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Abstract: The increasing frequency and complexity of natural disasters 

underscore the urgent need for intelligent systems that support timely and 

effective decision-making. Graph Neural Networks (GNNs) have emerged 

as a powerful deep-learning paradigm for modeling spatial and relational 

data, offering distinct advantages for disaster management. This study 

presents a Systematic Literature Review (SLR) of GNN-based approaches 

for disaster mitigation, emergency response, and post-disaster recovery, 

covering peer-reviewed publications from 2023 to 2024 and following 
PRISMA 2020 guidelines. A reproducible search strategy with explicit 

Boolean strings and database filters was applied across Scopus, IEEE 

Xplore, SpringerLink, and ACM Digital Library, yielding 50 primary studies 

after deduplication. Records were screened independently by two reviewers, 

disagreements were resolved by consensus, and the methodological quality 

of included studies was assessed using a predefined checklist. The findings 

show that GCN-based models were most widely applied (≈40%), particularly 

for flood mapping, landslide susceptibility, and infrastructure assessment. 

ST-GNNs (≈25%) supported dynamic hazard prediction, especially floods 

and wildfires, while Graph SAGE (≈10%) and GATs (≈8%) addressed 

sensor reliability, hazard monitoring, and evacuation planning. Hybrid 

architectures (≈12%) enabled multi-modal integration of satellite imagery, 
IoT sensor data, and social media, whereas ≈5% of studies explored transfer-

learning or multi-task frameworks and explainable models such as GNN 

Explainer and GRAPHLIME. Common benchmark datasets included GFED, 

GHCN, LISFLOOD-FP, Sentinel, and OpenStreetMap, with evaluation 

metrics spanning RMSE/MAE for regression and Accuracy/F1/AUROC for 

classification. Key trends indicate a shift toward context-aware, real-time 

models and greater reliance on heterogeneous data sources. Despite these 

advances, challenges remain in interpretability, scalability, standardized 

benchmarking, and validation on real-world disaster datasets. 

 

Keywords: Graph Neural Network, Disaster Management, Systematic, 
Evacuation, Prediction 

 

Introduction 

Disaster management is a strategic field that continues 

to evolve rapidly in response to the increasing intensity, 

frequency, and complexity of disasters worldwide. 

Phenomena such as global climate change, exponential 

population growth, uncontrolled urbanization, and 

excessive environmental exploitation have significantly 

heightened vulnerability to various natural disasters, 

including floods, earthquakes, forest fires, landslides, and 

tsunamis (Villagra et al., 2023; Romanello et al., 2024; 

Rezvani et al., 2023). In developing countries, including 

Indonesia, this vulnerability is further exacerbated by 

socio-economic disparities, a lack of resilient infrastructure, 
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and weak early warning systems. Under these conditions, 

conventional approaches traditionally used in early 

warning systems, disaster prediction, and risk mitigation 

are proving increasingly inadequate in responding to 

dynamic and complex challenges (Agbehadji et al., 2023; 

Awah et al., 2024; Pu et al., 2025). 

Disaster dynamics require not only rapid response but 

also accurate, data-driven decision-making. As such, 

digital transformation through the adoption of advanced 

technologies has become essential for improving the 

overall effectiveness of disaster management. One of the 

most rapidly advancing technologies being adopted in this 

field is Artificial Intelligence (AI), particularly through 

Machine Learning (ML) and Deep Learning (DL) 

approaches. These technologies have shown promise in 

processing large-scale disaster data, predicting affected 
areas, classifying risk levels, and developing real-time, 

data-driven early warning systems (Ghaffarian et al., 

2023; Bajwa, 2025). 

However, the application of AI models still faces 

several challenges; chief among them is their “black-box” 

nature. Models such as Convolutional Neural Networks 

(CNNS) and Long Short-Term Memory (LSTM) 

networks often produce outputs that are difficult for end 

users to interpret, especially within policymaking or 

emergency response contexts. The lack of interpretability 

and transparency in decision-making processes poses a 

significant barrier to the deployment of AI in disaster 
scenarios, where user trust is critical (Hassija et al., 2024). 

To address these challenges, there is a need for 

approaches that are not only powerful in modeling 

complex data but also capable of providing intuitive and 

structured representations of relationships between 

entities in both space and time. One such emerging 

approach is Graph Neural Networks (GNN). GNNs 

belong to a family of deep learning models specifically 

designed to process graph-structured data composed of 

nodes and edges that represent relationships between 

entities (Zeghina et al., 2024; Khemani et al., 2024). The 
key strength of GNNs lies in their ability to leverage 

topological information from spatial and temporal data, 

which are often irregular and complex. 

The disaster management domain is inherently 

compatible with graph structures, as disaster-related 

phenomena frequently involve interconnected 

infrastructures, interregional dependencies, logistics 

distribution, and evacuation routes. For example, the 

impact of an earthquake is not solely determined by the 

epicenter but also by the connectivity of road networks, 

the location of healthcare facilities, population density, 

and geographic conditions, factors that collectively form 

a dynamic risk network (Jana et al., 2023; Malama et al., 

2025). GNNs enable models to absorb information from 

these relational structures, resulting in more holistic 

predictions and decisions. 

Several studies have demonstrated the successful 

application of GNNs in disaster management scenarios. In 

flood prediction, for instance, a Multi-Source Water 

Elevation GNN (MSWE-GNN) model has improved the 

accuracy of water spread modeling and reduced 
computational requirements compared to conventional 

numerical methods (Bentivoglio et al., 2025; Oliveira 

Santos et al., 2023). Elsewhere, Graph Attention 

Networks (GATs) have been employed to generate 

optimal evacuation routes based on real-time traffic and 

road conditions (Xu et al., 2025). Another study utilized 

GNNs to predict post-earthquake infrastructure damage 

by leveraging satellite imagery and building network data 

(Rastiveis et al., 2023). 

In the disaster recovery phase, GNNs have also been 

used to develop logistics distribution recommendation 
systems. These systems take into account damaged 

infrastructure, evacuation shelter locations, and storage 

capacity using the network of relationships between 

distribution points (Andrianarivony and Akhloufi, 2024). 

In the context of forest fires, GNNs have been applied to 

map fire spread risks by analyzing the vegetation network 

structure, wind direction, and land slope (Rösch et al., 

2024). 

Nonetheless, the literature on GNN applications in 

disaster management remains scattered and fragmented. 

Most existing studies are exploratory in nature, focused 

on specific case studies, or propose models without 

providing a comprehensive overview of the 

methodological and application landscape. To date, there 

has been no Systematic Literature Review (SLR) that 

thoroughly maps the use of GNNs across the full disaster 

management cycle, mitigation, preparedness, emergency 

response, and recovery, and explores future research 

directions. 

