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Abstract: The rapid proliferation of Internet of Things (1oT) devices has
driven significant advancements in connectivity and automation, but it has
also introduced substantial cybersecurity risks, including intrusions and
cyberattacks. To address these challenges, this study proposes a hybrid
intrusion detection framework that combines advanced optimization
techniques with ensemble deep learning to enhance detection accuracy and
computational efficiency. The proposed framework integrates Grey Wolf
Informatics, Sir Padampat Optimizer (GWO) with Tabu Search for feature selection, effectively
Singhania University, Udaipur, eliminating irrelevant and redundant features. These refined features are
India processed using an ensemble deep learning model comprising stacked Long
Email: kapil1411@gmail.com Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRU),
which are adept at capturing complex temporal patterns in network traffic
data. The framework was rigorously evaluated on benchmark datasets,
including NSL-KDD, UNSW-NB15, and Edge-11oT. The model achieved
results, with accuracies of 99.55, 98.57 and 95.08%, respectively.
Additionally, the system demonstrated a superior sensitivity of 99.21% and
specificity of 99.45% on the NSL-KDD dataset while achieving high
precision rates across all datasets. Comparative analyses showed that the
framework consistently outperformed models such as GWO-GRU, GWO-
LSTM, and GWOTB-LSTM in terms of accuracy, detection rate, and false
alarm reduction. This robust and adaptable framework addresses the unique
challenges of intrusion detection in loT networks, supporting secure
deployment in industrial and consumer loT systems.
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notable attributes. Nevertheless, the transition from the
current system to the loT environment may present many

Introduction

The rapid evolution of 10T technology has led to its
increasing utilization in recent years. 10T technology
enables the connection and interaction of various objects
through a network, thereby driving advancements in
corporate processes (Li et al., 2018). As cybersecurity
threats have rapidly increased, several problems have
arisen in different areas, such as finance, credibility
verification, enforcement, and company operations
(Madakam et al., 2015). Given the limited storage
capacity of 10T devices, cloud computing often serves as
a model-structured with scalable data storage solution.
IoT generally reduces the level of human involvement
required in the interaction between consumers and
providers (Botta et al., 2016). It has garnered significant
interest from both organizations and users because of its
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challenges in terms of operational mechanisms and data
security. The risk of cloud computing and 10T arises from
the storage of precious data and information on remote
servers. Security threats make 0T devices vulnerable to
hackers and intruders, deterring a significant number of
people from adopting or transitioning to this technology.

There are multiple factors contributing to the
significant increase in recent cyberattacks (Prasad and
Chandra, 2024). One of the primary factors contributing
to this phenomenon is the availability of user-friendly
hacking tools, enabling inexperienced hackers to launch
attacks against 10T storage systems without requiring
advanced expertise or specialized knowledge (Louvieris
etal., 2013; Man and Sun, 2021), Some challenges remain
insufficiently addressed in existing research in addressing
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various difficulties within the realm of cyberattacks,
specifically focusing on Intrusion Detection Systems
(IDS) (Mohammadpour et al., 2020; Liu and Dong, 2012)
over the last few years. Moreover, researchers have
employed various Machine Learning (ML) algorithms to
tackle the challenges posed by cyberattacks. For instance,
Support Vector Machine (SVM) has been implemented in
previous studies (Aslahi-Shahri et al., 2016; Jaber and
Rehman, 2020).

Additionally, various ML-based approaches have been
explored by authors in this domain, including the k-means
algorithm (Best et al., 2022), which has been proposed as
a hybrid approach addressing the growing need for
flexible algorithms capable of operating across diverse
devices in loT. Similarly, K-Nearest Neighbor (KNN)
(Ma and Kaban, 2013) is an effective approach that
calculates distances, often using the Euclidean metric,
between a query point and its neighbors to identify the
closest match. The Genetic Algorithm (GA) (Desale and
Ade, 2015), on the other hand, has been employed as a
feature selection method for the NSL-KDD dataset. By
applying an intersection principle, the approach retains
only consistently identified features, enhancing the Naive
Bayes classifier’s accuracy. In recent years, the utilization
of deep learning-based solutions has increased
significantly. However, prior methods face limitations in
real-time adaptability and scalability when applied to
high-dimensional 10T traffic. Many existing solutions
struggle to efficiently process diverse and rapidly
evolving data streams, leading to delayed and sometimes
inaccurate detection. This highlights the necessity for a
robust, low-latency intrusion detection framework
capable of handling the complex and dynamic nature of
loT network environments.

