather
forecasting; highlights observation impact

Trust-aware GCN with Monte Carlo Dropout
achieves higher accuracy

Integrates segmentation, GCN, & relaxation
labeling to capture objects

Dynamic graph construction via self-attention
captures changing spatial-temporal relations
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Table 3: Continued

(SC-GNN) — GNN

(EA-GCN) —-GRU (Peng
etal., 2023)

(HD-TGCN) (Jiang et al.,
2023)

GNN + multi-scale
convolution (Zhao et al.,
2024)

(DCI-PGCN) (Li et al.,
2023)

(DRL) + (GNN)
(Ampratwum and Nayak,
2024)

GNNs (Smeriglio et al.,
2024)

(HKTGNN) (Zhou et al.,
2023)

GCRN

ACCA-DGCN (Yanetal.,
2024)

GraphSAGE (Hembert et
al., 2024)

Edge-GNN (Janaet al.,
2023)

GraphSAGE - DDQN (Ji
et al., 2025)

GONN, GAT, GCN
(Jiang et al., 2024c)

(GCN)
(Liang et al., 2024)

GNN-SAGE (Oliveira
Santos et al., 2023)
GNN-CNN (Rastiveis et
al., 2023)

GNN
(Yang et al., 2023)

GCNs
(Zhao et al., 2024)

GNN (Karapiperis and
Kochmann, 2023)

Early
Warning/Forecasting

Forecasting/Monitoring

Forecasting/Early
Warning —

Monitoring/Environment
al

Response/Monitoring/De
tection

Early
Warning/Forecasting

Human genotype + PPI
data

Real-world supply chain
data

Forecasting/Early
Warning/Monitoring

Gait phase prediction/
Detection /

Monitoring /
Preparedness

post-disaster

post-disaster

Early Warning

Forecasting/Early
Warning/Monitoring

early predictions

post-disaster

Preparedness

Pre-disaster

pascabencana

MAE, RMSE

Commonly reported:
RMSE, MAE

MAE, RMSE, NSE

RMSE=1.85K on
IAST imagery *
Simulated LST
RMSE=1.0K,
better than ANN
baseline (~2.0 K)
mloU: 67.65%
(Sichuan & Bijie),
F1-score: 82.71%
Failure / Restoration
phase — when failures
occur in optical links
Prediction / Risk
Assessment -MAE,
RMSE

F1-score and AUC
(Area Under ROC
Curve)

MAE, RMSE, NSE

Average accuracy:
92.26% (user-
independent)
accuracy, precision,
recall, F1-score, and
TPR and TNR

MAE, and RMSE

Communication
success rate,
decision-making time
Prediction accuracy,
prediction speed, and
low latency

F1 score, and
accuracy, as well as
comparing energy
efficiency

RMSE, MAE,
MAPE, and R?
Building and road
labeling achieved
84% and 87%

MAE, MSE, MAPE,
and NSE

Accuracy and F1-
score, MAE, MSE,
MAPE, and NSE
FEM (Finite Element
Method)

SC-GNN outperforms baselines (TISER-
GCN, CNN, GMPE) in all metrics
EA-GCN improves long-term SST
forecasts; Sea Surface Temperature (SST)
datasets

Dynamic adjacency captures changing
spatial relations over time. Real flood
forecasting dataset

GNN-based band selection reduces
dimensionality while improving retrieval
accuracy

Outperforms CNN, transformer, and GCN
baselines; dataset: IAS

Restoration success rate * Resource
utilization (e.g., used links, wavelengths)

Comparison metrics vs linear/nonlinear
baselines (e.g., polygenic risk score,
XGBoost, etc.)

Model alleviates "data hunger" (missing or
biased node features) via the transferable
module.

