
 

 

© 2026 Kapil Shrivastava, Manish Tiwari and Prasun Chakrabarti. This open-access article is distributed under a 

Creative Commons Attribution (CC-BY) 4.0 license. 
 

Journal of Computer Science 

 
 

Research Article 

A Hybrid Grey Wolf Optimizer and Deep Transfer Learning-

Based Intrusion Detection System for IoT 
 

Kapil Shrivastava1,2, Manish Tiwari1 and Prasun Chakrabarti1 

 
1Faculty of Computing and Informatics, Sir Padampat Singhania University, Udaipur, India 
2Department of CEA, GLA University, Mathura, India 

 
Article history 
Received: 11-04-2025 
Revised: 04-08-2025 
Accepted: 26-08-2025 
 

Corresponding Author:  

Kapil Shrivastava 
Faculty of Computing and 
Informatics, Sir Padampat 
Singhania University, Udaipur, 
India 
Email: kapil1411@gmail.com 

Abstract: The rapid proliferation of Internet of Things (IoT) devices has 

driven significant advancements in connectivity and automation, but it has 

also introduced substantial cybersecurity risks, including intrusions and 
cyberattacks. To address these challenges, this study proposes a hybrid 

intrusion detection framework that combines advanced optimization 

techniques with ensemble deep learning to enhance detection accuracy and 

computational efficiency. The proposed framework integrates Grey Wolf 

Optimizer (GWO) with Tabu Search for feature selection, effectively 

eliminating irrelevant and redundant features. These refined features are 

processed using an ensemble deep learning model comprising stacked Long 

Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRU), 

which are adept at capturing complex temporal patterns in network traffic 

data. The framework was rigorously evaluated on benchmark datasets, 

including NSL-KDD, UNSW-NB15, and Edge-IIoT. The model achieved 
results, with accuracies of 99.55, 98.57 and 95.08%, respectively. 

Additionally, the system demonstrated a superior sensitivity of 99.21% and 

specificity of 99.45% on the NSL-KDD dataset while achieving high 

precision rates across all datasets. Comparative analyses showed that the 

framework consistently outperformed models such as GWO-GRU, GWO-

LSTM, and GWOTB-LSTM in terms of accuracy, detection rate, and false 

alarm reduction. This robust and adaptable framework addresses the unique 

challenges of intrusion detection in IoT networks, supporting secure 

deployment in industrial and consumer IoT systems. 

 

Keywords: Cyberattack, Deep Learning, Grey Wolf Optimizer, Intrusion 

Detection, Internet of Things 

 

Introduction 

The rapid evolution of IoT technology has led to its 

increasing utilization in recent years. IoT technology 

enables the connection and interaction of various objects 
through a network, thereby driving advancements in 

corporate processes (Li et al., 2018). As cybersecurity 

threats have rapidly increased, several problems have 

arisen in different areas, such as finance, credibility 

verification, enforcement, and company operations 

(Madakam et al., 2015). Given the limited storage 

capacity of IoT devices, cloud computing often serves as 

a model-structured with scalable data storage solution. 

IoT generally reduces the level of human involvement 

required in the interaction between consumers and 

providers (Botta et al., 2016). It has garnered significant 

interest from both organizations and users because of its 

notable attributes. Nevertheless, the transition from the 

current system to the IoT environment may present many 

challenges in terms of operational mechanisms and data 
security. The risk of cloud computing and IoT arises from 

the storage of precious data and information on remote 

servers. Security threats make IoT devices vulnerable to 

hackers and intruders, deterring a significant number of 

people from adopting or transitioning to this technology.  

There are multiple factors contributing to the 

significant increase in recent cyberattacks (Prasad and 

Chandra, 2024). One of the primary factors contributing 

to this phenomenon is the availability of user-friendly 

hacking tools, enabling inexperienced hackers to launch 

attacks against IoT storage systems without requiring 

advanced expertise or specialized knowledge (Louvieris 
et al., 2013; Man and Sun, 2021), Some challenges remain 

insufficiently addressed in existing research in addressing 
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various difficulties within the realm of cyberattacks, 

specifically focusing on Intrusion Detection Systems 

(IDS) (Mohammadpour et al., 2020; Liu and Dong, 2012) 

over the last few years. Moreover, researchers have 

employed various Machine Learning (ML) algorithms to 
tackle the challenges posed by cyberattacks. For instance, 

Support Vector Machine (SVM) has been implemented in 

previous studies (Aslahi-Shahri et al., 2016; Jaber and 

Rehman, 2020). 

Additionally, various ML-based approaches have been 

explored by authors in this domain, including the k-means 

algorithm (Best et al., 2022), which has been proposed as 

a hybrid approach addressing the growing need for 

flexible algorithms capable of operating across diverse 

devices in IoT. Similarly, K-Nearest Neighbor (KNN) 

(Ma and Kaban, 2013) is an effective approach that 
calculates distances, often using the Euclidean metric, 

between a query point and its neighbors to identify the 

closest match. The Genetic Algorithm (GA) (Desale and 

Ade, 2015), on the other hand, has been employed as a 

feature selection method for the NSL-KDD dataset. By 

applying an intersection principle, the approach retains 

only consistently identified features, enhancing the Naïve 

Bayes classifier’s accuracy. In recent years, the utilization 

of deep learning-based solutions has increased 

significantly. However, prior methods face limitations in 

real-time adaptability and scalability when applied to 

high-dimensional IoT traffic. Many existing solutions 
struggle to efficiently process diverse and rapidly 

evolving data streams, leading to delayed and sometimes 

inaccurate detection. This highlights the necessity for a 

robust, low-latency intrusion detection framework 

capable of handling the complex and dynamic nature of 

IoT network environments. 