To address these challenges and bridge the identified
research gaps, this article makes the following key
contributions:

A novel hybrid of the Grey Wolf Optimizer with Tabu
Search as a feature selection technique to select the
most relevant and informative characteristics

A stacked LSTM-GRU deep learning model that
effectively captures temporal dependencies in loT
network traffic for accurate intrusion detection
Comprehensive evaluation on NSL-KDD, UNSW-
NB15 and Edge-l1loT datasets to demonstrate
improvement in accuracy and robustness over state-of-
the-art methods

A scalable and resource-efficient framework suitable
for deployment in real world 10T environments

We structure the subsequent sections of this article as
follows: First, we provide an overview of the existing
research on IDS models. Next, we elaborate on the
foundational principles and fundamental concepts of
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GWO, tabu search, LSTM, and GRU. A detailed outline
of the proposed 10T security approach follows this. Then,
we present the study's findings and analysis. Finally, we
conclude the study with closing remarks and offer
recommendations for future research.

Related Work

Edge computing, cloud computing, grid computing,
and other loT applications require IDS for security
monitoring (Hernandez-Jaimes et al., 2023). The of
Convolutional Neural Networks (CNN)-based approach
presents an IDS that involves detection models using
advanced deep learning techniques. The framework
analyzes two forms of input: Raw network traffic, which
provides unprocessed, comprehensive information about
network activity, and the features derived from this data,
which highlight key patterns and attributes essential for
intrusion detection. By incorporating both raw and
processed inputs, the approach ensures a more robust and
accurate detection mechanism; this study proposes two
artificial neural network models for IDS using the NSL-
KDD dataset (Nguyen et al., 2018). The Recurrent Neural
Network (RNN) was implemented for IDS (Zarai et al.,
2020), and various other models were suggested (Kaushik
et al., 2023), which have been well recognized in the field.
Feature selection is an important component of I1DS, and
this selection issue has been effectively taken care of by a
range of conventional classifiers (Thakkar and Lohiya,
2022). Verma and Ranga (2020) tested different ML
classifiers including CART, XGBoost, and Random
Forest (RF). Their study emphasized the importance of
optimizing classifier parameters using random search
algorithms with statistical validation through Nemenyi
post-hoc tests. In the same way, Khatib et al. (2021)
looked at classifiers such as RF, LDA, and Decision Trees
and discovered that oversampling methods like SMOTE
significantly improves performance, especially in tasks
that require binary classification. These classifiers are
noted for their scalability and real-time applicability.

Brun et al. (2018) utilized dense RNNs to detect
anomalies in real-time within 10T environments. Their
research demonstrates particularly high detection
accuracy, with notable success in identifying complex and
sophisticated attack patterns. Researchers found that
Dense RNNs address loT security challenges by
effectively modeling complex temporal dependencies.
Tyagi and Kumar (2021) concentrate on 10T networks,
attaining 99% accuracy using decision trees and RF
classifiers. They underscore the interpretability and
efficacy of these models, especially in managing
extensive, real-time datasets.

Thamilarasu and Chawla (2019) further contribute to
loT security by proposing a deep learning-based IDS
capable of identifying attacks such as DDoS, blackholes,
and wormholes. Their system achieves a 97% true
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positive rate, indicating deep learning’s potential for
detecting loT-specific threats. On the other hand, (Anthi
et al., 2018) report challenges in identifying Denial of
Service (DoS) attacks, despite using an ensemble
approach. Their framework faces issues with precision
and recall, particularly in distinguishing more
sophisticated loT attacks.

Ye etal. (2018) utilized SVM to identify DDoS attacks
in a network environment, attaining an accuracy of
95.24%. However, their methodology encounters
constraints in extending to various forms of cyberattacks,
illustrating a prevalent challenge observed in models
tailored for attack-specific identification.

Lopez-Martin et al. (2017) suggested using
Conditional Variational Auto Encoders (CVAE) to find
intrusions because they work better than conventional
classifiers like SVM and RF. CVAE’s ability to
reconstruct missing features proves particularly useful in
handling incomplete datasets. Yihunie et al. (2019)
evaluated multiple classifiers and found that RF excelled
at minimizing false negatives.

Researchers widely use meta-heuristic optimization
methods to address a diverse set of intricate optimization
problems, leading to a revolution in this field. Bekri and
Diouri (2019) IDS widely employ Meta-Heuristics (MH)
algorithms, the author proposed Particle Swarm
Optimization (PSO) algorithm and an RF classifier for
IDS to detect an attack. The PSO algorithm selects the
relevant features from the dataset, while the RF classifier
handles detection and classification tasks.

Aljawarneh et al. (2018) proposed a hybrid approach
for intrusion detection, which performs data filtering
using the gained information to select important features
that enhance the model’s accuracy. Classifiers such as
J48, Meta Pagging, and Random Tree are utilized. Genetic
Algorithms (GA), Ant Colony Optimization (ACO), and the
GWO algorithm (Safaldin et al., 2021) also utilized in IDS.

The Neuro-Fuzzy Inference System (NFIS) model was
improved by Manimurugan et al. (2020) they used the
Crow Search Optimization (CSO) algorithm to make it
better at finding intrusions. They applied the CSO
algorithm to optimize the NFIS parameters. The
combination of CSO and NFIS shows how advanced
optimization methods can improve the performance of
IDS. Combining ML techniques like the harmony search
algorithm method and the LSTM classification model,
Saba et al. (2022) came up with a new hybrid meta-
heuristic approach that makes cloud-based IDS work
better. RM et al. (2020) suggest a mix of PCA-GWO-
driven DNN classification models that can use the
benchmark Kaggle dataset to find intrusions.