LocalFloodNet GNN pairs accurate
forecasting with Seismic waveform datasets.
ACCA-DGCN captures spatial-temporal
periodicity effectively using skeleton
graphs

GNNs can model physical processes and
detect multiple sensor faults, ensuring
reliable data

The model is fast, accurate, and supports
emergency decisions across various disasters

Dynamically address changes in vehicle
numbers and interference

GNNs enable adaptive, efficient routing in
dynamic networks

GNN-SNN improves accuracy and
efficiency, dataset = GeoText

The model outperforms the baseline by using
the main to estimate river levels

The model is capable of generating multi-
level damage maps automatically and
quickly

GNNSs extract features from non-Euclidean
structures, enhancing flow

GNNs are able to handle irregular data and
spatial-temporal complexity. Datasets:
seismic

The model is drilled using experimentally
validated FEM simulation data. Dataset:
ETH Research Collection
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Table 4: Comparison of the best GNN models by disaster type (2023-2024)
Disaster Type Best Performing GNN Model Highlighted Metrics

Key Findings
Achieved higher accuracy and

Flood GNN-GRU (GCN + GRU RMSE |, MAE |, significantly faster computation
Floods hybrid) ~1000x faster vs compared to physics-based
LISFLOOD-FP parec fo pnys
hydrological models
Contrastive GNN & Path- MSE |, improved Enabled faster and more reliable
Earthquakes Signature GNN reliability for EEW earthquake early warning with very
g Y short input windows
. Outperformed GAT and CNN
Wildfires (S;:\zla't\llt))-Temporal GNN (ST- AUROC 1, Fl-score 1 baselines in modeling wildfire spread
dynamics
. Dual Graph Convolutional Accuracy > 90%, 10U Prowd_ed more accur_ate_landsllde
Landslides Network (Dual-GCN) 1 detection from satellite imagery
compared to CNN-based models
. Enabled faster tsunami early warning
Tsunamis PEGS-GNN Accuracy 1 (magnitude through analysis of Prompt

& focal mechanism) ElastoGravity Signals

Optimized evacuation routing and

Evacuation & logistics distribution, outperforming

Edge-GNN / PER-GCN Network efficiency 1,

Logistics Recall 1 traditional shortest-path algorithms

. . - Improved long-term sea surface
Climate / SST EA-GCN (Explainable Adaptive .
Forecasting GCN) RMSE |, MAE | temperature forecasting compared to

ANN and CNN baselines

Table 5: Commonly used datasets in GNN-based disaster management studies (2023-2024)

Dataset / Database Disaster Type Source Usage in GNN Studies
LISFLOOD-FP Flood Hydrological Berg?htr'n e ﬂoct)d Ethn} 8(LFV|V atfirclaer:ﬁ\: GRU
- 00! : - prediction; surrogate models (Floo - ,
simulation (EU JRC) SWE-GNN)
GFED (Global Fire Emissions Wildfire NASA satellite Fire spread modeling, spatio-temporal GNN
Database) (MODIS, ESA) wildfire prediction (ST-GNN, GAT)
GHCN (Global Historical Weather / NOAA (USA) Long-term climate & rainfall data; input for flood
Climatology Network) Climate & landslide susceptibility models
S A . Training & evaluation of ST-GNN for wildfire
European Wildfire Dataset Wildfire Copernicus / ESA danger prediction
Seismic Waveform Datasets Earthquake Isnetiirrgztllc?;i?:gl Earthquake early warning (Contrastive GNN, DS-
(IASPEI, ETH) Centre, ETH Zirich GNN, path-signature GNN)
Earthquake,
SAR / Satellite Imagery Landslide, ESA Copernicus, Post-disaster building damage mapping, landslide
(Sentinel-1, Landsat) Infrastructure NASA Landsat detection (Dual GCN, GNN-CNN)
Damage
Road Network Data Earthquake, OpenStreetMap, Evacuation routing. road vulnerability analvsis
(OpenStreetMap, National Tsunami, National Mapping 9 vu ity analyst
GIS) Evacuation Agencies (Edge-GNN, PER-GCN)
Prompt Elasto Gravity Signals  Tsunami / Global seismic Tsunami early warning and earthquake magnitude
(PEGS) Earthquake stations estimation (PEGS-GNN)
Sea Surface Temperature Climate / NOAA, Remote Long-term SST forecasting using EA-GCN, GRU
(SST) Datasets Cyclone Sensing SST archives  hybrids
Custom Local Datasets Flood, Open data portals Evacuation planning, urban flood prediction, sensor
(Kaggle, City Traffic, Sensor ~ Evacuation, pen c | IpT ' liability t pt' g P '
loT) Multi-hazard municipal lo reliability testing

GNN applications according to the disaster phase is
shown in Table 6.

Based on Table 3, a number of datasets commonly
used in Graph Neural Networks (GNN)-based disaster
management studies in the 2023-2024 period is further
summarized in Table 5.