To address these challenges and bridge the identified 

research gaps, this article makes the following key 

contributions: 

 

 A novel hybrid of the Grey Wolf Optimizer with Tabu 

Search as a feature selection technique to select the 

most relevant and informative characteristics 

 A stacked LSTM-GRU deep learning model that 

effectively captures temporal dependencies in IoT 

network traffic for accurate intrusion detection 

 Comprehensive evaluation on NSL-KDD, UNSW-

NB15 and Edge-IIoT datasets to demonstrate 

improvement in accuracy and robustness over state-of-

the-art methods 

 A scalable and resource-efficient framework suitable 

for deployment in real world IoT environments 

 

We structure the subsequent sections of this article as 

follows: First, we provide an overview of the existing 

research on IDS models. Next, we elaborate on the 

foundational principles and fundamental concepts of 

GWO, tabu search, LSTM, and GRU. A detailed outline 

of the proposed IoT security approach follows this. Then, 

we present the study's findings and analysis. Finally, we 

conclude the study with closing remarks and offer 

recommendations for future research. 

Related Work 

Edge computing, cloud computing, grid computing, 

and other IoT applications require IDS for security 

monitoring (Hernandez-Jaimes et al., 2023). The of 

Convolutional Neural Networks (CNN)-based approach 

presents an IDS that involves detection models using 

advanced deep learning techniques. The framework 

analyzes two forms of input: Raw network traffic, which 

provides unprocessed, comprehensive information about 

network activity, and the features derived from this data, 

which highlight key patterns and attributes essential for 

intrusion detection. By incorporating both raw and 

processed inputs, the approach ensures a more robust and 

accurate detection mechanism; this study proposes two 

artificial neural network models for IDS using the NSL-

KDD dataset (Nguyen et al., 2018). The Recurrent Neural 

Network (RNN) was implemented for IDS (Zarai et al., 

2020), and various other models were suggested (Kaushik 

et al., 2023), which have been well recognized in the field. 

Feature selection is an important component of IDS, and 

this selection issue has been effectively taken care of by a 

range of conventional classifiers (Thakkar and Lohiya, 

2022). Verma and Ranga (2020) tested different ML 

classifiers including CART, XGBoost, and Random 

Forest (RF). Their study emphasized the importance of 

optimizing classifier parameters using random search 

algorithms with statistical validation through Nemenyi 

post-hoc tests. In the same way, Khatib et al. (2021) 

looked at classifiers such as RF, LDA, and Decision Trees 

and discovered that oversampling methods like SMOTE 

significantly improves performance, especially in tasks 

that require binary classification. These classifiers are 

noted for their scalability and real-time applicability. 
Brun et al. (2018) utilized dense RNNs to detect 

anomalies in real-time within IoT environments. Their 

research demonstrates particularly high detection 

accuracy, with notable success in identifying complex and 

sophisticated attack patterns. Researchers found that 

Dense RNNs address IoT security challenges by 

effectively modeling complex temporal dependencies. 

Tyagi and Kumar (2021) concentrate on IoT networks, 

attaining 99% accuracy using decision trees and RF 

classifiers. They underscore the interpretability and 

efficacy of these models, especially in managing 
extensive, real-time datasets.  

Thamilarasu and Chawla (2019) further contribute to 

IoT security by proposing a deep learning-based IDS 

capable of identifying attacks such as DDoS, blackholes, 

and wormholes. Their system achieves a 97% true 
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positive rate, indicating deep learning’s potential for 

detecting IoT-specific threats. On the other hand, (Anthi 

et al., 2018) report challenges in identifying Denial of 

Service (DoS) attacks, despite using an ensemble 

approach. Their framework faces issues with precision 
and recall, particularly in distinguishing more 

sophisticated IoT attacks. 

Ye et al. (2018) utilized SVM to identify DDoS attacks 

in a network environment, attaining an accuracy of 

95.24%. However, their methodology encounters 

constraints in extending to various forms of cyberattacks, 

illustrating a prevalent challenge observed in models 

tailored for attack-specific identification.  

Lopez-Martin et al. (2017) suggested using 

Conditional Variational Auto Encoders (CVAE) to find 

intrusions because they work better than conventional 

classifiers like SVM and RF. CVAE’s ability to 

reconstruct missing features proves particularly useful in 

handling incomplete datasets. Yihunie et al. (2019) 

evaluated multiple classifiers and found that RF excelled 

at minimizing false negatives.  

Researchers widely use meta-heuristic optimization 

methods to address a diverse set of intricate optimization 

problems, leading to a revolution in this field. Bekri and 

Diouri (2019) IDS widely employ Meta-Heuristics (MH) 

algorithms, the author proposed Particle Swarm 

Optimization (PSO) algorithm and an RF classifier for 

IDS to detect an attack. The PSO algorithm selects the 

relevant features from the dataset, while the RF classifier 

handles detection and classification tasks. 

Aljawarneh et al. (2018) proposed a hybrid approach 

for intrusion detection, which performs data filtering 

using the gained information to select important features 

that enhance the model’s accuracy. Classifiers such as 

J48, Meta Pagging, and Random Tree are utilized. Genetic 

Algorithms (GA), Ant Colony Optimization (ACO), and the 

GWO algorithm (Safaldin et al., 2021) also utilized in IDS. 