This study addresses this gap by conducting a 

PRISMA-2020–compliant SLR of peer-reviewed 

publications from 2023 to 2024. A reproducible search 

strategy using explicit Boolean strings and database-

specific filters was applied across Scopus, IEEE Xplore, 

SpringerLink, and ACM Digital Library. Two 

independent reviewers screened all records, resolved 

conflicts by consensus, and assessed the methodological 

quality of each study using a predefined checklist. 
The review aims to answer three research questions: 

 

(1) Which specific GNN methods have been applied to 
disaster management 

(2) How are these methods used across different 

disaster phases and data types (satellite, IoT, social 

media) 

(3) What research gaps and future directions emerge, 

particularly regarding scalability, interpretability, 

and transfer-learning or explainable AI (XAI) 

techniques such as GNNExplainer and Graph LIME 
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To facilitate comparison and reproducibility, the 

review provides structured tables summarizing GNN 

methods, disaster types, commonly used datasets (GFED, 

GHCN), and evaluation metrics (F1-score, AUC, RMSE). 

By addressing these questions, this study contributes a 
systematic mapping of the literature, identifies key trends 

and challenges, and provides strategic recommendations 

for the development of GNN-based disaster management 

systems. The findings offer practical insights for 

policymakers and system developers and highlight how 

integrating heterogeneous data sources and advanced AI 

techniques can enable more adaptive, accurate, and 

transparent decision-support systems for future disaster 

scenarios (Aljurbua et al., 2025). 

Materials and Methods 

Materials 

The materials in this study consisted of peer-reviewed 

scientific articles retrieved from four major academic 
databases: Scopus, IEEE Xplore, SpringerLink, and the 

ACM Digital Library. The retrieved records were 

managed using Mendeley reference management 

software, which enabled systematic screening, 

deduplication, and documentation of the selection 

process. 

This study employs a Systematic Literature Review 

(SLR) methodology to identify, evaluate, and synthesize 

scholarly research on the application of Graph Neural 

Networks (GNNs) in disaster management. The SLR 

approach was selected for its ability to produce a 
comprehensive, transparent, and methodologically 

rigorous synthesis of existing literature. By applying 

predefined inclusion and exclusion criteria, the review 

ensures objectivity, reproducibility, and minimized 

selection bias. As emphasized in prior studies such as 

Aboualola et al. (2023) in Computers & Electrical 

Engineering and the review titled “Edge Technologies for 

Disaster Management: A Survey of Social Media and 

Artificial Intelligence Integration” the SLR methodology 

is instrumental in systematically mapping research trends, 

methodological approaches, real-world applications, and 

identifying critical gaps in knowledge within the domain 
of AI-based disaster response and management (Albahri 

et al., 2024). 

This review adopts the PRISMA 2020 framework 

(Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses), utilizing its updated 27-item checklist 

and flow-diagram structure to ensure transparency, 

methodological rigor, and reproducibility throughout the 

review process. The relevance and utility of PRISMA 

2020 have been reaffirmed in recent studies, including its 

application in nursing research (Carlo et al., 2024), which 

highlights its role in improving the completeness and 
clarity of systematic review reporting. Furthermore, the 

development of domain-specific extensions such as 

PRISMA-COSMIN for OMIs 2024 (Elsman et al., 2024) 

demonstrates its adaptability across specialized review 

contexts. In this study, PRISMA guidelines were 

systematically applied during the article selection phase, 
encompassing the definition of inclusion and exclusion 

criteria, critical appraisal of study quality, and transparent 

documentation of all review stages. 

Research Design 

This study is driven by three main research questions, 

formulated using the PICO framework (Population, 

Intervention, Comparison, Outcome, Context) (Ullah and 

Ali, 2025). The PICO framework was chosen because it 

offers a structured approach to defining the scope of the 
review, ensuring a focused and consistent process. It 

allows for a clear identification of the relevant studies by 

specifying the population, intervention, comparison, and 

outcomes, which helps in formulating precise research 

questions and guiding the literature selection process. The 

use of PICO in this context ensures that the review 

comprehensively addresses the core areas of interest in 

GNN applications for disaster management. The three 

research questions are as follows: 

 

RQ1: What types of GNN methods have been used in the 
context of disaster management 

RQ2: What are the primary applications of GNNs in 

various phases of disaster management, such as 

mitigation, emergency response, and recovery 

RQ3: What research gaps remain, and what future 

research directions should be pursued 

 

These questions provide a focused analytical 

framework for synthesizing the literature, ensuring that 

the review addresses all relevant aspects of GNN 

applications in disaster management. 

Literature Search Strategy 

The literature search in this study was conducted 

systematically and in a structured manner across four 

major academic databases: Scopus, IEEE Xplore, 

SpringerLink, and the ACM Digital Library. These 

databases were selected for their broad coverage of high-

quality peer-reviewed publications in the fields of Graph 

Neural Networks (GNNs), artificial intelligence, and 

disaster management and mitigation (Alshehri et al., 

2025). The search specifically focused on articles 

published within the timeframe of 2023 to 2024, to ensure 

that this review incorporates the latest developments and 

emerging trends in the relevant research domain. The 
initial inclusion criteria required that articles be written in 

English, have undergone peer review, and be published as 

journal articles or conference proceedings. 

The search strategy employed a combination of 
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keywords and Boolean operators, using the following 

primary query: ("Graph Neural Network" OR "GNN") 

AND ("Disaster Management" OR "Disaster Response" 

OR "Emergency Management" OR "Disaster Risk 

Reduction"). 
This search string was applied using the advanced 

search functions of each database with syntax adjustments 

as needed. In Scopus, the query was executed within the 

Title-Abs-Key fields and filtered by publication years 

2023–2024. In IEEE Xplore, the search was conducted 

across all metadata with filters applied for publication 

type and year. In SpringerLink and ACM Digital Library, 

the searches were limited to the fields of computer science 

and engineering, with results filtered to include only 

publications from 2023 and 2024. 

All search results were exported to the reference 

management software Mendeley to facilitate automatic 

deduplication of overlapping articles across databases. 

The article selection process was carried out in three 

phases: First, an initial screening based on titles and 

abstracts to exclude irrelevant studies; second, a full-text 
assessment to evaluate the substantive relevance of each 

article; and third, a final check against the pre-established 

inclusion and exclusion criteria. From the initial search, a 

total of 1,142 articles published in 2023 and 2024 were 

retrieved. After a rigorous screening process, 50 articles 

were deemed eligible and selected for in-depth analysis 

and thematic synthesis. All stages of the search and 

selection process were thoroughly documented to ensure 

transparency, accountability, and reproducibility of this 

systematic review. A summary of the search results per 

database is presented in Table 1. 
 
Table 1: Documentation of systematic literature search results (2023–2024) 

No. Database 
Publication 

Range 
Search Keywords Applied Filters 

Total 
Records 

Retrieved 

After 
Deduplicati

on 

Articles 
Selected 

1 Scopus 2023–2024 

("Graph Neural 
Network" OR 
"GNN") AND 

("Disaster 

Management" OR 
related terms) 

Peer-reviewed, 
English, TITLE-

ABS-KEY 
438 320 21 

2 
IEEE 

Xplore 
2023–2024 

("Graph Neural 
Network" OR 
"GNN") AND 
("Disaster" OR 
"Emergency") 

Journals and 
Conferences, 

English 
306 225 14 

3 
SpringerL

ink 
2023–2024 

"Graph Neural 

Network" AND 
"Disaster 

Management" 

Computer Science 
and Engineering 

fields 
198 145 9 

4 

ACM 

Digital 
Lib. 