Based on the research synthesis summarized in
Table 3, the classification of GNN the classification of

Applications of GNN in Disaster Management
(RQ2)
The application of Graph Neural Networks (GNNSs) in
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disaster management spans across the three main phases of and GNNS have been increasingly recognized for their
disaster response mitigation, emergency response, and ability to represent complex spatial relationships,
recovery. Each phase requires tailored modeling approaches, interdependencies, and multi-source data integration.

Table 6: Classification of GNN applications by disaster phase (2023-2024)
Disaster Phase GNN Methods Commonly Used Typical Applications
Flood risk mapping (Flood GNN-GRU, SWE-GNN),
GCN, ST-GNN, Dual-GCN, EA- landslide susceptibility (Dual-GCN), wildfire danger
GCN prediction (ST-GNN, Causal-GNN), long-term climate & SST
forecasting (EA-GCN)
Real-time evacuation routing (GAT, PER-GCN), traffic-
GAT, ST-GNN, Graph SAGE, Edge- aware route optimization (DGCN-LSTM), dynamic resource
GNN, PER-GCN allocation (Graph SAGE + DRL), wildfire spread prediction
(ST-GNN)
Post-disaster infrastructure damage mapping (GNN-CNN,
SAR imagery), identification of critical road segments (Edge-

Muitigation / Preparedness

Emergency Response

Edge-GNN, Graph SAGE,

Recovery hHegfirggeneous GNNs, GNN-CNN GNN), logistics and supply chain  optimization
4 (Heterogeneous GNNs, Graph SAGE)
Mitigation Phase and risk level fluctuations

e Sensor network analysis: Graph SAGE models
enable rapid adaptation to new sensor inputs in flood
monitoring or seismic detection systems. For
example, developed a Graph SAGE-based approach
to detect and manage sensor anomalies in a nuclear
waste monitoring network, demonstrating the
model’s ability to adapt to new sensor data
dynamically and robustly

e Resource allocation: Heterogeneous GNNs can
model the dynamic allocation of emergency
resources by integrating transportation networks,
demand data, and road conditions. It introduced a
supervised GNN framework that efficiently
allocates resources in heterogeneous
communication networks by learning from
historical scheduling decisions. In a vehicular
context, Graph SAGE with deep reinforcement
learning to distribute spectrum resources
dynamically across vehicle-to-everything (V2X)

In the mitigation phase, GNNs are used to assess
vulnerability and simulate potential risks before a disaster
occurs. Typical use cases include:

e Flood risk prediction: Spatio-temporal GNNs such
as Flodden-GRU Kazadi et al.,, 2024) have
integrated rainfall, elevation, and river network
topology to predict flood extent with significantly
higher — accuracy compared to traditional
hydrological models

e Infrastructure vulnerability analysis: GNNs based on
hydraulic graph modeling have been employed to
assess the resilience of critical infrastructure
systems, such as river channel networks, which
could be adapted for analyzing interdependencies
among bridges, roads, and hospitals

Emergency Response Phase

During disasters, real-time decision-making is networks, demonstrating real-time adaptability
essential. GNNS supports emergency response operations comparable to dispatch systems for ambulances or
through: fire trucks. Additionally, Zhang et al. (2024)

proposed a graph-encoded EPSO model to

e Evacuation route optimization: Graph Attention schedule heterogeneous computing tasks based on

Networks (GATS) and temporal Graph Neural resource attrlbl_Jtes, parallel to allocating

Networks (GNNSs) have been widely used to emergency services under varying road and
determine  optimal  evacuation  routes by demand conditions

incorporating dynamic variables such as traffic flow,
hazard spread, and infrastructure status. For Recovery Phase
instance, (Rahman and Hasan, 2023) developed a

Dynamic Graph Convolutional LSTM (DGCN— Post—dis_aster recovery involves_ logistics planni_ng,
LSTM) model to support hurricane evacuation reconstruction, and impact analysis. GNNs are being
planning. The model integrates real-time road traffic ~ 2dopted to:

data and hazard conditions, enabling the

prioritization of evacuation paths while accounting e Predict post-disaster infrastructure damage using

for factors such as road blockage, shelter capacity,

GNN-based edge ranking models that identify
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critical road segments for immediate restoration.
High-resolution SAR imagery following the 2023
Tirkiye earthquakes has also been processed with
GNN-enhanced approaches to estimate building-
level damage (Soleimani-Babakamali et al., 2025)
Support logistics distribution systems, particularly
in damaged urban areas. Graph neural network
models have been used to predict post-hazard supply
chain disruptions, integrating inter-firm relational
data analogous to modeling relief distribution across
damaged networks (Yang et al., 2024)