The Neuro-Fuzzy Inference System (NFIS) model was 

improved by Manimurugan et al. (2020) they used the 

Crow Search Optimization (CSO) algorithm to make it 

better at finding intrusions. They applied the CSO 

algorithm to optimize the NFIS parameters. The 

combination of CSO and NFIS shows how advanced 

optimization methods can improve the performance of 

IDS. Combining ML techniques like the harmony search 

algorithm method and the LSTM classification model, 

Saba et al. (2022) came up with a new hybrid meta-

heuristic approach that makes cloud-based IDS work 

better. RM et al. (2020) suggest a mix of PCA-GWO-

driven DNN classification models that can use the 

benchmark Kaggle dataset to find intrusions. 
Chaganti (2025) proposed a scalable and adaptive IoT 

security framework that combines AI-driven intrusion 

detection, blockchain-based trust management and edge 

computing for real-time, resource-efficient threat 

response. By leveraging optimization techniques, game 

theory and differential equations. The framework 

dynamically balances detection accuracy, energy 

consumption and response time. 

Current IoT IDS face challenges in detecting multi-
dimensional threats and generalizing across datasets like 

Edge-IIoT. While models like SVMs and dense RNNs 

excel in specific cases, they struggle with real-time anomaly 

detection and high-volume IoT data. Meta-heuristic 

algorithms like PSO enhance feature selection but lack 

integration with advanced deep-learning models. Issues such 

as precision-recall imbalances, limited robustness to noisy 

data, and the absence of lightweight, dynamic frameworks 

hinder the effectiveness of existing IDS solutions. 

This article presents a novel and robust IDS model that 

incorporates a fusion of Deep Learning (DL) and a novel 
hybrid optimization algorithm. The feature selection was 

initially accomplished with efficiency through the 

implementation of the proposed GWOTB algorithm, and 

intrusion detection is done using an ensemble model of 

stacked LSTM-GRU. 

Materials and Methods 

In this study, we selected and implemented three 
algorithms for feature selection: GWO, Tabu Search, and 

a hybrid of both. We have implemented a stacked version 

of LSTM and GRU for classification. Figure 1 illustrates 

the layout of the proposed work. In a multi-layered IoT 

security system, the proposed hybrid GWO-based feature 

selection method can be used to secure both the edge and 

cloud layers.  

GWOTB optimizes feature selection to process only 

the most critical features, enabling lightweight and 

efficient intrusion detection in resource-constrained 

environments. This real-time detection helps mitigate 
localized threats and reduces the need for constant 

communication with the cloud while also preserving 

bandwidth. However, at the cloud layer, the model 

leverages its deep learning capabilities to perform more 

complex and large-scale analysis using vast amounts of 

aggregated data from multiple edge devices. It can keep 

adapting to new attack patterns by retraining datasets like 

NSL-KDD and UNSW-NB15 that are both old and new. 

Figure 2 illustrates the layout of the proposed IDS based 

Security system for IoT. 
 

 
 
Fig. 1: Proposed Approach 
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Fig. 2: Proposed IDS based Security system for IoT 
 

GWO 

GWO (Mirjalili et al., 2014) is a nature-inspired 

algorithm that comes from the class of meta-heuristic 

algorithms which draws its inspiration from the social 
framework and hunting practices of grey wolves.  

Dominance levels determine hierarchical positions 

within a social group of wolves. These positions are 

represented by the alpha (α), beta (β), delta (δ) and omega 

(ω) members. In wolf pack, the alpha holds the top position 

of dominance, whereas the level of domination and 

leadership diminishes gradually from the alpha to the omega.  

The implementation of this method involves the 

categorization of a population of potential solutions for a 

certain optimization problem into distinct types, denoted 

as α, β and δ. The remaining solutions are encompassed 

within the set of ω wolves. To execute this process, it is 
necessary to modify the hierarchy at each iteration before 

altering the previous results. The subsequent 

mathematical models update the position of the solutions 

after the division process is complete. The act of 

encircling prey is a common predatory behavior observed 

in various animal species. Wolves typically engage in 

group hunting behavior. This implies that they engage 

strategically to capture and consume a target. The Grey 

Wolf species employs a cooperative hunting strategy 

wherein they initially pursue their prey collectively, 

intending to surround it and updating its trajectory and 
therefore enhancing the likelihood of a successful hunt. 

By establishing a hierarchical structure, formulating an 

equation to determine the encirclement process, and 

identifying the location of the prey, it becomes possible to 

update the position of each wolf using the subsequent 

equations. Each iteration updates the positions of α, β and 

δ wolves by using Eq. (1): 
 

𝐷
→
= 𝐶. 𝑃𝑊

→  
𝑝 (𝑖) − 𝑃𝑊

→  
(𝑖) 

 𝑃𝑊
→   

(𝑖 + 1) = 𝑃𝑊
→  

𝑝 (𝑖) − 𝐴. 𝐷
→

 (1) 
 

Where (i) represents the iteration number, 

𝑃𝑊
→  

𝑝 (𝑖) represents the position of prey 𝑃𝑊
→  

 represents 

the position of the wolf, C and A are the coefficients of 
vectors as computed by the Eq. (2): 

𝐴 = 2𝑎. 𝑟1 − 𝑎, 𝐶 = 2. 𝑟2 (2) 

 

𝐷
→
𝛼 = |𝐶1. 𝑃𝑊𝛼 −𝑃𝑊

→  
| , 𝑃𝑊
→  

1 𝑃𝑊
→  

𝛼 −𝐴1 . 𝐷
→
𝛼  (3) 

 

Where 𝐷
→
𝛼represents the distance between alpha and 

omega wolves, 𝐶1is the coefficient of vector: 

 

𝐷
→
𝛽 = |𝐶2 . 𝑃𝑊

→  
𝛽 −𝑃𝑊

→  
| , 𝑃𝑊
→  

2 = 𝑃𝑊
→  

𝛽 −𝐴2 . 𝐷
→
𝛽 (4) 

 

Where 𝐷
→
𝛽 represents the distance between beta and 

omega wolves, 𝐶2 represents the coefficient of vector: 

 

𝐷
→
𝛿 = |𝐶3. 𝑃𝑊

→  
𝛿 −𝑃𝑊

→  
| , 𝑃𝑊 = 𝑃𝑊

→  
𝛿 − 𝐴3 . 𝐷

→
𝛿 (5) 

 

Where 𝐷
→
𝛿 represents the distance between delta and 

omega wolves, 𝐶3 is the coefficient of vector. 