2023–2024 

"Graph Neural 
Network" AND 
("Disaster" OR 

"Crisis Response") 

Full-text, Peer-
reviewed 

200 148 6 

 Total    1,142 838 50 

 

Inclusion and Exclusion Criteria 

To ensure the relevance and quality of the selected 

literature, clear inclusion and exclusion criteria were 

established prior to the review process. Articles were 

included if they were primary studies that explicitly applied 

Graph Neural Networks (GNNs) in disaster management, 

were peer-reviewed and published in reputable journals or 

conference were written in English, and were published 

between 2023 and 2024. Studies were excluded if they were 

secondary works, such as reviews or surveys lacking 

original experimental contributions, merely mentioned 

GNNs without applying them in disaster management, or 

were not available in full-text format. These criteria 

ensured that only the most recent, high-quality, and directly 

relevant studies were retained for detailed analysis. 

Article Selection Procedure 

The article selection process followed the three main 

stages outlined by the PRISMA 2020 guidelines (Shaheen 

et al., 2023). In the first stage, studies were filtered based 

on titles and abstracts to eliminate irrelevant articles. The 

second stage involved reviewing the full texts of the 

remaining studies to assess their relevance and alignment 

with the research focus. In the final stage, duplicate entries 

identified across the databases were removed. Initially, 
1,142 records were retrieved during the search process, 

and after a rigorous screening process, 50 articles were 

selected for further analysis and inclusion in this study, as 

shown in Fig. 1. 
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Fig. 1: Research framework based on PRISMA 2020 
methodology 

 

Data Extraction and Thematic Analysis 

The selected articles were systematically analyzed by 

extracting key data using a standardized extraction form. 

The data collected included: 

 

(1) Publication metadata (title, authors, year, and 

source) 

(2) The GNN method used (GCN, GAT, Graphs AGE) 

(3) The intended application and domain (flood 

prediction, evacuation routing, wildfire spread) 

(4) Data sources and datasets utilized 

(5) The specific disaster management phase addressed 

(mitigation, response, recovery) 

(6) Key findings, contributions, and limitations 

 

The data were then analyzed using thematic synthesis 

to identify key methodological trends, application areas, 

and existing research gaps. This analysis aimed to provide 

a comprehensive understanding of how GNNs are applied 

across different phases of disaster management (Fig. 2). 

Validity and Reproducibility 

To ensure the validity and reliability of the findings, all 

selection and extraction procedures were carried out 

systematically and documented thoroughly. Two 

independent researchers participated in the review process 

to minimize individual bias and improve consistency. Any 

disagreements between the reviewers were resolved 

through discussion until a consensus was reached. 

Transparency and reproducibility were ensured through 

detailed documentation of the selection decisions, data 

categorization, and justifications at each stage of the 

process. 

 

 
 

Fig. 2: Conceptual workflow of GNN applications in disaster 
management 

 

Results 

General Statistics 

To gain insights into the evolution of research on 
Graph Neural Networks (GNNs) in disaster management, 

the distribution of publications from 2023 to 2024 was 

analyzed, revealing an upward trend. A total of 21 studies 

were published in 2023 and 29 in 2024, reflecting growing 

interdisciplinary interest. This increase aligns with 

bibliometric trends reported in recent reviews on GNN 

adoption in environmental and geospatial analysis Liang 

et al., 2024) and correlates with the rising availability of 

high-resolution spatial data and sensor networks. Major 

AI conferences such as NeurIPS, AAAI, and IJCAI have 

Literatur Identification (PRISMA 2020)

Literatur Search (IEEE, Scopus, Springer, ACM)

Initial Screening (Title & Abstract)

Full-Text Assessment

Final Studies Included (n=50)

Data Extraction

- Year Of Publication

- GNN Method

-Disaster Type

Thematic Analysis

Answers to RQ1-RQ3  

 

[Multi-source Data Inputs] 
 Remote Sensing (satellite, SAR, Landsat) 
 IoT Sensors (hydrology, seismic, weather) 

Road Networks & GIS 
 Climate & Historical Databases 

 

 
[Graph Construction & Preprocessing]  
  Nodes: locations, sensors, infrastructures 

 Edges: spatial, temporal, functional relations 

 

 
[GNN Architectures]  

  GCN, GAT, GraphSAGE, ST-GNN, Hybrids 
  Training & Evaluation (metrics: RMSE, F1, AUROC) 

 

 

[Outputs for Disaster Management] 
 Flood risk maps & inundation forecasts 

  Evacuation route optimization 
  Damage and vulnerability assessment 

  Resource allocation & logistics planning 
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also hosted dedicated workshops on graph-based learning 

for disaster resilience, indicating that GNNs are becoming 

a core tool for dynamic decision-making in disaster 

contexts. 

Distribution of GNN Methods 

This section presents an analysis of the distribution of 

Graph Neural Network (GNN) methods used in disaster 

management studies. Based on the reviewed articles 

published between 2023 and 2024, various GNN 

architectures have been applied, each tailored to specific 

tasks such as evacuation route optimization, flood 

prediction, infrastructure damage assessment, and risk 

propagation modelling. The most commonly adopted 

GNN variants are as follows: 

 

 Graph Convolutional Networks (GCN): GCNs are 

frequently employed due to their simplicity and 

effectiveness in modelling spatial dependencies 
within disaster-related graphs (road networks, 

infrastructure layouts). They are widely applied in 

applications such as flood mapping and earthquake 

impact assessments (Murshed et al., 2024; Zhu et 

al., 2024) 

 Graph Attention Networks (GAT): GATs enable the 

assignment of different attention weights to 

neighbouring nodes, making them suitable for 

modelling dynamic systems such as real-time 

traffic-aware evacuation routing and wildfire spread 

prediction (Zhang et al., 2023) 

 Graph SAGE: Graph SAGE is preferred for 
inductive learning on large-scale, evolving graphs, 

particularly in disaster scenarios that involve 

streaming or sensor-based data updates (Wu et al., 

2023) 

 Spatio-Temporal GNNs (ST-GCN, T-GCN): These 

models integrate both spatial and temporal features, 

allowing for effective modelling of disaster 

phenomena that evolve over time, such as rainfall-

induced landslides or the spread of wildfires (Yao et 

al., 2023) 

 Heterogeneous GNNs and multiplex GNN variants: 
These are utilized to integrate diverse data sources, 

including satellite imagery, meteorological 

forecasts, demographic information, and 

infrastructure layers, into unified models that can 

support more comprehensive disaster risk 

assessments (Shan et al., 2025) 

 

Distribution by Disaster Types and Applications 

This section presents the distribution of GNN 

applications based on disaster types and their 

corresponding tasks across different phases of disaster 

management, namely mitigation, preparedness, response, 

and recovery. Based on studies published between 2023 

and 2024, Graph Neural Networks have been applied 

across a diverse set of natural and anthropogenic disasters, 

demonstrating their adaptability and effectiveness in 

handling complex, multi-relational data structures: 
 
 Floods: Floods are the most frequently addressed 

disaster type in the reviewed studies. GNNs, 

particularly GCN and ST-GCN, have been utilized 

to model water propagation, predict inundation 

areas, and assess risk levels in flood-prone zones. 