Chaganti (2025) proposed a scalable and adaptive loT
security framework that combines Al-driven intrusion
detection, blockchain-based trust management and edge
computing for real-time, resource-efficient threat
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response. By leveraging optimization techniques, game
theory and differential equations. The framework
dynamically balances detection accuracy, energy
consumption and response time.

Current 10T IDS face challenges in detecting multi-
dimensional threats and generalizing across datasets like
Edge-11oT. While models like SVMs and dense RNNs
excel in specific cases, they struggle with real-time anomaly
detection and high-volume IoT data. Meta-heuristic
algorithms like PSO enhance feature selection but lack
integration with advanced deep-learning models. Issues such
as precision-recall imbalances, limited robustness to noisy
data, and the absence of lightweight, dynamic frameworks
hinder the effectiveness of existing IDS solutions.

This article presents a novel and robust IDS model that
incorporates a fusion of Deep Learning (DL) and a novel
hybrid optimization algorithm. The feature selection was
initially accomplished with efficiency through the
implementation of the proposed GWOTB algorithm, and
intrusion detection is done using an ensemble model of
stacked LSTM-GRU.

Materials and Methods

In this study, we selected and implemented three
algorithms for feature selection: GWO, Tabu Search, and
a hybrid of both. We have implemented a stacked version
of LSTM and GRU for classification. Figure 1 illustrates
the layout of the proposed work. In a multi-layered loT
security system, the proposed hybrid GWO-based feature
selection method can be used to secure both the edge and
cloud layers.

GWOTB optimizes feature selection to process only
the most critical features, enabling lightweight and
efficient intrusion detection in resource-constrained
environments. This real-time detection helps mitigate
localized threats and reduces the need for constant
communication with the cloud while also preserving
bandwidth. However, at the cloud layer, the model
leverages its deep learning capabilities to perform more
complex and large-scale analysis using vast amounts of
aggregated data from multiple edge devices. It can keep
adapting to new attack patterns by retraining datasets like
NSL-KDD and UNSW-NBL15 that are both old and new.
Figure 2 illustrates the layout of the proposed IDS based
Security system for loT.
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GWO

GWO (Mirjalili et al., 2014) is a nature-inspired
algorithm that comes from the class of meta-heuristic
algorithms which draws its inspiration from the social
framework and hunting practices of grey wolves.

Dominance levels determine hierarchical positions
within a social group of wolves. These positions are
represented by the alpha (a), beta (B), delta (8) and omega
(m) members. In wolf pack, the alpha holds the top position
of dominance, whereas the level of domination and
leadership diminishes gradually from the alpha to the omega.

The implementation of this method involves the
categorization of a population of potential solutions for a
certain optimization problem into distinct types, denoted
as o, B and 3. The remaining solutions are encompassed
within the set of ® wolves. To execute this process, it is
necessary to modify the hierarchy at each iteration before
altering the previous results. The subsequent
mathematical models update the position of the solutions
after the division process is complete. The act of
encircling prey is a common predatory behavior observed
in various animal species. Wolves typically engage in
group hunting behavior. This implies that they engage
strategically to capture and consume a target. The Grey
Wolf species employs a cooperative hunting strategy
wherein they initially pursue their prey collectively,
intending to surround it and updating its trajectory and
therefore enhancing the likelihood of a successful hunt.
By establishing a hierarchical structure, formulating an
equation to determine the encirclement process, and
identifying the location of the prey, it becomes possible to
update the position of each wolf using the subsequent
equations. Each iteration updates the positions of a,  and
0 wolves by using Eq. (1):

- — . —
D =C.PW, (i) — PW (i)

PW(i+1)=PW,()—AD 1)
Where (i) represents the iteration number,

PW , (i) represents the position of prey PW represents

the position of the wolf, C and A are the coefficients of
vectors as computed by the Eq. (2):
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A=2ar —aC=2mr 2
- —_— — -
D, =|c,.pw,—PW| PW,PW,—A,.D, ©)

Where L_))arepresents the distance between alpha and
omega wolves, C;is the coefficient of vector:

- —_— —_— = —_— -
Dy = |C,.PWg —PW|,PW, = PW — 4,.Dp

(4)

Where BB represents the distance between beta and
omega wolves, C, represents the coefficient of vector:

- — — — -
Ds= C3.PW5—PW|,PW=PW5—A3.D5

®)

Where 35 represents the distance between delta and
omega wolves, C; is the coefficient of vector.