The Equation (6) specifies that the top three wolves 

from the previous iteration will be considered when 

upgrading the wolf’s position: 

 

PW
→  

=
(PW
→  

1+PW
→  

2+PW
→  

3)

3
  (6) 

 

Tabu Search 

Tabu Search is considered an extension of iterative 
optimization techniques like Simulated Annealing (SA). 

The Tabu Search algorithm is founded on the principle 

that intelligent problem-solving necessitates the 

integration of adaptive memory and responsive 

exploration. It is recognized that the procedure in adaptive 

approach employs several techniques, such as linear 

programming algorithms and specialized heuristics, to 

effectively address the constraints associated with local 

optimality.  

The adaptive memory functionality of Tabu Search 

enables the execution of algorithm that possess the ability 

to efficiently explore the solution space. The focus on 
adaptive exploration, especially in the context of tabu 

search, is based on the idea that a strategic decision that 

isn’t the best can often lead to more useful insights than a 

random decision that leads to favourable results. Tabu 

Search implements limitation to direct the exploration 

towards varied geographical areas. These limitations 

relate to memory structures, which we conceptualize as 

cognitive qualifiers. According to Gendreau and Potvin 

(2006) Intelligence is contingent upon the presence of 

adaptive memory and responsive exploration. For 

example, when ascending a mountain, an individual 
engages in adaptive memory, recalling qualities of 

previously traversed trails, and then employs responsive 

exploration to make strategic decisions regarding the 

optimal route to reach the summit or initiate the descent. 
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Therefore, Tabu Search incorporates responsive 

exploration: It understands that a less-than-ideal strategic 

choice could lead to more useful information than a 

randomly chosen choice, ultimately creating beneficial 

solutions. The Tabu Search algorithm uses memory to 
store information about previously explored solutions, 

avoiding revisiting them. 

LSTM 

LSTM (Sherstinsky, 2020) networks are employed in 

our intrusion detection system to effectively capture long-

range temporal dependencies within network traffic data. 

Each LSTM unit consists of a memory cell and three 

primary gates, input, forget, and output, that control the 

flow of information. The input gate regulates which 

portions of the current input influence the cell state, the 

forget gate selectively removes outdated information, and 
the output gate determines the data passed to the next 

layer. This gating mechanism allows LSTM to 

dynamically learn and remember important patterns over 

time, making it particularly suitable for detecting 

persistent or evolving attack behavior in IoT 

environments. Figure 3a illustrates the key components of 

a typical LSTM block. This includes the gating 

mechanisms, the input signal denoted as x(t), activation 

functions, the output signal represented as y(t), and 

peephole connections. 

In our architecture, a stacked LSTM configuration is 

used, comprising two hidden layers with 128 and 64 cells 
respectively, followed by a dense SoftMax layer to enable 

classification of network traffic instances. This design 

enhances the model's ability to generalize across diverse 

attack types while maintaining robustness to temporal 

variations. The input activation is computed as: 

 

𝑆𝑡 = 𝐺(𝑊𝑧 . 𝑋
𝑡 + 𝑅𝑧 . 𝑦

𝑡−1 + 𝑏𝑧)  (7) 

 

Where we used two sets of weights, Wz and Rz. We 
associate these weights with the current input, represented 

as x(t), and the output from the previous time step, 

represented as y(t-1). The bias term, symbolized as bz, 

functions as a vector of weight values. 

 

 

 

Fig. 3: (a) LSTM Architecture. (b) GRU Architecture 

The input gate in an LSTM is a crucial component. An 

LSTM updates its input gate using three component 

values: The current input, x(t), represents the input data 

that we want to process and incorporate into the LSTM’s 

memory. The cell value c(t-1) represents the internal 
memory state of the LSTM from the previous time step. 

Y(t-1) represents the output of the preceding run or time 

step. The input gate is computed as: 

 

𝐼𝐺𝑡 = 𝜎(𝑏 +𝑤𝑥𝑡 + 𝑟. 𝑦𝑡−1 + 𝑝⨀𝑐𝑡−1) (8) 

 

w, r, and p represent the weights corresponding to the 

current input, the prior output y(t-1), and the preceding cell 

state c(t-1), respectively. b denotes the bias vector. 

At a certain time step t, the forget gate calculates an 

activation value, referred to as f(t). We use this activation 

value to identify the information that we remove from the 

previous cell state. Eq. (9) computes the activation value, 
f(t). The forget gate utilizes the current input, prior output, 

previous cell state, and a bias function specific to the 

forget gate: 

 

𝑓𝑡 = 𝜎(𝑊𝑓 . 𝑥
𝑡 + 𝑝𝑓⨀.𝑐

𝑡−1 +𝑅𝑓 . 𝑦
𝑡−1 + 𝑏𝑓)  (9) 

 

Where bf represents the bias weight vector used in the 

forget gate, and Wf , Pf, and Rf represent weights that are 

associated with different components of the forget gate. 

In Equation (10), we have calculated the cell value by 

blending several components, which are given by the 

equations mentioned below: 

 

𝑐𝑡 = 𝑐𝑡−1⨀𝑓𝑡 + 𝑧𝑡⨀𝑖𝑡 (10) 

 

Where ct−1 denotes cell value in the last time step, zt 

represents block input, it denotes input gate, and ft denotes 

forget gate. 