Real-time flood forecasting and early warning 

systems have also integrated GNNs with 

hydrological and topographic data 

 Earthquakes: In earthquake scenarios, GNNs are 

employed to assess structural damage based on 

interconnected building networks and satellite 
imagery. Models like Graph SAGE and 

Heterogeneous GNNs have been used to estimate 

building vulnerability, infrastructure collapse risk, 

and post-event accessibility for emergency services 

 Wildfires: Graph Attention Networks (GATS) and 

spatio-temporal GNNs have been applied to wildfire 

spread prediction by modelling vegetation 

networks, wind speed, slope, and fire history. These 

models are critical in optimizing evacuation 

planning and resource allocation during wildfire 

events (Zhao et al., 2024) 

 Tsunamis: Though less frequently addressed, 

tsunamis present complex routing and infrastructure 

challenges. GNNS are applied to model evacuation 

network efficiency, identify bottlenecks in routes, 

and optimize shelter allocation based on dynamic 

population flow and topography 

 Multi-Hazard and Logistics Planning: Some studies 

use GNNs to manage multi-hazard scenarios or 

disaster logistics (transportation, distribution of aid, 

and shelter management). These models integrate 

various data modalities such as road networks, hazard 
maps, population density, and storage facility 

capacities to optimize logistics operations and improve 

situational awareness (Ghahremani-Nahr et al., 2024) 
 

Dominant GNN Methods (RQ1) 

This section addresses RQ1, which explores the 

dominant types of Graph Neural Network (GNN) 

methods used in disaster management applications. Based 

on the systematic review of 50 selected articles published 

between 2023 and 2024, five main categories of GNN 

methods were identified as the most frequently applied 

across diverse disaster scenarios. 

Graph Convolutional Networks (GCN) 

GCNs are the most widely used GNN method, 

appearing in over 40% of the reviewed studies. Their 
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ability to model spatially connected structures (road 

networks, building layouts, drainage systems) makes 

them highly suitable for flood prediction, earthquake 

impact analysis, and shelter allocation modeling. GCNs 

are favored for their computational efficiency and 

interpretability in static spatial networks. In developed 

Flodden-GRU, a spatio-temporal graph neural network 

that integrates GCN and GRU architectures to predict 

urban flooding using precipitation and hydrological 

simulation data. The model demonstrated significantly 

higher accuracy and computational efficiency compared 

to traditional physics-based hydrological models. Graph 

Attention Networks (GAT). 

GATs are used in approximately 20% of the studies and 

are particularly advantageous in dynamic and heterogeneous 

environments, where the importance of each node’s 

neighbors varies. GATS have been applied in wildfire spread 

modeling, dynamic evacuation routing, and real-time traffic 

analysis. It developed an LSTM-GAT model to predict wind 

field dynamics by assigning attention weights between 

meteorological stations based on spatial relationships. This 

approach demonstrated the effectiveness of GATs in 

capturing spatiotemporal dependencies in dynamic 

environments, which is crucial for applications such as fire 

propagation modeling and evacuation planning. 

Graph SAGE (Sample and Aggregate) 

Graph SAGE is adopted in studies requiring inductive 

learning, particularly in settings where new nodes 

(sensors, people, shelters) are frequently added to the 

graph. It enables real-time learning without retraining the 

entire model, making it useful for sensor-based flood and 

landslide monitoring systems. Hembert et al. (2024) 

developed a Graph SAGE-based model for assessing 

sensor integrity in nuclear waste monitoring systems, 

enabling real-time adaptation to new sensor anomalies 

and hazard reports in dynamic environments. 

Spatio-Temporal GNNs (ST-GCN, T-GCN) 

These models appear in 12% of the articles and are 

essential for capturing both spatial and temporal dynamics 

of disasters such as rainfall evolution, tsunami 

propagation, or sequential infrastructure collapse. ST-

GCNs are primarily used in flood forecasting and real-

time evacuation simulations. Yang et al. (2023) proposed 

a runoff prediction model based on a Dynamic 

Spatiotemporal Graph Neural Network (DS-GNN), which 

integrates rainfall time series with river network 

topologies to capture temporal and spatial dependencies 

in flood risk forecasting. 

Heterogeneous and Multiplex GNNs 

Emerging models (10% of reviewed studies) 

incorporate heterogeneous data types such as satellite 

images, population density, building types, and 

meteorological inputs. These GNNS allow flexible 

representations for multi-layered disaster systems, 

enabling integrated decision support tools. Ngartera et al. 

(2024) applied graph theory to optimize emergency 
response logistics by integrating road network structures, 

storage facility capacities, and shelter accessibility, 

enabling more efficient routing and resource allocation 

during disaster scenarios in Table 2. 

 
Table 2: Summarizes the main advantages of each method 

Method Key Focus Main Strength Main Limitation 

GCN 
Graph 
topological 
structure 

Stable, efficient, well-
suited for spatial 
classification 

Limited 
adaptability to 
critical edge 
importance 

GAT 
Dynamic 
spatial 
relations 

Prioritizes important 
nodes, effective for 
segmentation 

High 
computational cost 

GNN + 

GRU 

Temporal + 
spatial 
dynamics 

Strong for sequence-

based forecasting 

Complex and data-

intensive 

 

Based on the application context, GCN is well-suited 

for post-disaster analyses such as damage classification or 

impact mapping. GAT excels in satellite imagery 

segmentation or large-scale spatial analysis. Meanwhile, 

temporal hybrid models are most applicable in the 

mitigation and emergency response phases, especially in 

early warning and real-time monitoring systems. 

Table 3 summarizes the distribution of Graph 
Neural Network (GNN) methods, evaluation metrics, 

datasets, and key findings. GCN-based models were the 

most frequently employed (≈40%), particularly in 

flood forecasting, landslide susceptibility mapping, 

and extreme weather prediction, due to their robustness 

in capturing spatial topologies. Spatio-temporal GNNS 

(ST-GNNS) accounted for approximately 25% of 

studies, reflecting their ability to integrate temporal 

sequences with spatial dependencies, which is 

especially valuable for modelling dynamic hazards 

such as floods and wildfires. Graph SAGE-based 
approaches represented about 10% of the work, with 

applications in sensor reliability, hazard monitoring, 

and adaptive communication in post-disaster contexts. 

Meanwhile, Graph Attention Networks (GATS) 

contributed roughly 8%, primarily in wildfire spread 

modelling and evacuation routing, where adaptive 

weighting of node relationships is critical. Hybrid 

architectures that combine GNNS with CNNS, GRU, 

or other deep learning techniques made up around 12% 

of the reviewed studies, enabling multi-modal 

integration of heterogeneous data sources such as 

satellite imagery, IOT sensor feeds, and social media 
streams. The remaining 5% involved emerging 

architectures such as Explainable GNNS, Dual GCNS, 



Sularno et al. / Journal of Computer Science 2026, 22 (2): 435.451 

DOI: 10.3844/jcssp.2026.435.451 

 

442 

and Contrastive GNNS, highlighting a growing interest 

in model interpretability, transparency, and domain-

specific optimizations. Based on the synthesis of 

research results summarized in Tables 3-4 presents a 

comparison of the best GNN models for each type of 

disaster in the 2023–2024 period. 