The Equation (6) specifies that the top three wolves
from the previous iteration will be considered when
upgrading the wolf’s position:

—

S _ (WP )

3

(6)

Tabu Search

Tabu Search is considered an extension of iterative
optimization techniques like Simulated Annealing (SA).
The Tabu Search algorithm is founded on the principle
that intelligent problem-solving necessitates the
integration of adaptive memory and responsive
exploration. It is recognized that the procedure in adaptive
approach employs several techniques, such as linear
programming algorithms and specialized heuristics, to
effectively address the constraints associated with local
optimality.

The adaptive memory functionality of Tabu Search
enables the execution of algorithm that possess the ability
to efficiently explore the solution space. The focus on
adaptive exploration, especially in the context of tabu
search, is based on the idea that a strategic decision that
isn’t the best can often lead to more useful insights than a
random decision that leads to favourable results. Tabu
Search implements limitation to direct the exploration
towards varied geographical areas. These limitations
relate to memory structures, which we conceptualize as
cognitive qualifiers. According to Gendreau and Potvin
(2006) Intelligence is contingent upon the presence of
adaptive memory and responsive exploration. For
example, when ascending a mountain, an individual
engages in adaptive memory, recalling qualities of
previously traversed trails, and then employs responsive
exploration to make strategic decisions regarding the
optimal route to reach the summit or initiate the descent.
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Therefore, Tabu Search incorporates responsive
exploration: It understands that a less-than-ideal strategic
choice could lead to more useful information than a
randomly chosen choice, ultimately creating beneficial
solutions. The Tabu Search algorithm uses memory to
store information about previously explored solutions,
avoiding revisiting them.

LSTM

LSTM (Sherstinsky, 2020) networks are employed in
our intrusion detection system to effectively capture long-
range temporal dependencies within network traffic data.

Each LSTM unit consists of a memory cell and three
primary gates, input, forget, and output, that control the
flow of information. The input gate regulates which
portions of the current input influence the cell state, the
forget gate selectively removes outdated information, and
the output gate determines the data passed to the next
layer. This gating mechanism allows LSTM to
dynamically learn and remember important patterns over
time, making it particularly suitable for detecting
persistent or evolving attack behavior in loT
environments. Figure 3a illustrates the key components of
a typical LSTM block. This includes the gating
mechanisms, the input signal denoted as x®, activation
functions, the output signal represented as y®, and
peephole connections.

In our architecture, a stacked LSTM configuration is
used, comprising two hidden layers with 128 and 64 cells
respectively, followed by a dense SoftMax layer to enable
classification of network traffic instances. This design
enhances the model's ability to generalize across diverse
attack types while maintaining robustness to temporal
variations. The input activation is computed as:

St =G(W,. X'+ R,.y"" L +b,) )

Where we used two sets of weights, Wz and Rz. We
associate these weights with the current input, represented
as x® and the output from the previous time step,
represented as y®. The bias term, symbolized as bz,
functions as a vector of weight values.

Fig. 3: (a) LSTM Architecture. (b) GRU Architecture

465

The input gate in an LSTM is a crucial component. An
LSTM updates its input gate using three component
values: The current input, X9, represents the input data
that we want to process and incorporate into the LSTM’s
memory. The cell value ¢t represents the internal
memory state of the LSTM from the previous time step.
Y® represents the output of the preceding run or time
step. The input gate is computed as:

IGt=0(b+wxt +7.y" 1+ pOct™1) 8)

w, r, and p represent the weights corresponding to the
current input, the prior output y&, and the preceding cell
state Y, respectively. b denotes the bias vector.

At a certain time step t, the forget gate calculates an
activation value, referred to as f®. We use this activation
value to identify the information that we remove from the
previous cell state. Eq. (9) computes the activation value,
fO. The forget gate utilizes the current input, prior output,
previous cell state, and a bias function specific to the
forget gate:

ft=o(Wr.x* +p;@.c™ ' + Ry ' + by) 9)
Where bf represents the bias weight vector used in the
forget gate, and Ws, Py, and Rt represent weights that are
associated with different components of the forget gate.
In Equation (10), we have calculated the cell value by
blending several components, which are given by the
equations mentioned below:
ct =ctloft + 2t eIt (10)
Where ¢! denotes cell value in the last time step, zt
represents block input, it denotes input gate, and ft denotes
forget gate.
In this step, we calculate the output gate’s value by
combining the current input with the cell value output ¢t
D from the previous step, using Eq. (11):

ot =a(V,.x* +S,.y"" 1+ Q,Oct + b,) (11)

Where Vo, So and Q, represent associated weights and
b, denotes bias.

The block input and output activation functions are
computed in Eqg. (12) and (13), g and h, are hyperbolic
tangents that represent the logistic sigmoid activation
function for gate activation:

o(x)=1/(e'™+1) (12)

tanh(x) = g(x) = h(x) (13)
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GRU

The inclusion of Gated Recurrent Units (GRUS) in
proposed ensemble framework is driven by their
computational efficiency and effectiveness in modeling
sequential dependencies, particularly in scenarios
constrained by latency and resource limitations. Chung et
al. (2014) suggested GRU as a straightforward iteration of
the LSTM cell, employing a single concealed state that
functions as an update gate and mirrors the operation of
both the input and output gates. Figure 3b depicts the flow
of data and control within a GRU block, including its key
components: The update gate z; reset gate r;, candidate
activation , and the final hidden state h.. The update gate
and the reset gate, two gating approaches, form the
foundation of the GRU architecture. This gating
mechanism allows the model to control the transfer of
information between consecutive time steps. The reset
gate controls the degree of discard for previous state
information, enabling the model to reset and focus on
fresh input data.