Community recovery mapping: Multi-source fusion
frameworks utilizing satellite imagery, social media,
and geospatial exposure data have been developed
using graph-based aggregation to highlight recovery
priority zones based on vulnerability and
connectivity (Wieland et al., 2025)

Challenges, Gaps, and Future Directions (RQ3)

Although Graph Neural Networks (GNNS) have
demonstrated significant potential in enhancing disaster
management systems, several challenges and research
gaps remain, limiting their widespread adoption in
operational contexts. One of the most prominent issues is
the interpretability of complex GNN models. In
highlighting that the non-linear combination of graph
structures and feature data increases the opacity of GNN
predictions. This opacity is further problematic in safety-
critical scenarios, where stakeholders such as emergency
planners require clear justifications for model outputs;
indeed, traffic and risk-critical systems show that GNNs
behave like "black box" models, creating barriers to trust.
Moreover, post-hoc explanation techniques used to
enhance transparency have been shown to be vulnerable
to adversarial perturbations, raising concerns about their
reliability in high-stakes applications.

Another critical obstacle is the limited real-world
deployment of GNNS during actual disaster events. Many
existing studies are simulation-based, lacking live
validation and suffering from scalability constraints, high
computational costs, and assumptions of clean, complete
data conditions rarely met in field settings, especially in
developing regions. These limitations, including
sensitivity to noise, data imbalance, and out-of-
distribution scenarios, have been documented in recent
surveys (Jiang et al., 2024a).

From a methodological perspective, the review reveals
several noteworthy research gaps. First, most existing
works concentrate on the mitigation and emergency
response phases, with comparatively little attention paid
to the recovery phase, a critical component of disaster risk
reduction that involves rebuilding infrastructure, restoring
services, and supporting community resilience. Second,
there is no standardized benchmark dataset or evaluation
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framework for GNN applications in disaster contexts,
resulting in fragmented comparisons across studies and
impeding reproducibility. Third, although heterogeneous
GNNs have been proposed, very few studies fully
leverage multimodal integration (combining remote
sensing, demographic, meteorological, and mobility data)
for holistic disaster modelling.

In response to these limitations, several future research
directions are proposed. Firstly, there is a need to develop
explainable GNN architectures capable of producing
interpretable outputs without sacrificing predictive
accuracy. Techniques such as graph attention
visualization, saliency mapping, and post-hoc explanation
frameworks could be adapted to enhance model
transparency. Secondly, the design of lightweight and
real-time GNN models optimized for deployment on edge
devices (drones, mobile units, field sensors) would
significantly enhance operational utility in fast-evolving
disasters. Approaches such as federated GNNs and
knowledge distillation may also play a role in improving
efficiency and privacy.

Furthermore, addressing data scarcity through the
generation of synthetic graph data and transfer learning
across disaster types and geographies can improve model
generalizability and reduce dependency on large
annotated datasets. Lastly, fostering the development of
open-source platforms, standardized datasets, and
collaborative frameworks would promote reproducibility
and interdisciplinary innovation. The creation of shared
GNN disaster toolkits and graph-based benchmarks could
accelerate progress in both academic and applied settings.

In summary, while the application of GNNs in disaster
management is advancing rapidly, the field must
overcome critical challenges related to interpretability,
scalability, data integration, and validation. Bridging
these gaps through methodological innovation and cross-
sector collaboration will be key to realizing the full
potential of GNNs in building intelligent, adaptive, and
trustworthy disaster management systems.

Discussion Analysis: The Application of Graph
Neural Networks in Disaster Management

The application of Graph Neural Networks (GNNS) in
disaster management has evolved significantly over the
past two years, with increasing academic interest across
various domains, including flood prediction, evacuation
routing, and infrastructure resilience. However, a deeper
analysis of the literature reveals key patterns, advantages,
and challenges that shape the current landscape of GNN-
based solutions in disaster scenarios.