 

Table 3: Summary of GNN methods, evaluation metrics, datasets, and key notes 

GNN Method Disaster Phase Evaluation Metrics  Datasets and Key Notes 

GCRN / LocalFloodNet 
(Roudbari et al., 2024) 

Preparedness/Mitigation 
MAE, MSE (water 
level) 

Integrates GNN with a digital twin for 
visualization; datasets: LISFLOOD-FP  

SWE-GNN  
(Bentivoglio et al., 2025) 

Preparedness/ Planning 
MAE depth ≈ 0.04 
m; MAE discharge ≈ 
0.004 m²/s 

Physics-informed surrogate; orders of 
magnitude faster than solvers; seismic 
datasets 

FloodGNN-GRU (Kazadi 
et al., 2024) 

Early Warning 
RMSE/MAE; 
>1000× faster 
inference 

Outperforms data-driven baselines; datasets: 
Kaggle 

PER-GCN Response/ Evacuation 
Accuracy, recall, 

efficiency 

Combines visual analytics + GNN to optimize 

evacuation routes;  

Edge-based GNN   

(Malama et al., 2025) 
Recovery/ Resilience 

Network efficiency, 

vulnerability 

Identifies critical road segments for resilience 

planning; dataset: Road networks 

STGNN  

(Rösch et al., 2024) 
Preparedness/ Response 

AUROC, F1, 

Accuracy 

Models wildfire spread spatio-temporally; 

datasets: European wildfires 

Causal-GNN (Zhu et al., 

2023) 

Preparedness/Early 

Warning 

AUROC, F1 ↑ vs 

baseline 

Introduces causal adjacency to reduce 

spurious links;  

Multi-task GNN backbone 

(Zhao et al., 2024) 
Preparedness/monitoring 

Higher picking and 

location accuracy 

Introduces causal adjacency to reduce 

spurious links;  

Contrastive GNN 

(Murshed et al., 2024) 
Early Warning 

MSE reduced with a 

5s window 

Achieves reliable EEW with short input 

windows;  

Temporal Inception + GCN 
(Bloemheuvel et al., 2023) 

Early Warning 
MSE ↓ 16.3% vs 
baseline 

Hybrid model captures temporal & spatial 
correlations; dataset: Earthquake 
waveforms 

GNN + path-signature 
features 

Monitoring/Preparedness RMSE, MAE 
Novel path signature features enhance SSE 
detection. Datasets: GPS timeseries 

Dual Graph Convolutional 
Net (Wang et al., 2024) 

Preparedness/Mapping Accuracy, IoU, F1 Combines superpixel & relational graphs 

GCN + LSTM (Zhu et al., 
2023) 

Preparedness/Risk 
Mapping 

Accuracy 92.38%, 
AUC 0.9782 

Self-screening strategy to reduce noisy 
samples 

GNN-Graph DL (Clements 
et al., 2024) 

Early Warning RMSE, MSE 
Graph-based propagation model; improves 
shaking forecasts for EEW 

Spatio-temporal GNNs 
(Pianforini et al., 2024) 

Preparedness MAE, RMSE 
Shows potential of ST-GNNs for hydraulic 
modeling; highlights need for scalability 

GNN + GRU (Kazadi et al., 

2023) 
Early Warning 

RMSE/MAE; 
~1000× faster 
inference 

Confirms speed & accuracy advantages in 

real flood cases (Hurricane Harvey) 

ST-GNN (Ge et al., 2022) Preparedness Accuracy, IoU, F1 
Provides a broader context for ST-GNN 
wildfire modeling  

Causal Spatio-Temporal 
GNN  (Jiang et al., 2024a) 

Preparedness/Early 
Warning 

MAE, RMSE vs 6 
baselines 

CSTGNN outperforms baselines for up to 6h 
lead times 

Custom GNN for PEGS 
Preparedness/Tsunami 
EW Chain 

Accuracy in 
magnitude & focal 

mechanism 

Enables faster tsunami warning by analyzing 
prompt elastogravity signals 

Explainable GNN 
Monitoring/Early 
Warning 

Accuracy, attribution 
scores 

Enhances transparency in extreme weather 
forecasting; highlights observation impact 

(TDC-GCN) (Touameur et 
al., 2024) 

Preparedness/Planning 
Primary: Accuracy 
(overall classification 
performance)  

Trust-aware GCN with Monte Carlo Dropout 
achieves higher accuracy  

 (GCN) (Yenni and Arun, 
2024) 

post-event analysis MAE, RMSE 
Integrates segmentation, GCN, & relaxation 
labeling to capture objects  

 (HD-TGCN) (Jiang et al., 
2024b) 

Forecasting/Early 
Warning prediction 

MAE, RMSE, NSE, 
HD-TGCN  

Dynamic graph construction via self-attention 
captures changing spatial-temporal relations  
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Table 3: Continued  

 (SC-GNN) – GNN 
Early 
Warning/Forecasting  

MAE, RMSE 
SC-GNN outperforms baselines (TISER-
GCN, CNN, GMPE) in all metrics 

 (EA-GCN) –-GRU (Peng 
et al., 2023) 

Forecasting/Monitoring  
Commonly reported: 
RMSE, MAE 

EA-GCN improves long-term SST 
forecasts; Sea Surface Temperature (SST) 

datasets 

 (HD-TGCN) (Jiang et al., 
2023) 

Forecasting/Early 
Warning – 

MAE, RMSE, NSE 
Dynamic adjacency captures changing 
spatial relations over time. Real flood 
forecasting dataset 

GNN + multi-scale 
convolution (Zhao et al., 
2024) 

Monitoring/Environment
al  

RMSE ≈ 1.85 K on 
IASI imagery • 
Simulated LST 
RMSE ≈ 1.0 K, 

better than ANN 
baseline (~2.0 K) 

GNN-based band selection reduces 
dimensionality while improving retrieval 
accuracy  

 (DCI-PGCN) (Li et al., 
2023) 

Response/Monitoring/De
tection  

mIoU: 67.65% 
(Sichuan & Bijie), 
F1-score: 82.71%  

Outperforms CNN, transformer, and GCN 
baselines; dataset: IAS 

 (DRL) + (GNN) 
(Ampratwum and Nayak, 
2024) 

Early 
Warning/Forecasting  

Failure / Restoration 
phase – when failures 
occur in optical links  

Restoration success rate • Resource 
utilization (e.g., used links, wavelengths)  

GNNs (Smeriglio et al., 
2024) 

Human genotype + PPI 
data  

Prediction / Risk 
Assessment -MAE, 
RMSE  

Comparison metrics vs linear/nonlinear 
baselines (e.g., polygenic risk score, 
XGBoost, etc.)  

(HKTGNN) (Zhou et al., 

2023) 

Real-world supply chain 

data 

F1-score and AUC 
(Area Under ROC 
Curve)   

Model alleviates "data hunger" (missing or 
biased node features) via the transferable 
module.  

 GCRN 
Forecasting/Early 
Warning/Monitoring  

MAE, RMSE, NSE 
LocalFloodNet GNN pairs accurate 
forecasting with Seismic waveform datasets. 