The update gate, on the other hand, regulates the
integration of new input and previous state information
into the current state. These gates work together to allow
the GRU to dynamically adjust and discard information as
needed, which in turn makes it a highly valuable tool for
tasks involving sequential data analysis and modelling.
Equation (14) represents the hidden gate of GRU:

he=h;*xz,+hx(1—2) (14)
Update gate is represented by the Eq. (15):

zp = 0 ([he_1, x¢] * W) (15)
The reset gate is represented by the Eq. (16):

70 = 0([he_p, x¢] * W) (16)

In reset gate the hyperbolic tangent function also
known as remember gate is represented by the Eq. (17):

hy = tanh([r; * hy_q, %] * W) 17)
Intrusion Detection

The proposed model comprises five fundamental
processes: Normalization, encoding, Stratified Sampling,
feature selection, and classification using a stacked LSTM
GRU network.

Frequency Encoding

We have utilized frequency encoding to convert
categorical  data  into  significant  numerical
representations. Unlike basic label encoding or one-hot
encoding, frequency encoding replaces each category
with how often it appears in the dataset. This is a more
informative transformation. For a categorical variable X
with categories x1, x2,...,xn, the frequency of each
category xi is determined using Eq. (18):

frequency(xi) = %t(m) (18)

Normalization

In this step, normalization operation is performed on
the dataset using min-max normalization using the Eq.
(19). Figures 4, 5, and 6 display the correlation heat maps
for the normalized NSL-KDD, UNSW-NB15, and Edge-
IloT datasets, respectively. These heatmaps reveal inter-
feature relationships, where red indicates high positive
correlation and blue denotes high negative correlation.
This analysis informed the feature selection process by
identifying and eliminating redundant features, ensuring
the retained attributes contribute unique and meaningful
information to the classification task:

Znorm = Z — Zmin(x)/max(z) — min(z) (19)

Fig. 4: Heatmap normalized NSL-KDD dataset
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Sampling

Stratified sampling is used to split data into training
70%, validation 15% and testing 15% sets. To address
class imbalance mainly in Edge-11oT and UNSW-NBL15,
we applied random under sampling and SMOTE on the
training set.

Feature Selection

In this step, we perform the process of selecting
specific features from the given dataset. Each feature in
the dataset holds some significance, but not all features
are necessary for optimal performance. Showing how
well it can find network intrusions. Many times,
selecting a set of features will lead to an increase in the
accuracy of the model.

Proposed  Algorithm for
mentioned.

feature selection is

Selected Features from Different Datasets Using the
Proposed Algorithm

NSL-KDD Dataset

'Wrong fragment’, ’dst host srv rerror rate’, ’srv
rerror rate’, 'srv serror rate’, 'dst host srv diff host rate’,
‘protocol type’, ’dst host diff srv rate’, 'diff srv rate’, 'dst
host same src port rate’, dst host same srv rate’, 'land’,
‘root shell’, “dst host serror rate’, ’is guest login’, 'same
srv rate’, 'dst host srv serror rate’.

UNSW-NB15 Dataset

‘State’, ’is sm ips ports’, 'dpkts’, “dttl’, is fip login’,
'sload’, ’sloss’, ’djit’, swin’, ‘dwin’, 'synack”ct srv dst’,
ct state ttl’.

Edge-lloT Dataset

"Tep.flags’, 'mqtt.msg’, ‘ip.srchost’, ’ip.dsthost’, "htt
p.request.method’, ‘tcp.connection.syn’, 'dns.qry.name’
‘icmp.transmit timestamp’, ‘udp.port’, ’tcp.ack’,
‘tep.sreport’, ‘tep.dstport’, ‘tep.payload’,
‘arp.dst.proto ipv4’, frame.time’, ‘tcp.seq’, ‘udp.time
delta, ’tcp.len’.

’

Classification

In this step, we implemented two distinct neural
network architectures: A stacked LSTM and a stacked
GRU. For the LSTM model, we utilized two layers,
consisting of 128 and 64 cells, respectively. We stacked
these layers to enhance the model’s learning capacity.
Similarly, for the GRU model, we constructed a two-layer
network, with the first layer comprising 32 cells and the
second layer containing 16 cells.

Proposed Algorithm

Initialize the Grey Wolf pack

Determine the population size N

Generate N initial wolf positions randomly within the search
space

Evaluate the fitness of each wolf using the objective function.
Set the maximum number of iterations (MaxIter) and initialize
the iteration counter (iter) to 1

Initialize the Tabu List as an empty list

while iter < MaxlIter do

Calculate fitness values for all wolves.