In this step, we calculate the output gate’s value by 

combining the current input with the cell value output c(t-

1) from the previous step, using Eq. (11): 

 

𝑜𝑡 = 𝜎(𝑉𝑜. 𝑥
𝑡 + 𝑆𝑜 . 𝑦

𝑡−1 + 𝑄𝑜⨀𝑐
𝑡 + 𝑏𝑜) (11) 

 

Where Vo, So and Qo represent associated weights and 

bo denotes bias. 

The block input and output activation functions are 

computed in Eq. (12) and (13), g and h, are hyperbolic 

tangents that represent the logistic sigmoid activation 

function for gate activation: 

 

𝜎(𝑥) = 1/(𝑒1−𝑥 + 1)  (12) 

 

𝑡𝑎𝑛ℎ(𝑥) = 𝑔(𝑥) = ℎ(𝑥)  (13) 
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GRU 

The inclusion of Gated Recurrent Units (GRUs) in 
proposed ensemble framework is driven by their 

computational efficiency and effectiveness in modeling 

sequential dependencies, particularly in scenarios 

constrained by latency and resource limitations. Chung et 

al. (2014) suggested GRU as a straightforward iteration of 

the LSTM cell, employing a single concealed state that 

functions as an update gate and mirrors the operation of 

both the input and output gates. Figure 3b depicts the flow 

of data and control within a GRU block, including its key 

components: The update gate zt, reset gate rt, candidate 

activation , and the final hidden state ht. The update gate 

and the reset gate, two gating approaches, form the 
foundation of the GRU architecture. This gating 

mechanism allows the model to control the transfer of 

information between consecutive time steps. The reset 

gate controls the degree of discard for previous state 

information, enabling the model to reset and focus on 

fresh input data. 

The update gate, on the other hand, regulates the 

integration of new input and previous state information 

into the current state. These gates work together to allow 

the GRU to dynamically adjust and discard information as 

needed, which in turn makes it a highly valuable tool for 
tasks involving sequential data analysis and modelling. 

Equation (14) represents the hidden gate of GRU: 
 
ℎ𝑡 = ℎ𝑡 ∗ 𝑧𝑡 + ℎ𝑡 ∗ (1− 𝑧𝑡) (14) 
 

Update gate is represented by the Eq. (15): 
 
𝑧𝑡 = 𝜎([ℎ𝑡−1 , 𝑥𝑡] ∗ 𝑊𝑧) (15) 
 

The reset gate is represented by the Eq. (16): 
 
𝑟𝑡 = 𝜎([ℎ𝑡−1 , 𝑥𝑡] ∗𝑊𝑟)  (16) 
 
 In reset gate the hyperbolic tangent function also 

known as remember gate is represented by the Eq. (17): 
 
ℎ𝑡 = 𝑡𝑎𝑛ℎ([𝑟𝑡 ∗ ℎ𝑡−1 , 𝑥𝑡] ∗ 𝑊)  (17) 
 
Intrusion Detection 

The proposed model comprises five fundamental 

processes: Normalization, encoding, Stratified Sampling, 

feature selection, and classification using a stacked LSTM 

GRU network.  

Frequency Encoding 

We have utilized frequency encoding to convert 

categorical data into significant numerical 
representations. Unlike basic label encoding or one-hot 

encoding, frequency encoding replaces each category 

with how often it appears in the dataset. This is a more 

informative transformation. For a categorical variable X 

with categories x1, x2,…,xn, the frequency of each 

category xi is determined using Eq. (18): 

frequency(xi) =
count(xi)

N
 (18) 

 
Normalization 

In this step, normalization operation is performed on 

the dataset using min-max normalization using the Eq. 

(19). Figures 4, 5, and 6 display the correlation heat maps 

for the normalized NSL-KDD, UNSW-NB15, and Edge-

IIoT datasets, respectively. These heatmaps reveal inter-

feature relationships, where red indicates high positive 

correlation and blue denotes high negative correlation. 

This analysis informed the feature selection process by 

identifying and eliminating redundant features, ensuring 
the retained attributes contribute unique and meaningful 

information to the classification task: 
 
Znorm = Z−  Zmin(x)/max(z) − min(z) (19) 
 

 
 
Fig. 4: Heatmap normalized NSL-KDD dataset 
 

 
 
Fig. 5: Heatmap normalized, UNSW-NB15 dataset 
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Fig. 6: Heatmap normalized, Edge-IIoT dataset 

 

Sampling 

Stratified sampling is used to split data into training 

70%, validation 15% and testing 15% sets. To address 

class imbalance mainly in Edge-IIoT and UNSW-NB15, 

we applied random under sampling and SMOTE on the 

training set. 

Feature Selection 

In this step, we perform the process of selecting 

specific features from the given dataset. Each feature in 

the dataset holds some significance, but not all features 

are necessary for optimal performance. Showing how 

well it can find network intrusions. Many times, 

selecting a set of features will lead to an increase in the 

accuracy of the model. 
Proposed Algorithm for feature selection is 

mentioned. 

Selected Features from Different Datasets Using the 

Proposed Algorithm 

NSL-KDD Dataset 

’Wrong fragment’, ’dst host srv rerror rate’, ’srv 

rerror rate’, ’srv serror rate’, ’dst host srv diff host rate’, 

’protocol type’, ’dst host diff srv rate’, ’diff srv rate’, ’dst 

host same src port rate’, ’dst host same srv rate’, ’land’, 

’root shell’, ’dst host serror rate’, ’is guest login’, ’same 

srv rate’, ’dst host srv serror rate’. 