ACCA-DGCN (Yan et al., 
2024) 

Gait phase prediction/ 
Detection /  

 Average accuracy: 
92.26% (user-
independent)  

ACCA-DGCN captures spatial-temporal 
periodicity effectively using skeleton 
graphs 

GraphSAGE (Hembert et 

al., 2024) 

Monitoring / 

Preparedness 

accuracy, precision, 
recall, F1-score, and 
TPR and TNR 

GNNs can model physical processes and 
detect multiple sensor faults, ensuring 
reliable data  

Edge-GNN  (Jana et al., 
2023) 

post-disaster MAE, and RMSE 
The model is fast, accurate, and supports 
emergency decisions across various disasters 

 GraphSAGE -  DDQN (Ji 
et al., 2025) 

post-disaster 

Communication 

success rate, 
decision-making time 

Dynamically address changes in vehicle 
numbers and interference 

GQNN, GAT, GCN 

(Jiang et al., 2024c) 
Early Warning 

Prediction accuracy, 
prediction speed, and 
low latency 

GNNs enable adaptive, efficient routing in 

dynamic networks 

(GCN) 
(Liang et al., 2024) 

Forecasting/Early 
Warning/Monitoring 

F1 score, and 
accuracy, as well as 
comparing energy 

efficiency  

GNN-SNN improves accuracy and 
efficiency, dataset = GeoText 

GNN-SAGE (Oliveira 
Santos et al., 2023) 

early predictions 
RMSE, MAE, 
MAPE, and R² 

The model outperforms the baseline by using 
the main  to estimate river levels 

GNN-CNN (Rastiveis et 
al., 2023) 

post-disaster 
Building and road 
labeling achieved 
84% and 87%  

The model is capable of generating multi-
level damage maps automatically and 
quickly 

GNN 
(Yang et al., 2023) 

Preparedness 
MAE, MSE, MAPE, 
and NSE 

 

GNNs extract features from non-Euclidean 
structures, enhancing flow  

GCNs 
(Zhao et al., 2024) 

Pre-disaster 
Accuracy and F1-
score, MAE, MSE, 
MAPE, and NSE 

GNNs are able to handle irregular data and 
spatial-temporal complexity. Datasets: 
seismic 

GNN (Karapiperis and 
Kochmann, 2023) 

pascabencana 
FEM (Finite Element 
Method) 
 

The model is drilled using experimentally 
validated FEM simulation data. Dataset: 
ETH Research Collection 

https://www.biorxiv.org/content/10.1101/2024.08.13.605573v2?utm_source=chatgpt.com
https://www.biorxiv.org/content/10.1101/2024.08.13.605573v2?utm_source=chatgpt.com
https://www.biorxiv.org/content/10.1101/2024.08.13.605573v2?utm_source=chatgpt.com
https://www.biorxiv.org/content/10.1101/2024.08.13.605573v2?utm_source=chatgpt.com
https://www.biorxiv.org/content/10.1101/2024.08.13.605573v2?utm_source=chatgpt.com
https://www.biorxiv.org/content/10.1101/2024.08.13.605573v2?utm_source=chatgpt.com
https://www.biorxiv.org/content/10.1101/2024.08.13.605573v2?utm_source=chatgpt.com
https://www.biorxiv.org/content/10.1101/2024.08.13.605573v2?utm_source=chatgpt.com
https://www.biorxiv.org/content/10.1101/2024.08.13.605573v2?utm_source=chatgpt.com
https://www.biorxiv.org/content/10.1101/2024.08.13.605573v2?utm_source=chatgpt.com
https://www.biorxiv.org/content/10.1101/2024.08.13.605573v2?utm_source=chatgpt.com
https://arxiv.org/pdf/2311.04244?utm_source=chatgpt.com
https://arxiv.org/pdf/2311.04244?utm_source=chatgpt.com
https://arxiv.org/pdf/2311.04244?utm_source=chatgpt.com
https://www.nature.com/articles/s41598-024-68857-y?utm_source=chatgpt.com
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Table 4: Comparison of the best GNN models by disaster type (2023–2024) 

Disaster Type Best Performing GNN Model Highlighted Metrics Key Findings 

Floods 
Flood GNN-GRU (GCN + GRU 

hybrid) 

RMSE ↓, MAE ↓, 
~1000× faster vs 
LISFLOOD-FP 

Achieved higher accuracy and 
significantly faster computation 

compared to physics-based 
hydrological models 

Earthquakes 
Contrastive GNN & Path-

Signature GNN 

MSE ↓, improved 

reliability for EEW 

Enabled faster and more reliable 
earthquake early warning with very 
short input windows 

Wildfires 
Spatio-Temporal GNN (ST-
GNN) 

AUROC ↑, F1-score ↑ 
Outperformed GAT and CNN 
baselines in modeling wildfire spread 
dynamics 

Landslides 
Dual Graph Convolutional 
Network (Dual-GCN) 

Accuracy > 90%, IOU 
↑ 

Provided more accurate landslide 
detection from satellite imagery 
compared to CNN-based models 

Tsunamis PEGS-GNN 
Accuracy ↑ (magnitude 

& focal mechanism) 

Enabled faster tsunami early warning 
through analysis of Prompt 
ElastoGravity Signals 

Evacuation & 
Logistics 

Edge-GNN / PER-GCN 
Network efficiency ↑, 
Recall ↑ 

Optimized evacuation routing and 
logistics distribution, outperforming 

traditional shortest-path algorithms 

Climate / SST 
Forecasting 

EA-GCN (Explainable Adaptive 
GCN) 

RMSE ↓, MAE ↓ 
Improved long-term sea surface 
temperature forecasting compared to 
ANN and CNN baselines 

 
Table 5: Commonly used datasets in GNN-based disaster management studies (2023–2024) 

Dataset / Database Disaster Type Source Usage in GNN Studies 

LISFLOOD-FP Flood 
Hydrological 
simulation (EU JRC) 

Benchmark for flood extent & water level 

prediction; surrogate models (Flood GNN-GRU, 
SWE-GNN) 

GFED (Global Fire Emissions 
Database) 

Wildfire 
NASA satellite 
(MODIS, ESA) 

Fire spread modeling, spatio-temporal GNN 
wildfire prediction (ST-GNN, GAT) 

GHCN (Global Historical 
Climatology Network) 

Weather / 
Climate 

NOAA (USA) 
Long-term climate & rainfall data; input for flood 
& landslide susceptibility models 

European Wildfire Dataset Wildfire Copernicus / ESA 
Training & evaluation of ST-GNN for wildfire 
danger prediction 

Seismic Waveform Datasets 
(IASPEI, ETH) 

Earthquake 

International 

Seismological 
Centre, ETH Zürich 

Earthquake early warning (Contrastive GNN, DS-
GNN, path-signature GNN) 

SAR / Satellite Imagery 
(Sentinel-1, Landsat) 

Earthquake, 
Landslide, 
Infrastructure 
Damage 

ESA Copernicus, 
NASA Landsat 

Post-disaster building damage mapping, landslide 
detection (Dual GCN, GNN-CNN) 

Road Network Data 
(OpenStreetMap, National 

GIS) 

Earthquake, 
Tsunami, 

Evacuation 

OpenStreetMap, 
National Mapping 

Agencies 

Evacuation routing, road vulnerability analysis 
(Edge-GNN, PER-GCN) 

Prompt Elasto Gravity Signals 
(PEGS) 

Tsunami / 
Earthquake 

Global seismic 
stations 

Tsunami early warning and earthquake magnitude 
estimation (PEGS-GNN) 

Sea Surface Temperature 
(SST) Datasets 

Climate / 
Cyclone 

NOAA, Remote 
Sensing SST archives 

Long-term SST forecasting using EA-GCN, GRU 
hybrids 

Custom Local Datasets 
(Kaggle, City Traffic, Sensor 
IoT) 

Flood, 
Evacuation, 
Multi-hazard 

Open data portals, 
municipal IoT 

Evacuation planning, urban flood prediction, sensor 
reliability testing 

 

Based on Table 3, a number of datasets commonly 

used in Graph Neural Networks (GNN)-based disaster 

management studies in the 2023–2024 period is further 

summarized in Table 5. 