Identify the best wolf (alpha) with the highest fitness.
Identify the second-best wolf (beta) and the third-best wolf
(gamma)

for each wolf do

Update its position using the following formulas

For alpha: newPosition = wolfPosition + A (2 - r1 = 1) - |C -
alphaPosition — wolfPosition|

For beta: newPosition = wolfPosition + A(2 - 12— 1) - |C -
betaPosition — wolfPosition|

For gamma: newPosition = wolfPosition + A (2 -r3-1) - |C -
gammaPosition — wolfPosition|

end for

Apply Tabu Search to refine the positions:

for each wolf do

if a new position is in the Tabu List then

Ignore it and move to the next position.

else

Perform fitness evaluation of the new position and update the
Tabu List.

end if

end for

amend the Tabu List:

if the Tabu List exceeds its maximum allowed size then
Remove the oldest element from the Tabu List.

end if

Add the newly evaluated positions to the Tabu List.
Increment the iteration counter (iter) by 1.

end while

return the best wolf (alpha) as the solution
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We concluded both models with a dense layer,
incorporating a SoftMax activation function to facilitate
classification tasks. Additionally, the Adam optimizer
was employed. We executed each model independently to
evaluate its individual performance. We then devised an
ensemble based on soft voting that integrated the
predictions from both the LSTM and GRU models.

Experimental Setup

We implemented the proposed model on a machine
running 64-bit Windows 11 Pro, equipped with a 12-
generation i7 processor with 12 cores operating at 4.9 GHz
and 16 GB of RAM. We implement the LSTM-GRU stacked
classifier using the deep learning library TensorFlow. The
hyperparameters used are listed in Table 1.

Dataset

In this study, we used three datasets, i.e., UNSW-
NB15 (Moustafa and Slay, 2015), Edge-11oT (Ferrag et
al., 2022) and NSL-KDD (Tavallaee et al., 2009) as they
are recently generated datasets from real-time traffic. The
edge IIOT dataset has 62 features; it has a total of
11223940 records in the normal class and 9728708 in the
attack class; and the dataset has 11 classes for attack. The
UNSW-NB15 dataset contains 175431 records and nine

.. _ TP

Precision = TP+ED) (21)
I\

Sensitivity = (TPTN) (22)
o TN

Specificity = ) (23)

Where TP is True positive, TN is True Negative, FP is
False Positive and FN is False Negative.

Performance Evaluation

A remarkable 99.50% accuracy is achieved by the
proposed method on the NSL-KDD dataset, showing how
well it can find network intrusions. This performance
highlights its superiority compared to other approaches.
Additionally, Figure 7 shows accuracy of the proposed
work on benchmark dataset and it inherently represents
key statistical indicators, including Interquartile Ranges
(IQR), medians, and outliers, effectively capturing
variance and confidence levels in model performance.

To see how well GWOTB-LSTM-GRU-STACK
(proposed) works, we compare it to GWO-GRU, GWO-
LSTM, GWOTB-GRU, and GWOTB-LSTM using the
three datasets mentioned in Table 2.

Table 1: Hyper Parameters and Their Values.

. Model Hyper Parameter Value
attack classes. The NSL-KDD dataset comprises a total of LSTM LSTM Cells [128, 64]
148517 records and four attack classes. GRU GRU Cells [64, 32]
GRU and LSTM Input Shape 1D
GRU and LSTM Optimizer Adam
Results GRU and LSTM Activation Function Softmax
Performance Matrices GRU and LSTM Learning Rate 0.001
GRU and LSTM Dropout Rate 0.2
For evaluation of proposed model, we used accuracy, GWOTB Population Size 100
precision, sensitivity and specificity they are mentioned in GWOTB Max Iteration 50
the Eq. (20), (21), (22) and (23) respectively: GWOTB Lower Bound 0
GWOTB Upper Bound 100
___ (TP+TN) GwWOTB r1, r2,r3 [0,1]
Accuracy = (TP+TN+FP+FN) (20) GWOTB a 2
100, Accuracy - Proposed Work o
* Mean + Std Dewv
0.99} ‘ +
0.98
g 0.97
g
0.96
0.95} '
0.94
0.93 UNSW-NB15 EDGE-IIOT NSL-KDD

Fig. 7: Accuracy of the Proposed IDS across Benchmark Datasets
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Table 2: Performance of the proposed techniques