UNSW-NB15 Dataset 

’State’, ’is sm ips ports’, ’dpkts’, ’dttl’, ’is ftp login’, 

’sload’, ’sloss’,’djit’, ’swin’, ’dwin’, ’synack”ct srv dst’, 
’ct state ttl’. 

Edge-IIoT Dataset 

’Tcp.flags’,’mqtt.msg’,’ip.srchost’,’ip.dsthost’,’htt
p.request.method’,’tcp.connection.syn’,’dns.qry.name’

, ’icmp.transmit timestamp’, ’udp.port’, ’tcp.ack’, 

’tcp.srcport’, ’tcp.dstport’, ’tcp.payload’, 

’arp.dst.proto ipv4’, frame.time’, ‘tcp.seq’, ‘udp.time 

delta, ’tcp.len’. 

Classification 

In this step, we implemented two distinct neural 

network architectures: A stacked LSTM and a stacked 

GRU. For the LSTM model, we utilized two layers, 
consisting of 128 and 64 cells, respectively. We stacked 

these layers to enhance the model’s learning capacity. 

Similarly, for the GRU model, we constructed a two-layer 

network, with the first layer comprising 32 cells and the 

second layer containing 16 cells.  

 

Proposed Algorithm 

Initialize the Grey Wolf pack 
Determine the population size N 
Generate N initial wolf positions randomly within the search 

space 
Evaluate the fitness of each wolf using the objective function. 
Set the maximum number of iterations (MaxIter) and initialize 
the iteration counter (iter) to 1 
Initialize the Tabu List as an empty list 
while iter ≤ MaxIter do 
Calculate fitness values for all wolves. 
Identify the best wolf (alpha) with the highest fitness. 

Identify the second-best wolf (beta) and the third-best wolf 
(gamma) 
for each wolf do 
Update its position using the following formulas 
For alpha: newPosition = wolfPosition + A (2 · r1 − 1) · |C · 
alphaPosition − wolfPosition| 
For beta: newPosition = wolfPosition + A (2 · r2 − 1) · |C · 
betaPosition − wolfPosition| 

For gamma: newPosition = wolfPosition + A (2 · r3 − 1) · |C · 
gammaPosition − wolfPosition| 
end for 
Apply Tabu Search to refine the positions: 
for each wolf do 
if a new position is in the Tabu List then 
Ignore it and move to the next position. 
else 

Perform fitness evaluation of the new position and update the 
Tabu List. 
end if 
end for 
amend the Tabu List: 
if the Tabu List exceeds its maximum allowed size then 
Remove the oldest element from the Tabu List. 
end if 

Add the newly evaluated positions to the Tabu List. 
Increment the iteration counter (iter) by 1. 
end while 
return the best wolf (alpha) as the solution 
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We concluded both models with a dense layer, 

incorporating a SoftMax activation function to facilitate 

classification tasks. Additionally, the Adam optimizer 

was employed. We executed each model independently to 

evaluate its individual performance. We then devised an 
ensemble based on soft voting that integrated the 

predictions from both the LSTM and GRU models. 

Experimental Setup 

We implemented the proposed model on a machine 

running 64-bit Windows 11 Pro, equipped with a 12-

generation i7 processor with 12 cores operating at 4.9 GHz 

and 16 GB of RAM. We implement the LSTM-GRU stacked 

classifier using the deep learning library TensorFlow. The 

hyperparameters used are listed in Table 1. 

Dataset 

In this study, we used three datasets, i.e., UNSW-

NB15 (Moustafa and Slay, 2015), Edge-IIoT (Ferrag et 

al., 2022) and NSL-KDD (Tavallaee et al., 2009) as they 

are recently generated datasets from real-time traffic. The 

edge IIOT dataset has 62 features; it has a total of 

11223940 records in the normal class and 9728708 in the 

attack class; and the dataset has 11 classes for attack. The 

UNSW-NB15 dataset contains 175431 records and nine 
attack classes. The NSL-KDD dataset comprises a total of 

148517 records and four attack classes. 

Results 

Performance Matrices 

For evaluation of proposed model, we used accuracy, 

precision, sensitivity and specificity they are mentioned in 

the Eq. (20), (21), (22) and (23) respectively: 

 

Accuracy =
(TP+TN)

(TP+TN+FP+FN)
  (20) 

Precision =
TP

(TP+FP)
  (21) 

 
Sensitivity =

TP

(TP+FN)
 (22) 

 

Specificity =
TN

(TN+FP)
  (23) 

 
Where TP is True positive, TN is True Negative, FP is 

False Positive and FN is False Negative. 

Performance Evaluation 

A remarkable 99.50% accuracy is achieved by the 

proposed method on the NSL-KDD dataset, showing how 

well it can find network intrusions. This performance 

highlights its superiority compared to other approaches. 

Additionally, Figure 7 shows accuracy of the proposed 

work on benchmark dataset and it inherently represents 

key statistical indicators, including Interquartile Ranges 

(IQR), medians, and outliers, effectively capturing 
variance and confidence levels in model performance. 

To see how well GWOTB-LSTM-GRU-STACK 

(proposed) works, we compare it to GWO-GRU, GWO-

LSTM, GWOTB-GRU, and GWOTB-LSTM using the 

three datasets mentioned in Table 2. 

 
Table 1: Hyper Parameters and Their Values. 