Based on the research synthesis summarized in 

Table 3, the classification of GNN the classification of 

GNN applications according to the disaster phase is 

shown in Table 6. 

Applications of GNN in Disaster Management 

(RQ2) 

The application of Graph Neural Networks (GNNs) in 
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disaster management spans across the three main phases of 

disaster response mitigation, emergency response, and 

recovery. Each phase requires tailored modeling approaches, 

and GNNS have been increasingly recognized for their 

ability to represent complex spatial relationships, 

interdependencies, and multi-source data integration. 

 
Table 6: Classification of GNN applications by disaster phase (2023–2024) 

Disaster Phase GNN Methods Commonly Used Typical Applications 

Mitigation / Preparedness 
GCN, ST-GNN, Dual-GCN, EA-
GCN 

Flood risk mapping (Flood GNN-GRU, SWE-GNN), 
landslide susceptibility (Dual-GCN), wildfire danger 
prediction (ST-GNN, Causal-GNN), long-term climate & SST 
forecasting (EA-GCN) 

Emergency Response 
GAT, ST-GNN, Graph SAGE, Edge-
GNN, PER-GCN 

Real-time evacuation routing (GAT, PER-GCN), traffic-

aware route optimization (DGCN-LSTM), dynamic resource 
allocation (Graph SAGE + DRL), wildfire spread prediction 
(ST-GNN) 

Recovery 
Edge-GNN, Graph SAGE, 
Heterogeneous GNNs, GNN-CNN 
hybrids 

Post-disaster infrastructure damage mapping (GNN-CNN, 
SAR imagery), identification of critical road segments (Edge-
GNN), logistics and supply chain optimization 
(Heterogeneous GNNs, Graph SAGE) 

 

Mitigation Phase 

In the mitigation phase, GNNs are used to assess 

vulnerability and simulate potential risks before a disaster 
occurs. Typical use cases include: 

 

 Flood risk prediction: Spatio-temporal GNNs such 

as Flodden-GRU Kazadi et al., 2024) have 

integrated rainfall, elevation, and river network 

topology to predict flood extent with significantly 

higher accuracy compared to traditional 

hydrological models 

 Infrastructure vulnerability analysis: GNNs based on 

hydraulic graph modeling have been employed to 

assess the resilience of critical infrastructure 

systems, such as river channel networks, which 
could be adapted for analyzing interdependencies 

among bridges, roads, and hospitals 

 

Emergency Response Phase 

During disasters, real-time decision-making is 

essential. GNNS supports emergency response operations 

through: 

 

 Evacuation route optimization: Graph Attention 
Networks (GATS) and temporal Graph Neural 

Networks (GNNSs) have been widely used to 

determine optimal evacuation routes by 

incorporating dynamic variables such as traffic flow, 

hazard spread, and infrastructure status. For 

instance, (Rahman and Hasan, 2023) developed a 

Dynamic Graph Convolutional LSTM (DGCN–

LSTM) model to support hurricane evacuation 

planning. The model integrates real-time road traffic 

data and hazard conditions, enabling the 

prioritization of evacuation paths while accounting 
for factors such as road blockage, shelter capacity, 

and risk level fluctuations 

 Sensor network analysis: Graph SAGE models 

enable rapid adaptation to new sensor inputs in flood 

monitoring or seismic detection systems. For 

example, developed a Graph SAGE-based approach 

to detect and manage sensor anomalies in a nuclear 
waste monitoring network, demonstrating the 

model’s ability to adapt to new sensor data 

dynamically and robustly 

 Resource allocation: Heterogeneous GNNs can 

model the dynamic allocation of emergency 

resources by integrating transportation networks, 

demand data, and road conditions. It introduced a 

supervised GNN framework that efficiently 

allocates resources in heterogeneous 

communication networks by learning from 

historical scheduling decisions. In a vehicular 
context, Graph SAGE with deep reinforcement 

learning to distribute spectrum resources 

dynamically across vehicle-to-everything (V2X) 

networks, demonstrating real-time adaptability 

comparable to dispatch systems for ambulances or 

fire trucks. Additionally, Zhang et al. (2024) 

proposed a graph-encoded EPSO model to 

schedule heterogeneous computing tasks based on 

resource attributes, parallel to allocating 

emergency services under varying road and 

demand conditions 

 

Recovery Phase 

Post-disaster recovery involves logistics planning, 

reconstruction, and impact analysis. GNNs are being 

adopted to: 

 

 Predict post-disaster infrastructure damage using 

GNN‑based edge ranking models that identify 
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critical road segments for immediate restoration. 

High‑resolution SAR imagery following the 2023 

Türkiye earthquakes has also been processed with 

GNN‑enhanced approaches to estimate building-

level damage (Soleimani-Babakamali et al., 2025) 

 Support logistics distribution systems, particularly 

in damaged urban areas. Graph neural network 

models have been used to predict post‑hazard supply 

chain disruptions, integrating inter-firm relational 

data analogous to modeling relief distribution across 

damaged networks (Yang et al., 2024) 

 Community recovery mapping: Multi-source fusion 

frameworks utilizing satellite imagery, social media, 

and geospatial exposure data have been developed 

using graph-based aggregation to highlight recovery 

priority zones based on vulnerability and 
connectivity (Wieland et al., 2025) 

 

Challenges, Gaps, and Future Directions (RQ3) 

Although Graph Neural Networks (GNNS) have 

demonstrated significant potential in enhancing disaster 

management systems, several challenges and research 

gaps remain, limiting their widespread adoption in 

operational contexts. One of the most prominent issues is 

the interpretability of complex GNN models. In 

highlighting that the non-linear combination of graph 

structures and feature data increases the opacity of GNN 

predictions. This opacity is further problematic in safety-

critical scenarios, where stakeholders such as emergency 

planners require clear justifications for model outputs; 

indeed, traffic and risk-critical systems show that GNNs 

behave like "black box" models, creating barriers to trust. 