“Dataset Technigue Accuracy% Sensitivity% Specificity% Precision%
GWO-GRU 98.7 98.91 98.46 98.68
GWO-LSTM 98.42 97.11 98.41 97.75
NSL- KDD GWOTB-GRU 98.71 98.95 99.01 98.98
GWOTB-LSTM 98.53 98.70 98.10 98.39
Proposed 99.55 99.21 99.45 98.33
GWO-GRU 97.51 98.13 98.41 98.27
GWO-LSTM 97.15 98.5 98.95 98.72
UNSW- NB-15 GWOTB-GRU 97.71 98.64 98.12 98.38
GWOTB-LSTM 97.12 98.57 97.94 98.25
Proposed 98.57 98.48 98.71 98.59
GWO-GRU 92.80 84.54 98.12 90.72
GWO-LSTM 92.38 86.21 97.51 91.43
EDGE-IIOT GWOTB-GRU 93.21 90.12 98.45 94.12
GWOTB-LSTM 93.11 89.87 97.11 93.33
Proposed 95.08 94.13 98.25 96.12

The proposed approach also exhibits exceptional
sensitivity of 99.21% and specificity of 99.45%. In the
UNSWNB-15 dataset, the proposed method continues to
perform well, with an accuracy of 98.57%, displaying a
good sensitivity of 98.48% and specificity of 98.71%. On
the Edge-1loT dataset, the proposed method achieves an
accuracy of 95.08%, underscoring its effectiveness over
GWO-GRU, GWO-LSTM, GWOTB-GRU, and Figure 8
highlights the confusion matrices across three datasets,
comparing classification performance.

The confusion matrices illustrate strong class-wise
performance across all datasets. For NSL-KDD (Figure
8c), the model achieves near-balanced accuracy with
49.56% true negatives and 49.76% true positives. In
UNSW-NB15 (Figure 8a), attack detection stands at
51.45% with low misclassification. In Edge-1loT Figure
(8b), the model detects 57.14% tire positive, though with
a slightly higher false positive rate 3.76%. These results
affirm the model’s effectiveness in distinguishing
between normal and malicious traffic in diverse loT
environments.

The confusion matrices for each dataset present the
values for TN, TP, FN, and FP, providing a detailed view
of the model’s performance. These metrics help to

True labels
True labels

Predicted labels

(a)

Predicted labels

(b)

evaluate the system’s ability to correctly classify
instances, including detecting true positives and true
negatives, as well as identifying false negatives and false
positives. GWOTB-LSTM demonstrate solid results,
showcasing its potential to enhance network security by
accurately identifying anomalies and intrusions. These
results underscore the significance of advanced techniques in
safeguarding critical systems and data from cyberattacks.

Discussion

Table 4 displays eleven effective techniques, all
published in reputable academic journals, to conduct a
comprehensive assessment of the proposed system, all
performance values in Table 4 were directly extracted
from the respective referenced studies and evaluated
under similar dataset conditions. Across all datasets, the
models generally exhibit high accuracy values, ranging
from 92.38 to 99.49%. This indicates that these models
can make accurate predictions on intrusion detection
tasks. The proposed technique, consistently achieves the
highest accuracy on all datasets, indicating its
effectiveness in uncovering patterns and associations
within the data.

Predicted labels

Gl

Fig. 8: (a) Confusion Matrix with UNSW-NB15 (b) Confusion Matrix with Edge-I1oT (c) Confusion Matrix with NSL-KDD
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Diro and Chilamkurti (2018) have obtained an
accuracy of 98.27% using the shallow neural network and
deep neural network, which proved their effectiveness on
the NSL KDD dataset. The gradual increase from shallow
to deep models shows deep learning architecture’s
benefits.

Alhowaide et al. (2021) proposed an Edge-ENCIf
approach that has shown promising accuracy on the NSL-
KDD and UNSW-NB15 datasets. (Hassan et al., 2022)
have employed the RF algorithm in conjunction with the
Modified Manta Ray Foraging Optimization Algorithm.
This technique performed well on the CICIDS and NSL-
KDD datasets. The research’s creative use of a modified
optimization method contributed to its success.

Mehedi et al. (2023) suggested deep learning and deep
transfer learning as methods to identify network
intrusions on the UNSW-NB15 dataset. The network had
87.3% accuracy, 86% precision, and 86% recall. The
accuracy may seem lower than in prior investigations, but
the precision and recall rates show a fair trade-off between
spotting intrusions and minimizing false positives.
Sharma et al. (2023) utilized both Deep Neural Networks
(DNN) and Generative Adversarial Networks (GAN). On
the UNSW-NB15 dataset, deep neural networks and
GANs achieved 91% accuracy.

Ding et al. (2023) make use of generative models,
which may aid in learning the underlying data
distributions for better detection. This suggested
technique achieved high accuracy on the Edge-lloT
dataset and UNSW-NBL15 datasets at 94.96 and 98.41%,
respectively. In the context of Edge-1loT deployment,
computational trade-offs and false alarm rates are crucial
considerations. Our proposed model maintains a high
accuracy of 95.08% on the Edge-lloT dataset while
achieving a sensitivity of 94.13% and a precision of
96.12%, which reflects the system’s strong ability to
correctly identify threats. We observed a slightly elevated
false positive rate when compared to NSL-KDD and
UNSW-NB15 datasets. This trade-off is partially
attributable to the high-dimensional nature and real-time
variability of edge traffic.