Model Hyper Parameter Value 

LSTM LSTM Cells [128, 64] 

GRU GRU Cells [64, 32] 
GRU and LSTM Input Shape 1D 
GRU and LSTM Optimizer Adam 
GRU and LSTM Activation Function Softmax 
GRU and LSTM Learning Rate 0.001 
GRU and LSTM Dropout Rate 0.2 
GWOTB Population Size 100 
GWOTB  Max Iteration 50 

GWOTB  Lower Bound 0 
GWOTB Upper Bound 100 
GWOTB r1, r2, r3 [0,1] 
GWOTB  a 2  

 

 
 

Fig. 7: Accuracy of the Proposed IDS across Benchmark Datasets 



Kapil Shrivastava et al. / Journal of Computer Science 2026, 22 (2): 461.474 

DOI: 10.3844/jcssp.2026.461.474 

 

469 

Table 2: Performance of the proposed techniques 

`Dataset Technique Accuracy% Sensitivity% Specificity% Precision% 

NSL- KDD 

GWO-GRU 98.7 98.91 98.46 98.68 
GWO-LSTM 98.42 97.11 98.41 97.75 

GWOTB-GRU 98.71 98.95 99.01 98.98 
GWOTB-LSTM 98.53 98.70 98.10 98.39 
Proposed 99.55 99.21 99.45 98.33 

UNSW- NB-15 

GWO-GRU 97.51 98.13 98.41 98.27 
GWO-LSTM 97.15 98.5 98.95 98.72 
GWOTB-GRU 97.71 98.64 98.12 98.38 
GWOTB-LSTM 97.12 98.57 97.94 98.25 
Proposed 98.57 98.48 98.71 98.59 

EDGE-IIOT 

GWO-GRU 92.80 84.54 98.12 90.72 
GWO-LSTM 92.38 86.21 97.51 91.43 
GWOTB-GRU 93.21 90.12 98.45 94.12 
GWOTB-LSTM 93.11 89.87 97.11 93.33 
Proposed 95.08 94.13 98.25 96.12 

 
The proposed approach also exhibits exceptional 

sensitivity of 99.21% and specificity of 99.45%. In the 

UNSWNB-15 dataset, the proposed method continues to 

perform well, with an accuracy of 98.57%, displaying a 

good sensitivity of 98.48% and specificity of 98.71%. On 

the Edge-IIoT dataset, the proposed method achieves an 

accuracy of 95.08%, underscoring its effectiveness over 

GWO-GRU, GWO-LSTM, GWOTB-GRU, and Figure 8 
highlights the confusion matrices across three datasets, 

comparing classification performance.  

The confusion matrices illustrate strong class-wise 

performance across all datasets. For NSL-KDD (Figure 

8c), the model achieves near-balanced accuracy with 

49.56% true negatives and 49.76% true positives. In 

UNSW-NB15 (Figure 8a), attack detection stands at 

51.45% with low misclassification. In Edge-IIoT Figure 

(8b), the model detects 57.14% tire positive, though with 

a slightly higher false positive rate 3.76%. These results 

affirm the model’s effectiveness in distinguishing 

between normal and malicious traffic in diverse IoT 
environments. 

The confusion matrices for each dataset present the 

values for TN, TP, FN, and FP, providing a detailed view 

of the model’s performance. These metrics help to 

evaluate the system’s ability to correctly classify 

instances, including detecting true positives and true 

negatives, as well as identifying false negatives and false 

positives. GWOTB-LSTM demonstrate solid results, 

showcasing its potential to enhance network security by 

accurately identifying anomalies and intrusions. These 

results underscore the significance of advanced techniques in 

safeguarding critical systems and data from cyberattacks.  

Discussion 

Table 4 displays eleven effective techniques, all 

published in reputable academic journals, to conduct a 

comprehensive assessment of the proposed system, all 

performance values in Table 4 were directly extracted 

from the respective referenced studies and evaluated 

under similar dataset conditions. Across all datasets, the 
models generally exhibit high accuracy values, ranging 

from 92.38 to 99.49%. This indicates that these models 

can make accurate predictions on intrusion detection 

tasks. The proposed technique, consistently achieves the 

highest accuracy on all datasets, indicating its 

effectiveness in uncovering patterns and associations 

within the data. 
 

 
 

Fig. 8: (a) Confusion Matrix with UNSW-NB15 (b) Confusion Matrix with Edge-IIoT (c) Confusion Matrix with NSL-KDD 
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Diro and Chilamkurti (2018) have obtained an 

accuracy of 98.27% using the shallow neural network and 

deep neural network, which proved their effectiveness on 

the NSL KDD dataset. The gradual increase from shallow 

to deep models shows deep learning architecture’s 
benefits.  

Alhowaide et al. (2021) proposed an Edge-ENClf 

approach that has shown promising accuracy on the NSL-

KDD and UNSW-NB15 datasets. (Hassan et al., 2022) 

have employed the RF algorithm in conjunction with the 

Modified Manta Ray Foraging Optimization Algorithm. 

This technique performed well on the CICIDS and NSL-

KDD datasets. The research’s creative use of a modified 

optimization method contributed to its success. 

Mehedi et al. (2023) suggested deep learning and deep 

transfer learning as methods to identify network 

intrusions on the UNSW-NB15 dataset. The network had 

87.3% accuracy, 86% precision, and 86% recall. The 

accuracy may seem lower than in prior investigations, but 

the precision and recall rates show a fair trade-off between 

spotting intrusions and minimizing false positives. 

Sharma et al. (2023) utilized both Deep Neural Networks 

(DNN) and Generative Adversarial Networks (GAN). On 

the UNSW-NB15 dataset, deep neural networks and 

GANs achieved 91% accuracy.  