Moreover, post-hoc explanation techniques used to 

enhance transparency have been shown to be vulnerable 

to adversarial perturbations, raising concerns about their 

reliability in high-stakes applications. 
Another critical obstacle is the limited real-world 

deployment of GNNS during actual disaster events. Many 

existing studies are simulation-based, lacking live 

validation and suffering from scalability constraints, high 

computational costs, and assumptions of clean, complete 

data conditions rarely met in field settings, especially in 

developing regions. These limitations, including 

sensitivity to noise, data imbalance, and out-of-

distribution scenarios, have been documented in recent 

surveys (Jiang et al., 2024a). 
From a methodological perspective, the review reveals 

several noteworthy research gaps. First, most existing 

works concentrate on the mitigation and emergency 

response phases, with comparatively little attention paid 

to the recovery phase, a critical component of disaster risk 

reduction that involves rebuilding infrastructure, restoring 

services, and supporting community resilience. Second, 

there is no standardized benchmark dataset or evaluation 

framework for GNN applications in disaster contexts, 

resulting in fragmented comparisons across studies and 

impeding reproducibility. Third, although heterogeneous 

GNNs have been proposed, very few studies fully 

leverage multimodal integration (combining remote 
sensing, demographic, meteorological, and mobility data) 

for holistic disaster modelling. 

In response to these limitations, several future research 

directions are proposed. Firstly, there is a need to develop 

explainable GNN architectures capable of producing 

interpretable outputs without sacrificing predictive 

accuracy. Techniques such as graph attention 

visualization, saliency mapping, and post-hoc explanation 

frameworks could be adapted to enhance model 

transparency. Secondly, the design of lightweight and 

real-time GNN models optimized for deployment on edge 

devices (drones, mobile units, field sensors) would 

significantly enhance operational utility in fast-evolving 

disasters. Approaches such as federated GNNs and 

knowledge distillation may also play a role in improving 

efficiency and privacy. 
Furthermore, addressing data scarcity through the 

generation of synthetic graph data and transfer learning 

across disaster types and geographies can improve model 

generalizability and reduce dependency on large 

annotated datasets. Lastly, fostering the development of 
open-source platforms, standardized datasets, and 

collaborative frameworks would promote reproducibility 

and interdisciplinary innovation. The creation of shared 

GNN disaster toolkits and graph-based benchmarks could 

accelerate progress in both academic and applied settings. 

In summary, while the application of GNNs in disaster 

management is advancing rapidly, the field must 

overcome critical challenges related to interpretability, 

scalability, data integration, and validation. Bridging 

these gaps through methodological innovation and cross-

sector collaboration will be key to realizing the full 

potential of GNNs in building intelligent, adaptive, and 
trustworthy disaster management systems. 

Discussion Analysis: The Application of Graph 

Neural Networks in Disaster Management 

The application of Graph Neural Networks (GNNs) in 

disaster management has evolved significantly over the 

past two years, with increasing academic interest across 
various domains, including flood prediction, evacuation 

routing, and infrastructure resilience. However, a deeper 

analysis of the literature reveals key patterns, advantages, 

and challenges that shape the current landscape of GNN-

based solutions in disaster scenarios. 

Despite these advancements, two critical challenges 

remain. First and foremost, the interpretability of GNN 

models continues to hinder their operational adoption. 

Most GNNs, especially GATs and ST-GCNs, function as 

black-box systems, making it difficult for emergency 
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stakeholders to trust and act upon their outputs. In 

emphasizing this concern in their comprehensive survey 

on GNN explainability, they note that the complex, non-

linear nature of GNNs "has increased the challenges of 

understanding the workings of GNNs and the underlying 
reasons behind their predictions," and they call for robust 

explanation frameworks to enhance trust and 

accountability in safety-critical environments. 

Second, the real-world deployment of GNNs remains 

limited. Most models are evaluated using idealized datasets 

that fail to reflect the noise, incompleteness, and variability 

inherent in disaster contexts, particularly in developing 

regions. We conducted a comprehensive survey and found 

that real-world factors such as data imbalance, noise, 

privacy constraints, and out-of-distribution scenarios cause 

notable performance degradation in GNN applications. 
They emphasized scalability, robustness, and 

generalization as persistent barriers to practical adoption. 

Likewise, demonstrating this in the context of critical 

infrastructure modeling studies showed that GNN-based 

surrogates for seismic reliability analysis of highway bridge 

systems suffered from limited generalizability and a lack of 

validation on operational data, indicating a need for 

deployment-ready validation. 

To strengthen the novelty of this review, we explicitly 

incorporate recent works and detailed explanations of 

advanced techniques in GNNs for disaster management. 

A key contribution is the integration of Explainable AI 

(XAI) methods such as ACGAN-GNNExplainer (Li et al., 

2023) and GAN-GNNExplainer, which enhance the 

reliability and fidelity of GNN explanations by using 

generative adversarial approaches. Additionally, this 

review highlights the role of transfer learning through 

models like TSTL-GNN (Jiang et al., 2024b), which adopt 

two-stage transfer learning on graph structures to enable 

parameter and feature transfer across related tasks, an 

approach that mitigates dependency on large annotated 

datasets and supports deployment in data-scarce settings. 

Furthermore, the review emphasizes the development 

of multi-task GNN frameworks that address multiple tasks 

simultaneously, such as seismic phase picking, magnitude 

estimation, and source localization within a unified 

backbone. This approach improves computational 

efficiency and predictive consistency, making it 

particularly valuable for real-time disaster response. In 

addition, a structured mapping of GNN applications across 

disaster phases (mitigation, response, recovery) is 

presented, linking methods and datasets to practical needs. 

Overall, the novelty of this review lies in its explicit 

synthesis of XAI techniques, transfer learning strategies, and 

multi-task GNN frameworks, which have not been 

systematically mapped in prior studies, while offering 

strategic directions for advancing adaptive, transparent, and 

operationally ready GNN-based disaster management 

systems. 

Conclusion 

This systematic literature review has examined the 

current landscape of Graph Neural Network (GNN) 

applications in disaster management, focusing on studies 

published between 2023 and 2024. The findings highlight 

the growing integration of GNN architectures such as 

GCNs, GATs, Graph SAGE, and Spatio-Temporal GNNs 

into various phases of disaster management, including 

mitigation, emergency response, and recovery. 

Across the 50 reviewed studies, GCN-based models 

were the most frequently applied (≈40%), especially for 

static spatial tasks such as flood mapping, landslide 

susceptibility, and infrastructure assessment. Spatio-

Temporal GNNs (≈25%) were widely used for modeling 

dynamic hazards like floods and wildfires, while 

GraphSAGE (≈10%) and GATs (≈8%) were adopted in 

more specialized contexts such as sensor reliability, 

hazard monitoring, and wildfire spread prediction. Hybrid 

GNN architectures (≈12%) enabled multi-modal 

integration of satellite imagery, IoT sensor streams, and 

social media data, while the remaining ≈5% of studies 

focused on novel approaches, including Explainable and 

Dual GNNs, reflecting a growing emphasis on 

interpretability and scalability. 

Despite these advancements, challenges remain in 

terms of model interpretability, scalability, and real-world 

deployment. Many GNN models still lack transparency, 

hindering their acceptance by practitioners in operational 

contexts. Moreover, the gap between simulation-based 

results and practical implementation underscores the need 

for more robust validation on real-world disaster data, 

particularly in low-resource settings. 

Future research should focus on developing 

explainable GNN frameworks, improving training on 

noisy and incomplete datasets, and fostering 

interdisciplinary collaboration with disaster response 

agencies to enhance practical deployment. By addressing 

these challenges, GNN-based systems hold significant 

promise in improving disaster preparedness, response, 

and resilience in an increasingly risk-prone world. 
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