To validate the observed gains, we conducted paired
two-tailed t-tests across five independent experimental

runs using different random seeds for each model. These
tests were applied to compare the ensemble model with
each relevant baseline, including GWO-GRU, GWOTB-
GRU, GWOTB-LSTM and the no-feature-selection
variant.

As shown in Table 3, the resulting p-values were
consistently < 0.01 and the 95% confidence intervals were
tight, indicating statistically significant improvements in
accuracy. These results robustly confirm that the proposed
ensemble model outperforms other configurations.

We have conducted a comprehensive evaluation over
four configurations: No feature selection, GWO alone,
Tabu Search alone and the proposed hybrid method.
Figure 9 depicts the results which demonstrate the
progressive improvement in classification accuracy when
employing more advanced feature selection strategies.
From a computational standpoint, while the hybrid feature
selection introduces additional preprocessing time at the
same time it significantly reduces model complexity
during training and inference by eliminating redundant

Features, this gain in efficiency is beneficial in
resource-constrained edge environments. The proposed
feature selection has a worst-case complexity of
O(N-F-T), the stacked LSTM-GRU model exhibits a
training complexity of O(E:n-h?) while inference is
reduced to O(Fs-h) with Fs « F due to prior feature
reduction. These analyses demonstrate a balanced trade-
off between performance and efficiency which is suitable
for edge and cloud-based loT environments.

100
Qn | I
| I I
%0 I I
NSL-KDD UNSW-NELS EDGE-NOT
Dataset

Fig. 9: Effects of feature selection on Accuracy

Accuracy (%)

Table 3: Statistical comparison of the proposed model with baseline models

Dataset Compared Models 95% ClI (1) p-value Statistically Significant
NSL-KDD Proposed vs GWO-GRU +0.18 0.0031 Yes
NSL-KDD Proposed vs GWOTB-GRU +0.19 0.0048 Yes
NSL-KDD Proposed vs No Feature Selection (FS) +0.18 0.0009 Yes
UNSW-NB15 Proposed vs GWO-GRU +0.21 0.0056 Yes
UNSW-NB15 Proposed vs GWOTB-LSTM +0.21 0.0023 Yes
Edge-lloT Proposed vs GWO-LSTM +0.23 0.0042 Yes
Edge-lloT Proposed vs No FS +0.24 0.0015 Yes
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Table 4: Comparison with past studies

Reference Algorithm Results Dataset

Vermaand Ranga RF, GBM, XGB AND Accuracy = 94.99% CIDDS-001, UNSW-

(2020) MLP NB15

Diro and Shallow NN & DNN Accuracy = 98.27% NSL-KDD

Chilamkurti (2018)

Kozik et al. ELM Accuracy = 83% Self-generated

Pajouh et al. (2019) LDA, NB, CF-KNN Accuracy = 84.82% NSL-KDD

Chenetal. (2020)  Decision Tree Accuracy = 99.98%, Precision = 97.38% CIC-IDS2017

Kushwah and BH-ELM Accuracy 99.23% 99.5% (CICIDS 2017) NSL-KDD, CICIDS

Ranga (2021) 2017

Alhowaide et al. Edge-ENCIf Accuracy = 98% (NSL-KDD), 95% (UNSW-NB15) NSL-KDD, UNSW-

(2021) NB15

Hassan et al. (2022) Modified MRFO algorithm Accuracy = 98.8% 99.3% (CIC-1DS2017) NSL-KDD, CIC-
and random forest IDS2017

Mehedi et al. (2023) DL and DTL-based
residual neural network

Sharma et al. (2023) DNN and GAN

Ding et al. (2023)

Accuracy = 87.3%, Precision = 86%, Recall = 86%

Accuracy = 91%
eRSR block, TRB, and DB Accuracy = 94.96% (Edge-110T), 98.41% (UNSW-NB15) Edge-lloT, UNSW-

Self-generated
UNSW-NB15

NB15

Conclusion

The proposed framework for intrusion detection in 10T
environments demonstrates significant advancements in
accuracy, efficiency, and reliability. Through a carefully
structured approach comprising data pre-processing, a
novel hybrid feature selection method, and a deep transfer
learning model utilizing stacked LSTM and GRU
networks, the system addresses critical challenges in 10T
security. Experimental results on benchmark datasets,
including NSL-KDD, UNSW-NB15, and Edge-lloT,
confirm the framework's superior performance compared
to existing methods such as GWO, CNN, SVM-Bagging,
Decision Tree, and ELM. While the current framework
has shown promising results, opportunities for further
improvement remain. Future research can explore
optimizing the framework for energy efficiency,
particularly in resource-constrained 10T environments.
Additionally, adapting the model to incorporate dynamic
updates in response to evolving cyber threats could
enhance its resilience. By addressing these aspects, the
proposed solution can contribute to more robust and
scalable intrusion detection systems, ensuring enhanced
security for the rapidly expanding loT ecosystem.
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