Ding et al. (2023) make use of generative models, 

which may aid in learning the underlying data 

distributions for better detection. This suggested 

technique achieved high accuracy on the Edge-IIoT 

dataset and UNSW-NB15 datasets at 94.96 and 98.41%, 

respectively. In the context of Edge-IIoT deployment, 

computational trade-offs and false alarm rates are crucial 

considerations. Our proposed model maintains a high 

accuracy of 95.08% on the Edge-IIoT dataset while 

achieving a sensitivity of 94.13% and a precision of 

96.12%, which reflects the system’s strong ability to 

correctly identify threats. We observed a slightly elevated 

false positive rate when compared to NSL-KDD and 

UNSW-NB15 datasets. This trade-off is partially 

attributable to the high-dimensional nature and real-time 

variability of edge traffic. 

To validate the observed gains, we conducted paired 

two-tailed t-tests across five independent experimental 

runs using different random seeds for each model. These 

tests were applied to compare the ensemble model with 

each relevant baseline, including GWO-GRU, GWOTB-

GRU, GWOTB-LSTM and the no-feature-selection 

variant. 

As shown in Table 3, the resulting p-values were 

consistently < 0.01 and the 95% confidence intervals were 

tight, indicating statistically significant improvements in 

accuracy. These results robustly confirm that the proposed 

ensemble model outperforms other configurations. 

We have conducted a comprehensive evaluation over 

four configurations: No feature selection, GWO alone, 

Tabu Search alone and the proposed hybrid method. 

Figure 9 depicts the results which demonstrate the 

progressive improvement in classification accuracy when 

employing more advanced feature selection strategies. 

From a computational standpoint, while the hybrid feature 

selection introduces additional preprocessing time at the 

same time it significantly reduces model complexity 

during training and inference by eliminating redundant  

Features, this gain in efficiency is beneficial in 

resource-constrained edge environments. The proposed 

feature selection has a worst-case complexity of 

O(N⋅F⋅T), the stacked LSTM-GRU model exhibits a 

training complexity of O(E⋅n⋅h²) while inference is 

reduced to O(Fs⋅h) with Fs ≪ F due to prior feature 

reduction. These analyses demonstrate a balanced trade-

off between performance and efficiency which is suitable 

for edge and cloud-based IoT environments. 

 

 

 

Fig. 9: Effects of feature selection on Accuracy 

 
Table 3: Statistical comparison of the proposed model with baseline models 

Dataset Compared Models 95% CI (±) p-value Statistically Significant 

NSL-KDD Proposed vs GWO-GRU ±0.18 0.0031 Yes 

NSL-KDD Proposed vs GWOTB-GRU ±0.19 0.0048 Yes 

NSL-KDD Proposed vs No Feature Selection (FS) ±0.18 0.0009 Yes 

UNSW-NB15 Proposed vs GWO-GRU ±0.21 0.0056 Yes 

UNSW-NB15 Proposed vs GWOTB-LSTM ±0.21 0.0023 Yes 

Edge-IIoT Proposed vs GWO-LSTM ±0.23 0.0042 Yes 

Edge-IIoT Proposed vs No FS ±0.24 0.0015 Yes 
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Table 4: Comparison with past studies 

Reference Algorithm Results Dataset 

Verma and Ranga 
(2020) 

RF, GBM, XGB AND 
MLP 

Accuracy = 94.99% CIDDS-001, UNSW-
NB15 

Diro and 
Chilamkurti (2018) 

Shallow NN & DNN Accuracy = 98.27% NSL-KDD 

Kozik et al. ELM Accuracy = 83% Self-generated 
Pajouh et al. (2019) LDA, NB, CF-KNN Accuracy = 84.82% NSL-KDD 
Chen et al. (2020) Decision Tree Accuracy = 99.98%, Precision = 97.38% CIC-IDS2017 
Kushwah and  
Ranga (2021) 

BH-ELM Accuracy 99.23% 99.5% (CICIDS 2017) NSL-KDD, CICIDS 
2017 

Alhowaide et al. 

(2021) 

Edge-ENClf Accuracy = 98% (NSL-KDD), 95% (UNSW-NB15) NSL-KDD, UNSW-

NB15 
Hassan et al. (2022) Modified MRFO algorithm 

and random forest 
Accuracy = 98.8% 99.3% (CIC-IDS2017) NSL-KDD, CIC-

IDS2017 
Mehedi et al. (2023) DL and DTL-based 

residual neural network 
Accuracy = 87.3%, Precision = 86%, Recall = 86% Self-generated 

Sharma et al. (2023) DNN and GAN Accuracy = 91% UNSW-NB15 
Ding et al. (2023) eRSR block, TRB, and DB Accuracy = 94.96% (Edge-IIoT), 98.41% (UNSW-NB15) Edge-IIoT, UNSW-

NB15 

Conclusion 

The proposed framework for intrusion detection in IoT 

environments demonstrates significant advancements in 

accuracy, efficiency, and reliability. Through a carefully 

structured approach comprising data pre-processing, a 

novel hybrid feature selection method, and a deep transfer 

learning model utilizing stacked LSTM and GRU 

networks, the system addresses critical challenges in IoT 
security. Experimental results on benchmark datasets, 

including NSL-KDD, UNSW-NB15, and Edge-IIoT, 

confirm the framework's superior performance compared 

to existing methods such as GWO, CNN, SVM-Bagging, 

Decision Tree, and ELM. While the current framework 

has shown promising results, opportunities for further 

improvement remain. Future research can explore 

optimizing the framework for energy efficiency, 

particularly in resource-constrained IoT environments. 

Additionally, adapting the model to incorporate dynamic 

updates in response to evolving cyber threats could 

enhance its resilience. By addressing these aspects, the 
proposed solution can contribute to more robust and 

scalable intrusion detection systems, ensuring enhanced 

security for the rapidly expanding IoT ecosystem.  
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