Despite these advancements, two critical challenges
remain. First and foremost, the interpretability of GNN
models continues to hinder their operational adoption.
Most GNNSs, especially GATs and ST-GCNs, function as
black-box systems, making it difficult for emergency
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stakeholders to trust and act upon their outputs. In
emphasizing this concern in their comprehensive survey
on GNN explainability, they note that the complex, non-
linear nature of GNNs "has increased the challenges of
understanding the workings of GNNs and the underlying
reasons behind their predictions,” and they call for robust
explanation frameworks to enhance trust and
accountability in safety-critical environments.

Second, the real-world deployment of GNNs remains
limited. Most models are evaluated using idealized datasets
that fail to reflect the noise, incompleteness, and variability
inherent in disaster contexts, particularly in developing
regions. We conducted a comprehensive survey and found
that real-world factors such as data imbalance, noise,
privacy constraints, and out-of-distribution scenarios cause
notable performance degradation in GNN applications.
They  emphasized  scalability,  robustness, and
generalization as persistent barriers to practical adoption.
Likewise, demonstrating this in the context of critical
infrastructure modeling studies showed that GNN-based
surrogates for seismic reliability analysis of highway bridge
systems suffered from limited generalizability and a lack of
validation on operational data, indicating a need for
deployment-ready validation.

To strengthen the novelty of this review, we explicitly
incorporate recent works and detailed explanations of
advanced techniques in GNNSs for disaster management.
A key contribution is the integration of Explainable Al
(XAI) methods such as ACGAN-GNNEXplainer (Lietal.,
2023) and GAN-GNNEXxplainer, which enhance the
reliability and fidelity of GNN explanations by using
generative adversarial approaches. Additionally, this
review highlights the role of transfer learning through
models like TSTL-GNN (Jiang et al., 2024b), which adopt
two-stage transfer learning on graph structures to enable
parameter and feature transfer across related tasks, an
approach that mitigates dependency on large annotated
datasets and supports deployment in data-scarce settings.

Furthermore, the review emphasizes the development
of multi-task GNN frameworks that address multiple tasks
simultaneously, such as seismic phase picking, magnitude
estimation, and source localization within a unified
backbone. This approach improves computational
efficiency and predictive consistency, making it
particularly valuable for real-time disaster response. In
addition, a structured mapping of GNN applications across
disaster phases (mitigation, response, recovery) is
presented, linking methods and datasets to practical needs.

Overall, the novelty of this review lies in its explicit
synthesis of XAl techniques, transfer learning strategies, and
multi-task GNN frameworks, which have not been
systematically mapped in prior studies, while offering
strategic directions for advancing adaptive, transparent, and
operationally ready GNN-based disaster management
systems.
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Conclusion

This systematic literature review has examined the
current landscape of Graph Neural Network (GNN)
applications in disaster management, focusing on studies
published between 2023 and 2024. The findings highlight
the growing integration of GNN architectures such as
GCNs, GATSs, Graph SAGE, and Spatio-Temporal GNNs
into various phases of disaster management, including
mitigation, emergency response, and recovery.

Across the 50 reviewed studies, GCN-based models
were the most frequently applied (=40%), especially for
static spatial tasks such as flood mapping, landslide
susceptibility, and infrastructure assessment. Spatio-
Temporal GNNs (=25%) were widely used for modeling
dynamic hazards like floods and wildfires, while
GraphSAGE (=10%) and GATs (=8%) were adopted in
more specialized contexts such as sensor reliability,
hazard monitoring, and wildfire spread prediction. Hybrid
GNN architectures (=12%) enabled multi-modal
integration of satellite imagery, 10T sensor streams, and
social media data, while the remaining =~5% of studies
focused on novel approaches, including Explainable and
Dual GNNs, reflecting a growing emphasis on
interpretability and scalability.

Despite these advancements, challenges remain in
terms of model interpretability, scalability, and real-world
deployment. Many GNN models still lack transparency,
hindering their acceptance by practitioners in operational
contexts. Moreover, the gap between simulation-based
results and practical implementation underscores the need
for more robust validation on real-world disaster data,
particularly in low-resource settings.

Future research should focus on developing
explainable GNN frameworks, improving training on
noisy and incomplete datasets, and fostering
interdisciplinary collaboration with disaster response
agencies to enhance practical deployment. By addressing
these challenges, GNN-based systems hold significant
promise in improving disaster preparedness, response,
and resilience in an increasingly risk-prone world.
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